PROTOTYPEIMPLEMENTATION OF A DEMAND
DRIVENNETWORK MONITORINGARCHITECTURE*

Augusto Ciuffoletti
INFN/CNAF

Via B. Pichat 6a
Bologna - Italy
augusto@di.unipi.it

Yari Marchetti

Dept. of Computer Science of the University of Pisa
Largo Pontecorvo

Pisa- Italy

marchetti@cli.di.unipi.it

Antonis Papadogiannakis, Michalis Polychronakis
FORTH
Heraklion (Crete) - Greece

[mikepo,papadog]@ics.forth.gr

Abstract The capability of dynamically monitoring the perfomanceha communication
infrastructure is one of the emerging requirements for a GkiVe claim that
such a capability is in fact orthogonal to the more populdlection of data for
scheduling and diagnosis, which needs large storage aedingicapabilities,
but may disregard real-time performance issues. We disugsclaim analyz-
ing the gLite NPM architecture, and we describe a novel ne&twonitoring
infrastructure specifically designed fdemand driven monitoring, namedad2,
that can be potentially integrated in the gLite frameworke Wéscribe a Java
implementation ofjd2 on a virtual testbed.

Keywords: Network Monitoring, gLite, Network Measurement, XML Schaescription,
Java, User Mode Linux.

*This research work is carried out under the FP6 Network olisece CoreGRID funded by the European
Commission (Contract IST-2002-004265).

1. I ntroduction

End-to-end network monitoring is a key issue in the manageragpro-
duction Grids: with reference to a frequent situation in@ica management
scenario, it would be useful to monitor network performahoth before and
during access to replicated data, in order to dynamicallgcse replica that
offers an acceptable accessibility. However, end-to-egtthork monitoring
introduces distinctive problems.

For one, its complexity potentially scales up with the squairthe size of
the system, while other resource monitoring activities ifistance processing
power) scale linearly. To ensure its scalability, end+td-aetwork monitoring
must be selective in its targets: only a significantly smedcfion of end-
to-end paths can be monitored at each time. As a consequehaggver the
criteria to select which path is to be monitored, we need ssormef distributed
infrastructure in order to activate and deactivate netwaookitoring selectively.

Another problem comes from the accessibility of the reseurd/hen we
monitor other kinds of resources, e.g. processing catiabilithe sensor has
direct access to the resource. In the case of network morgtowe often
observe that the monitoring tool requires some sort of cadipm from the
resource itself: for instance, even the trivial ICMP pinguiees that packets
are freely propagated, which is not always true. As a gemalal an end-to-
end network element must be treated as an opaque box, shawarfprmance
which is traffic specific. One way to overcome this problenoisise passive
measurement techniques, instead of active, thus analgziseting traffic: such
solution is also the foundation of tH®FIX [11]protocol, currently discussed
within the IETF. In our approach, traffic analysis is delegato specialized
units, located where it is possible to intercept traffic lw end-points. The
result of such activity should be collected and publishdg after checking the
credentials of the requester: these data should be regasdedbject to security
restrictions.

Summarizing, we establish two cornerstones for an endivtimetwork mon-
itoring architecture capable of managing the scalabilitslienge offered by a
Grid environment: idemand driven, in the sense that its activity is not set by
default, or with static configurations, but controlled byezral agents, and ii)
passive monitoring oriented, in the sense that only existing traffic is analyzed
in order to obtain the requested measurements.

The next section goes into the details of a novel architeamtrich is based
on the above foundations: it is the result of a joint activofyINFN-CNAF
(Italy) and FORTH (Greece), in the frame of the European G&#® project.

A Demand Driven Network Monitoring Architecture 3

BACKBONE

Figurel. Deployment ofgd2 components in a Domain: E units represent generic mongorin
endpoints, A labeled units represent Network MonitoringeAi, S units represent Network
Monitoring Sensors

2. Thecomponentsof a demand driven network
monitoring architecture

Our architecture partitions Grid end-points imdomains (see figure 1). A
Network Monitoring Agent (Agent, in the rest of this papeakés the respon-
sibility of managing a number of Network Monitoring Sens(Bgnsors, in the
rest of the paper), and of agents enabled to submit networktanmg requests,
the Network Monitoring Clients (Clients, in the rest of thegger) that compose
the Domain. There are good reasons to introduce a partiipmoughly the
same that motivate its introduction in many aspects of nedwg: reducing
complexity—one Agent concentrates the interface to the entitiesarasttbmain;
security containment — security issues can be managed using local credentials
inside a domaintimiting global state access — only Agents have access to the
global state, thus simplifying its management and ensisauyirity.

21 TheNetwork Monitoring Agent

The services offered by an Agent can be divided into two gsétearate
interfaces: one towards the other Agents (back end), anthenmwards local
sensors and clients (front end). In figure 2 the triangulapsh indicate front
end interfaces. We examine the two faces, and next detditdeal structure
of the agent.

The back end interface is in charge of maintaining the membership of the
Agents in the system. Such membership is the repository @félevant data:
1) the credentials of the Agents, needed to enforce sednritymmunications
among the agents, and 2) the components of each domain.

As for the first point, we envision a public/private key scleeas adequate
for our purpose: we consider that security primarily avdigs intrusion of

Data Transport
Sensor IF Front end Client IF
Data Data

Back End

Session Soft State

—
-

Sensor IF Client IF
Control Request Routing Request
Front end

Figure2. Internal architecture of a Network Monitoring Agent. ThecR&nd interfaces are
located in the innermost stripe

malicious entities disguised as Agents. Whenever thetsestithe monitoring
activity are considered confidential, Clients and Sensdltsbe in charge of
encrypting sensitive data according to agreed methods. rderdo control
access to the membership, we assume the existence of anabéatity in
charge of key creation and assignment. This Authority, wabnission of a new
agent, releases a certificate, which entrusts the use ailtiie gey as authorized
by the Certification Authority. Each Agent has access to asigpry containing
the certified public keys, and each communication withinrtreenbership is
accompanied by the signature of the sender (not encrypt@diniciple), which
can be checked using the public key.

The reader understands that the implementation of thdicaté repository
is a component whose implementation affects the scalaloifithe whole ar-
chitecture: we deal with such component in page 7.

The back end, upon receiving a request, submits its coraehefront end
in order to assess its capability to take it up: it is possitiilat the information
in the domain directory was insufficient to determine therappate Agent for
the task. Therefore we consider that the front end may féillfil a request: in
such case, the back end will trap the failure, and resubmitdfuest to another
Agent. Such re-routing will be controlled either by altama#gents whose
identity is indicated in the global directory (as a geneudd several agents are
responsible for the monitoring of a given network elememt)yy information
available to the front end, obtained from inside the domaife indicate the
capability of re-routing requests as a "Proxy" functiotyali

An Agent offers another back end service for the transpaxetivork Mon-
itoring data to the Client that requested it: such transpeitice consists of a
stream from the Sensor to the Client, and is routed transpwpréarough the
reverse of the path used to deliver the request. The cont¢né atream may
be encrypted, in case the network monitoring results arsidered as confi-

A Demand Driven Network Monitoring Architecture 5

dential, but the client(s) must own the key to decrypt thadhere we assume
that such keys are negotiated when the network monitorsigissaccepted for
execution.

Thefront end of the Agent is in charge of interacting with Clients and e8s
inside the Domain: the Agent accepts requests for Networhkitdong from
the Clients, and drives the Sensors in order to perform theasted network
monitoring activity.

The network monitoring activity is organized inftetwork Monitoring Ses-
sions (or Sessions, in the rest of this paper). A session desdtilgesndpoints
of the Network Monitoring activity, as well as the kind of &y required.
The request must determine, either implicitly or expligithe features of the
stream that will be produced to return observations to tlenClIn [5]we give
an XML Schema Definition for such data structure, the Sedsscription.

The Clients submit their requests to the Agent as Sessiocripdens. The
Agent is in charge of checking whether the request comes fnomuthorized
client: this functionality is supported by a trust suppdriaternally to the
domain, independent from that used within the membershipeoigents. This
allows the possibility of merging domains with distinct saty policies and
support. The request is then passed to the back end.

The front end, upon receiving a request from the back endyzem its
content to assess its ability to configure a Sensor that ipesfohe task: to
this purpose, the Agent must have access to a directorynait® the domain,
containing the descriptions of the sensors.

Figure3. Modular view of a Network Monitoring Agent

The abstract functionalities described above have beeteimgnted as a
multi-threaded daemon (see figure 3). TeamProxy thread is in charge of
passing through the streams of data from sensors. It is ceedpuf four threads
that implement a pipe composed of four tasks: to receive doket, to verify
its signature, to generate the new signature, and to sernphttiet to the next
hop. These threads utilize the AgentRetriever API providgdhe database

6

in order to have access to the Domain Directory, and the Agdd tio access
the shared Soft State through the interf@omnectionSate. It implements the
"Stream IN, Stream OUT" boxes in Figure 2.

TheRequestManager is another thread in charge of routing network monitor-
ing requests, and implements the "Request IN, Request ObkEYin Figure 2.
As in the case of th&reamProxy, the ConnectionState and the AgentRetriever
interfaces grant access to the Soft State and to the DomedatDiy.

Requests are acquired bySanpleHTTPServer thread that offers a SOAP
interface to the Clients, and they are delivered toRbguestManager through
its IRequestinterface interface.

The RequestManager controls the Sensors through a set of plugins, each of
them specifically designed in order to drive a certain kinderisor. Sensor
plugins offer an interface with a singthspatchRequest method.

2.2 A passive Sensor and its plugin

Passive monitoring sensors are usually located at seleetetdge points
in the network that offer a broad view of the traffic of a domanach as the
access link that connects a LAN with another, or an Autonas®&ystem to the
Internet.

To support passive network measurements usinggtearchitecture, we
have developed a plugin within the Network Monitoring Agesfitich controls
the passive monitoring sensors. The passive monitoringirpliirst receives
the configuration parameters for the passive network measents from the
client’s request. available measurements are round-imp {7], delay and
jitter, packet loss rate [8], available bandwidth, and geplication bandwidth
usage [1], based on the the Distributed Monitoring Appi@afrogramming
Interface (DIMAPI) [13]developed at FORTH. These paramsetee derived
from the measurement specific part of the session deserigboument, while
the MAPIOptions element provides the relevant parameters for the passive
monitoring tools.

When the starting time of a measurement comes, the passiaganiog
plugin invokes the execution of a DIMAPI program that coaedes the remote
monitoring sensors for the task. Dynamic configuration efgbnsor includes
the specification of packet filters, the definition of the msxing operations
that should be performed for each network packet, and tre dfimesults that
should be produced, using the suitable DIMAPI functiond.[IThe measure-
ment results from each sensor are periodically sent to th&ABil program
for aggregation and then returned to the plugin in the NMAahy, the plu-
gin parses the results and sends them to the consumer thasughcrypted
connection.

A Demand Driven Network Monitoring Architecture 7

Domain 1

Figure4. Invoking a passive measurement for packet loss ratgaih a plugin inside NMA
initiates a DIMAPI program which gathers results from twoae sensors

Figure 4 presents an example of a passive measurementsiessie packet
loss ratio between two different domains: we emphasizedihett a measure-
ment requires sophisticated techniques in order to be peed according with
a passive approach to network monitoring. Initially a digomits a request to
thelocalNMA (1), and the request is forwarded to a corresponding NR)Ah@at
should perform the measurement. Then, the passive mamgtpiugin parses
the request and initiates the execution of a DIMAPI prograat tomputes the
packet loss ratio between the two domains using data froncom@sponding
monitoring sensors. The program first configures the twomer) and then
the results are streamed from the sensors to the DiIMAPI arodgd), which
computes the packet loss ratio and reports it to the passivetoning plugin.
Finally, the results are streamed to the local NMPA&nd to the client).

We have currently implemented the passive monitoring plugisupport
appmon [1], a DIMAPI based tool that reports the accurate bandwidthge
for individual protocols and applications, apdcket loss [8]measurement
tools.

2.3 The Domain Database

In order to understand the role of the Domain Database, wstilite the
decisions that the Agents take on the basis of its content.

The first decision step on this way is performed byAlent once it receives
a request from &lient: it consists in determining the Source and Destination
domain of the network element under test. Such informatioabitained by
way of a query to the Domain Directory. The request is thew#éoded to an
Agent in such domains: the identity of such agents and thiress is again
obtained from the Domain Directory. We exclude that a maimigpactivity is
performed by an intermediate domain, since this would recghie availability
of routing information for the overall system.

Each agent on the way of the Request will in turn check theasige as-
sociated to the request, and replace it with its own. A querthé Domain
Directory returns the public key needed to check the sigratu

Each agent in turn will check the availability of the netwarlonitoring
functionality within the domain. This step is performedhatt further access
to the Domain Directory, but browsing the capabilities &lde within the
domain. We emphasize that our perspective helps to simblifytask: the
adoption of passive tools helps us in limiting the numberatéptial producers
(thesensors) in our architecture. Therefore the search for a producesisicted
within a limited number of sensors: such search can be dith&zd on a local
directory, or simply carried out broadcasting the requestptiate to the local
Sensors.

The above discussion explains why the Domain Directory liietoonsidered
a critical component in the structure: it is a potential &mgpint of failure, and
a performance bottleneck. A centralized implementatiothésefore incom-
patible with the scalability of our architecture. Howewbg information stored
in the Domain Directory is seldom updated, and this opensgvtheto strongly
distributed solutions.

There are several options, that depend on the scale of tldeoGcioncern.
One is to apply to a LDAP or DNS based implementation. Such kwsiwn
tools are ready solutions for the maintenance of a distihuthat allow data
replication in order to improve performance and fault tafere. Such solution
is probably adequate to most current scenarios.

Going beyond such scale, we indicate the implementatiorffyedelocal-
ized solutions: in essence, all Agents cache a part of ttebdag, and updates
are propagated according with a peer to peer protocol. Spgtoach may
significantly improve scalability, while reducing the fpant for the mainte-
nance of the Domain Directory. A theoretical investigatadout the topic are
reported in [3], while experimental results are in [4].

3. Related works

The NPM architecture [9]is one of the most promising profs&a network
monitoring, and is presently embedded in the gLite infragtire, designed
and implemented in the framework of the European Project EQEPM is
designed to provide two types of information: measurematd,dn the form
of data records conforming to OGF standards, and metachatizating what
kind of data are available for a given network element. Suébrination is
delivered to clients, whose role is to diagnose networkguerénce problems.

The client submits its request to intermediate entitiespigdiators, through
a web service interface. Such request may either exhalystiescribe a mea-
surement series, or ask for the retrieval of metadata abeutneasurements

A Demand Driven Network Monitoring Architecture 9

available for a given network element. In the former case,rédguested data
will be delivered to the client, while in the latter the clievill be presented with
a list of available measurements to choose from. In eithss tteamediator will
use services offered by another kind of componentdibeaverer, which is in
charge to either locate the requested data, or to produdisting of available
sources. The source of the monitoring data is cdHaahework, and it provides
access to the tools that extract network monitoring dataetaitkd description
of the above services is in [10].

NPM strongly focuses on the accessibility of historicaladathis makes
a relevant difference compared to our perspective. In finte we mainly
address data collected on demand, we necessarily exclodeefformance
reasons, a web service oriented architecture for the vatrad measurements.
Instead we introduce a long lived communication entity, reash. For the
same reason we need not to address a large database ofecblatd: data are
delivered to interested users, without being stored anysvfinless a Client
wants to do so). This avoids the needrafexing data, one of the functionalities
associated to thdiscoverer. In our architecture the discovery activity focusses
on afar less complex task: determining where to fire the nreasent session.

We conclude our discussion remarking that a direct compauris in fact
inappropriate: the two frameworks, NPM agd2 address two distinct prob-
lems, and each of them is a poor solution when applied to tbblgm for
which it has not been explicitely designed. g2 Agent is designed to di-
agnose network problems once they have been detected, ubhdetection
tools: here we present a framework that helps detectingwsonletproblem,
and possibly overcome its presence without diagnosingiisce. The NPM
has an extremely heavy footprint when used to receive maal tipdates of the
performance of a network element, which is needed to detettigms; our
framework has no way to explore the past of an observatiankitng up to its
cause.

Since their application domains are different, one may gtiest they may
live side-to-side in the same infrastructure. We beliew this is possible, at
least in perspective. For instance]i@nt in our framework might be embedded
in a NPM framework: itsequest might consists of a long-lived, continuous
monitoring activity, and the flow of observations might beaeled for future
use of NPM diagnostic tools. However, such a publication atibdcannot
replace the stream introduceddd2 when the client is an entity in charge of
monitoring the real time performance of an end-to-end path.

The approach presented in this paper is also complementtiryhe| PFI X
project [11]: the purpose of the IETF initiative is to desigrprotocol for
flow metering data exchange between IPFIX Devices (corretipg to sensors
in out framework) and IPFIX Collectors (Clients in our franmk). Such a
protocol roughly corresponds to the payload of the SensBliémt stream, and

10

can be used whenever netwrok utiliziation has the chaiatitsr of a flow. We
plan to converge to an IPFIX compliant architecture, andP&fiX interface for
MAPI is under work.

A monitoring infrastructure which inspired our work@M o [6], a passive
monitoring infrastructure ideated by Intel. A branch of lsywoject covers
the placement of passive sensors [2], a relevant issuestimat iconsidered in
our paper. The CoMo research stream explores many relespatts of net-
work monitoring, but fails to give an exhaustive descriptad the conversation
between the Sensor and the Client, which is the main purmosarfwork.

4. Prototypelayout and operation

The purpose of our prototype was to assess the feasibiliheafholegd2 ar-
chitecture, focussing on the communication infrastruettinerefore we tried to
concentrate our efforts in order to produce a real scalestfgr a community
of Agents, leaving behind other aspects of our architecture

We implemented a fully functional request delivery infrasture, as well
as the streaming in charge of returning the data to the rézgués/e took into
account the security issues mentioned above, using sigm@dhanications
among the Agents, taking care of the organization of thessurmif the database.

One ofthe aspectsthatare considered to a limited extdmt isiplementation
of the database: we have implemented a solution based on AR ddectory,
whose scalability is similar to other solutions based os thchnology. Al-
though we are actively working to design a solution with d&esicalability, we
have evidence that the pragmatic solution given by LDAPtisfsatory at the
current scale of real Grids.

In order to debug and demonstrate the functionality of theqgtype, we
have implememented a virtual testbed using the NETKIT &idl2], based
on the User Mode Linux technology, which allows to virtualigeveral dis-
tinct hosts using a single computer. The virtual hosts appagaomplete PCs,
with independent storage, computing and networking tadli They can be
interconnected, using ordinary interconnection tool$) i virtual network.
Aside from the limited amount of resources needed to syithdke testbed,
the major advantage of such an approach is that the expesroan be easely
replicated on distant sites, thus allowing a collaboratiegelopment of the
software without need of sharing hardware facilities, alvdags run under
extremely controlled conditions. Demonstrations can loelpced using any
available Linux machine, and without installing experinarsoftware on the
real compute.

1The package with the virtual testbed (designed for Ubuntunuk) is available at
http://network-monitoring-rp.di.unipi.it/, with instruction for its installation

A Demand Driven Network Monitoring Architecture 11

192.168.66.1

192.168.66.2
10.0.0.1

10.255.1.1

10.255.1.2

Figure5. Development testbed

In our testbed we synthesize a network composed of threetdgenl two
routers (see figure 5): each of the Agents lives in a distinaota@in. One of the
Agents was equipped of a Client interface able to generat@dtke Monitoring
Requests. We observed the delivery of the Request to theoSevith one or
more hops within the Agents membership, and the flow of olagiemns from
the Sensor to the Client.

5. Conclusions

Our investigation, which attained the detail of a real saalplementation,
lead to a clear view of the problems relatedtodemand network monitoring,
and to the change of attitude needed with respect to the, saytaliagnosis-
oriented network monitoring. A demand driven architeciangot data-centric,
in the sense that storage and indexing of measurements arelenant, but
more capability-centric, in the sense that operational/ast monitoring capa-
bilities must be indexed, and protected against misuserefére we need an
architecture that is able to give a structure to the memieoflthe components
that have monitoring capabilities, so to provide a capghilased addressing
of the monitoring resources.

We have identified such structure in a topology-bound pamiitg: such
structure must be sufficiently stable, in order to allow #rifisted management
of the directory that describes such partioning. In ordesftectively abstract
from the internal structure of a domain, we introduce congots that manage
the monitoring capabilities within a domain.

The primary security need is to avoid unauthorized accessti@ork mon-
itoring capabilities: to this purpose we need a robust aniib&tion scheme,
which is again based on information contained inside thiibiiged directory.

Data transfer must focus on long lived, low bandwidth dedagfers: dess
than best effort paradigm seems appropriate for their definition. This sdems

12

match with a stream oriented protocol, that uses routingrin&tion obtained
during the delivery of the network monitoring request.

In such scenario, passive monitoring is not only an optiotivated by a low
footprint. Passive end-to-end monitoring capabilities ba concentrated in a
few locations within a domain, thus simplifying the indexiof available capa-
bilities, instead of scattered on each possible endpoihiclwcomes as a crucial
advantage also in the deployment of the network monitorifigastructure.

References

(1]

(2]

Demetres Antoniades, Michalis Polychronakis, Spiratohatos, Evangelos P. Markatos,
Sven Ubik, and Arne @slebg. Appmon: An application for aateiper application net-
work traffic characterization. Im IST Broadband Europe 2006 Conference, 2006.

Gion Reto Cantieni, Gianluca lannaccone, ChristopheaBat, Chadi Diot, and Patrick
Thiran. Reformulating the monitor placement problem: @atinetwork-wide sampling.
Technical report, Intel Research, 2005.

[3] A. Ciuffoletti. The wandering token: Congestion avaida of a shared resource. In

Austrian-Hungarian Workshop on Distributed and Parallel Systems, page 10, Innsbruck
(Austria), September 2006.

[4] Augusto Ciuffoletti. Secure token passing at applicatievel. Inlst International Work-

shop on Security Trust and Privacy in Grid Systems, page 6, Nice, September 2007.
submitted to FGCS through GRID-STP.

[5] Augusto Ciuffoletti, Papadogiannakis Antonis, and Natis Polychronakis. Network

(6]

[7]

monitoring session description. Technical Report TR-0@@#eGRID Project, July 2007.
Gianluca lannaccone, Christophe Diot, Derek McAulepdfew Moore, lan Pratt, and
Luigi Rizzo. The CoMo white paper. Technical Report IRC-UR-17, Intel Research,
2004.

Hao Jiang and Constantinos Dovrolis. Passive estimaifdcp round-trip times S G-
COMM Comput. Commun. Rev., 32(3):75-88, 2002.

[8] Antonis Papadogiannakis, Alexandros Kapravelos, MiishPolychronakis, Evangelos P.

Markatos, and Augusto Ciuffoletti. Passive end-to-endkpauonss estimation for grid
traffic monitoring. InProceedings of the CoreGRID Integration Workshop, 2006.

[9] Alistair Phipps. Network performance monitoring arteltiture. Technical Report EGEE-

(10]
(11]
(12]

(13]

JRA4-TEC-606702-NPM NMWG Model Design, JRA4 Design Teaept®mber 2005.

Alistair Phipps. NPM services functional specificatioTechnical Report EGEE-JRA4-
TEC-593401-NPM Services Func Spec-1.2, JRA4 Design Teanoh®r 2005.

J. Quittek, T. Zseby, B. Claise, and S. Zander. Requére for IP Flow Information
Export (IPFIX). RFC 3917 (Informational), October 2004.

Massimo Rimondini. Emulation of computer networkstwhietkit. Technical Report
RT-DIA-113-2007, Roma Tre University, January 2007.

Panos Trimintzios, Michalis Polychronakis, Antonisag@dogiannakis, Michalis
Foukarakis, Evangelos P. Markatos, and Arne @slebg. DiMARBpplication program-
ming interface for distributed network monitoring. Anoceedings of the 10" |IEEE/IFIP
Network Operations and Management Symposium (NOMS), April 2006.

