

Allocating Resources to the Search for
Vulnerabilities In Information Infrastructures

Fabrizio Baiardi
Dipartimento di Informatica, Università di Pisa

Abstract A fundamental step of any security assessment of an information infrastructure is the search
for vulnerabilities of ICT components. To optimise the investment in the search, first of all we
introduce a mathematical model that evaluate the impact for the infrastructure owner as a function of
the resources allocated to the search of vulnerabilities in distinct infrastructure components. Then, we
introduce a zero sum game between an attacker and a defender, each managing a fixed amount of
resources to be allocated to the search To prevent attacks, the resources allocated by the defender
search for vulnerabilities to patch the infrastructure to remove them. Instead, the attacker resources
search for vulnerabilities to exploit them and attack the infrastructure. Attacks results in a loss for the
defender that, in the simplest case, is proportional to the time in-between the discovery of a
vulnerability by an attacker resource and the discovery of the same vulnerability by a defender one. A
loss is avoided only if and when a defender resource discovers a vulnerability before than an attacker
one. In another case of interest, there is a delay between the discovery of vulnerability and the patching
or the attack. We define conditions for Nash equilibrium where a player cannot improve its utility by
changing its move only. We show that the corresponding allocation requires a large defender
investment with a low return. Lastly a condition is introduced to evaluate when the adoption of open
code components may reduce the defender investment and result in a better security.

Keywords: vulnerability, vulnerability window, open source, equilibrium

1. Introduction

A fundamental component of most critical infrastructures is an ICT network that interconnects the
infrastructure components to a set of control rooms that manage the overall infrastructure according to
the predefined goals set by the infrastructure owner. This ICT network will be referred to as the
information infrastructure paired with the considered critical infrastructure. An information
infrastructure consists of several interconnected components, some developed for the infrastructure and
other commercial of the shelf, cots, components adopted to reduce the overall cost. A vulnerability [7,
8, 24, 25] is any defect of a component that enables an attack against the information infrastructure. If
the attack is successful, the information infrastructure is controlled, to some extent, by the attacker
rather than by the owner. When the attacker controls the information infrastructure, it can control and
manage the whole infrastructure. Hence, the overall security of the infrastructure strongly depends
upon that of the information infrastructure. Any security assessment of the whole infrastructure cannot
neglect the corresponding information infrastructure [1-6].

By adopting the guidelines in [10], this paper considers cyber attacks against the information
infrastructure and the search for vulnerabilities that enable such attacks. In particular, we assume that
for each component of the information infrastructure there are two sets of people searching for
component vulnerabilities. The goal of people in one set is to patch the component to remove any
vulnerability that has been found. Instead, people in the other for vulnerabilities to attack the
infrastructure. We assume that the patching [11] of the infrastructure invalidate any previous attack so
that the loss due to an attack is proportional to the vulnerability window [8, 24, 25] of the vulnerability
V enabling the attack, i.e. to time in-between the discovery of V by the attacker and the discovery of V
by the defender. The window is larger than zero iff those interested in attacking the infrastructure
discover V before than those that patch the infrastructure. We introduce a mathematical model that
defines the average impact as a function of the vulnerability window and of the number of people
searching for a vulnerability. Then, we define a strategy to allocate resources, i.e. people, to the search.
To define this strategy, we introduce a zero sum game between an attacker and a defender, each
managing a set of resources to be allocated to the components of the information infrastructure. Each

instance of the game consists of a pair of allocations, one for each player. Each allocation defines the
resources the player allocates to each component. By exploiting the mathematical model previously
defined, the allocations are mapped into the average vulnerability windows and the corresponding loss
of the defender. This loss is the utility of the attacker and the inverse of the defender one. We define
the condition for Nash equilibrium of the game in the case where the probability that a player finds a
vulnerability in a component is geometrically distributed in the number of resources it has allocated to
the component [12, 16]. In Nash equilibrium neither player can improve its utility by changing its
allocation only, i.e. both allocations have to be changed to improve the utility of any player.

This paper is structured as follows. At first, it introduces the framework of the mathematical model
to that relates the player utilities to the allocations, i.e. to the number of resources assigned to search for
vulnerabilities in the components. We also discuss the optimisation of an allocation if the one of the
opponent is known. Then, equilibrium conditions are discussed together with some preliminary
applications to the adoption of open code components and some generalization of the player utility
functions. Lastly we draw some conclusions and outline some future developments.

The importance of a quantitative evaluation of the relation between attack impacts and the
investments in the search for vulnerabilities has often been stressed [5, 17, 18, 22, 26]. [23] presents a
survey of current approaches to evaluate attack impacts and introduces the notion of market price of
vulnerability. In an infrastructure, this price mostly depends upon the service supported by the
infrastructure. [17] applies game theory to information warfare. [20] defines an insurance inspired
allocation of resources to minimize the impact of a terrorist attack. The competition between defenders
and attackers in the search for vulnerabilities and an optimal disclosure policy is considered in [9, 24,
25]. [9] considers the search for vulnerabilities and a social planner that decides when a vulnerability is
disclosed. However, it neglects the case where a vulnerability is discovered by an attacker.

2. Modelling Resource Allocation As a Game

After discussing the main underlying assumptions and constraints, we present in some details the
mathematical model that will be used to define the game to evaluate alternative allocation of resources
searching for vulnerabilities in the components of the information infrastructure.

2.1. Underlying Assumptions

The proposed mathematical framework is based upon the zero delay model [10] as it assumes that
both the patching and the attacks on the infrastructure occur as soon as a vulnerability has been
found. A further significant assumption of the proposed framework is that the impact of a successful
attack, i.e. the loss of the infrastructure owner, increases with the size of the window of a vulnerability
V, i.e. with the time in between the discovery of V by those interested in attacking the infrastructure
and the discovery of V by those interested in patching the infrastructure. This assumption is satisfied
any time the goal of the attackers is an economic benefit rather the disruption of the infrastructure or
the loss of human lives. Furthermore, for the moment being we assume that in each component of the
information infrastructure there is only one vulnerability. This is relaxed in the following.

Our model assumes that, for each component there are two sets of people searching for the
vulnerability V of the component. Let us consider at first the search of one set. The size of the set is N
and it is fixed. The probability that each of the people in the set finds V in one time unit is p and it does
not change with time. The assumption that p does not change with time is realistic provided that people
searching for the vulnerability have been trained before starting the search. Furthermore, two people in
the set have the same probability of finding V because they can access the same information.

Since the probability that at last one people in the set finds V in a time unit is 1-(1-p)N, the one that
V is found after exactly t unit of time is geometrically distributed and equal to qt-1(1-q) where q=(1-p)N.
Hence, on the average, V is found at time AT where

Npq
AT

)1(1
1

1
1

−−
=

−
=

We consider now that there are two sets, S1 and S2 including, respectively, N1 and N2 people with
probabilities p1 and p2 of finding V. The two searches for V are independent because we assume that
the sets are disjoint and there is no exchange of information between them, hence the average
difference between the times when V is discovered by the two sets is

() () 21
21 11

1
11

1
NN pp −−

−
−−

Since no information flows between the two sets, no information from other people is available to
speed up the search. The average difference between the two times can be larger or smaller than zero
according to the set sizes. By exploiting the approximation

() ()pNp N −≈− 11
the average difference may be rewritten as

() ()2211

11
pNpN

−

if this value is larger than zero then people in S2 discover V before than those in S1.

2.2. Allocating Resources to Infrastructure Components

Consider now an information infrastructure including C components that are instances of n
component types T1, … , Tn. Let Mi, 1 ≤ i≤ n denotes the number of components that are instances of
Ti. According to the previous assumption, for each type Ti:
1. there is just one vulnerability Vi,
2. two sets of peoples, Ai and Di, search for Vi. Let Nai and Ndi be the sizes of the two sets and pai

and pdi the probabilities that a person in the corresponding set finds Vi.
Peoples in Ai, the attackers, exploit Vi to immediately attack the infrastructure while those in Di the
defenders, immediately patch the infrastructure. If an attacker discovers Vi before than the defenders,
then the attack is successfully executed and it has an impact, i.e. a loss for the infrastructure owner.
Besides than to the number of attacks, the impact is proportional to Mi, to the window size and to the
role of the component in the infrastructure. According to the proposed model, the size of the window
for Vi is

() ()iiii NapaNdpd
11 −

On the average, if pai Nai ≤ pdi Ndi then the defenders discover Vi before than the attackers so that
TypeLoss(Ti) , the loss of the owner due to Vi is zero. Instead, anytime

pdi Ndi < pai Nai (1)

the attackers find Vi before than the defenders. In this case, the average impact is equal to

��
�

�
��
�

�
−=

iiii
iiii NapaNdpd

MTTypeLoss
11

)(ρδ (a)

where:
• ρi is the percentage of the Mi components that are attacked
• δi is the profit for unit of time of a successful attack to a component of type Ti.

Both constants depend upon the considered infrastructure. In the following, αi denotes ρI δi .
For some types, the definition of the attack and/or that of the patch may be so complex that the

assumption of a zero delay in between the discovery of a vulnerability and either an attack or the
patching may not be realistic. Taking into account that there is a loss anytime the infrastructure is not
patched when the attack is ready, the impact for each of these types may be defined as:

where Tpai and Tatti are the times to define, respectively, the patch and the attack and the last factor is
the new size of the vulnerability window. Hence, there is a loss for Ti if

i
ii

i
ii

Tatt
Napa

Tpa
Ndpd

+>+ 11 (1’)

The overall owner average loss AoLo is the sum of the average losses for all the types,
()�

=

=
n

i
iTTypeLossAoLo

1

Obviously, only the types satisfying either (1) or (1’) contribute to the sum.

3. Equilibrium and Optimal Allocations

At first, this section defines the allocation of resources to the search of vulnerability as a zero sum
game that involves two players, the attacker and the defender, i.e. the infrastructure owner. Then we

�
�
�

�
�
�
�

�
−+��

�

�
��
�

�
−= ii

iiii
iii TattTpa

NapaNdpd
MTTypeLoss

11
)(α

consider how a player can optimise its allocation as soon as it knows the opponent one. Taking into
account this strategy, we consider Nash equilibrium of the game and the condition for such
equilibrium.

To define the resource allocation as a game, we introduce two players, the attacker and the
defender, each managing a resource pool. The one of the attacker includes A resources, the defender
one D resources. A player allocates each resource to the search for the vulnerability of one type.
Obviously, the overall number of resources a player may allocate is equal to the size of its pool. An
instance of the game consists of a pair of moves, i.e. of allocations, one for each player. The pair of
allocations defines both Nai and Ndi, for each i, 1≤i ≤n and, as a consequence, a loss that corresponds to
the attacker utility AU, i.e. AU=AoLo. If DU is the utility of the defender, then DU=-AoLo. Notice
that D, the size of the defender pool should be at least equal to n, the number of types. In fact, anytime
the defender cannot allocate at least one resource to each type, the loss it suffers may be unbounded.

3.1. Optimal Allocation

Consider an instance of the game we have defined and assume that both player moves are known.
We say that the allocation of a player P is an optimal one if P cannot improve its utility given the N
resources it manages and the opponent allocation.

With reference to definition (a) of the size of the vulnerability window and of the loss, we outline a
procedure to compute an optimal allocation for a player P starting from the current player allocation.
After determining an initial allocation in a first step, the procedure iteratively updates the current
allocation by shifting one resource managed by P from a type Ti to a type Tj i≠j where i and j are
chosen according to a local condition. By local we mean that it depends upon the resources allocated to
Tj and Ti only. The number of iterations is bounded by the product of the number of resources and that
of types.

At first, let us assume that P is the defender and consider an allocation where there is a type Ti such
pdi Ndi � pai Nai. In this case there is an excess of defender resources for Ti equal to

i

ii
i pd

Napa
Nd −

If in an allocation there is an excess of defender resources for Ti, then Ti does not contribute to the
overall loss of the defender. When the excess for Ti is zero, there is equilibrium for Ti between the two
allocations. While an excess of resources is always possible, the feasibility of equilibrium for Ti
depends upon pai and pdi. The following theorems hold.

Theorem 1

In any allocation where two types Ti and Tj exist such that there is an excess of defenders resources for
Tj larger than one, i.e.

i

ii
i pd

Napa
Nd − >1, pdj Ndj < paj Naj,

the shift of one resource from Ti to Tj reduces the loss.

Theorem 2

An allocation where there is an excess of defender resources for any type is optimal for the defender.

Theorem 2 can be exploited to define an optimal defender allocation any time the corresponding pool

includes at least
k

k
n

k
k pd

Na
paOD �

=

=
1

 resources because in this case the defender can define an allocation

where there is an excess of resources for any type. As proven in the following, OD is the lower amount
of resources that guarantees a zero loss for the defender.

To optimise the defender allocation, at first we define DBenefit(Ti), the benefit of a defender resource
for Ti as the difference in the overall loss achieved by assign a further resource Ti:

��
�

�
��
�

�
−

+
=

iii

ii
i NdNdpd

M
TDBenefit

1
1

1
)(

α

An increase of the defender resources allocated to Ti reduces the overall loss of the defender, provided
that there is not an excess of resources for Ti. The change in the defender utility due to the further

resource is equal to -DBenefit(Ti), a monotone decreasing function of Ndi. A further definition is that of
Dloss(Ti), the loss of a defender resource for Ti, the increase in the loss if a defender resource
allocated to Ti is shifted to a distinct type. We have that

��
�

�
��
�

�
−

−
=

iii

ii
i NdNdpd

M
TDLoss

1
1

1
)(

α

If there is not an excess of resources for Ti, Dloss(Ti) is always positive because the reduction of
the defender resources for Ti increases the loss. Since Dloss(Ti) is proportional to Ndi, the following
theorem holds.

Theorem 3

Both the benefit and the loss of a defender resource allocated to Tj decrease with Ndj, the number of
defender resources currently allocated to Tj .

We define DShift(i ,j) as the overall loss difference if the defender shifts one resource from Ti to Tj:

DShift(i, j)= - DBenefit(Tj)+DLoss(Ti)

We are interested in negative values of DShift(i, j) because they reduce the overall loss. Because of
Theorem 1, a negative value is achieved in the following case:

there is not an excess of resources for both types before or after the shift

() () jjj

jj

iii

ii

dNNdpd

M

dNNdpd
M

1
1

1
1

+
>

−
αα

If no pair of types satisfies condition b), the allocation is optimal for the defender. Instead, if there
is a pair of types that satisfies both conditions, then a resource shift improves the defender allocation. A
particular case is the one where the shift from Ti eliminates an excess of defender resources and
Dloss(Ti) is the contribution of Ti to the overall loss after the shift:

��
�

�
��
�

�
−

−
=

iiii
iii NapaNdpd

MTDloss
1

)1(
1

)(α

Since, the shift of one resource removes the excess, we have that
pdi (Ndi-1) ≤ pai Nai ≤ pdi Ndi

This implies that

jj

j

j

j

ii

i

i

i

NdNd

M

pdNdNd
M

pd)1()1(+
>

−
αα

is an upper bound on Dloss(Ti) and the previous condition still guarantees that the shift decreases the
overall loss. To define, in the general case, the resource shifts that improve the defender allocation,
consider that the following cases are possible:

1) Dloss(Ti) > 0, DBenefit(Tj) < 0,
2) Dloss(Ti) = 0, DBenefit(Tj)< 0,
3) Dloss(Ti) > 0, DBenefit(Tj)= 0,
4) Dloss(Ti) = 0, DBenefit(Tj)= 0.

Case 1) has been previously discussed. In case 2), the shift always increase the loss because it moves a
resource from a type where there is not an excess to one where already there is an excess. In case 3), a
resource is shifted from a type where there is an excess before and after the shift to one where there is
not an excess. Since in case 4) Dloss(Ti) = 0 and DBenefit(Tj)=0, there is an excess of resources for
both types before and after the shift. Hence, the shift does no influence the overall loss. Only case 1)
can improve the defender allocation because a resource shift can reduce the loss provided that there is a
pair of types satisfying condition b).

However, we have neglected a shift involving several resources and types simultaneously. To be
able to neglect these shift, together with those that do not improve the utility but are useful an
elementary step of a larger shift, we transform each defender allocation DA into Min(DA), the
minimization of DA. Min(Da) is an allocation that minimizes the excess of resources so that, for each
type Tk there is an excess of resources for Tk in DA there is also an excess in Min(DA) but the amount
of resources allocated to Tk is the smallest one resulting in an excess. The saved resources are assigned,
one at the time, to a type Tw such that the value of

)1(+www

ww

NdNdpd
Mα

is the largest one among all the types such that there is not an excess of resources for the type. Distinct
resources may be assigned to distinct types. Only if there is an excess of resources for any type, the
excess for some type can be increased. The minimization operator saves some resources from types
where there is an excess to transfer them to types that contribute to the overall loss and to the attacker
utility. After applying the minimization operator, we can consider only the shift of one resource.

In any case where the attacker allocation is known, the procedure to compute the optimal defender
allocation may be outlined as follows:

1. if D
pd

Napan

h h

hh ≤�
=1

 then allocate to each type Tk the smallest amount of resources larger

than
k

kk

pd
Napa

2. otherwise
a. apply the minimization operator to shift the defender resources from types with

an excess of resources to those without an excess;
b. shift one at the time a defender resource between types satisfying both conditions

of Theorem 1. If there are not two types satisfying both conditions, then an
optimal allocation for the defender has been computed.

The overall complexity is O(D3 log D), because each resource may be sequentially assigned to, at most,
all the types. Furthermore, if step b) of the procedure is applied, the complexity of each assignment is
O(D log D) because types have to be ordered. Lastly, the number of types is bounded by D.

To prove the correctness of the procedure, we prove that distinct steps of the procedure cannot shift a
resource back and forward between the same types. To this purpose, consider that a resource may be
shifted from Ti to Tj and then to Ti only if condition b) is satisfied between Ti and Tj before the first
shift and between Tj and Ti before the second one. This occurs only if

that is impossible.

We do not discuss in details the optimisation of the attacker allocation because the cases to be

considered are similar to the previous ones as the only difference between players is the sign of the
utility function, as AD=-DU. As an example, we can define the notion of excess of attacker resources
as for the defender ones and introduce the shift of attacker resources.

4. Equilibrium

A pair of allocations defines a game equilibrium if no shift of resources can improve a player
utility. This implies that both allocations are optimal for the players because they cannot increase their
utility by shifting some resources.

To define conditions for equilibrium, consider an optimal allocation for the defender and assume

the attacker shift all its resources to one type only. In general, the utility of each player changes. It is
trivial to see that a case where the utility function does not change is the one where the defender has
allocated to each type an amount of resources such that there is an excess of defender resources
independently of the attacker allocation, i.e. both before and after the shift of the attacker, that is where

i

ii

pd
pa

A
D ≥

 holds for any i ∈ 1..n . This is possible only if �
=

≥
n

i i

i

pd
pa

AD
1

.

If this condition is satisfied, the defender can allocate to each type a number of resources that
guarantees that, on the average, it will find any vulnerability before than the attacker. In the following,
this allocation is denoted as the overflow allocation. The overflow allocation is not cost effective for
the defender because it assumes the worst case where the attacker focuses all its resources on just one

iNdiNdipd
iMi

jNdjNdjpd
jMj

iNdiNdipd
iMi

)1()1()1(−
>

+
>

−

ααα

type. Hence, if the attacker distributes its resources across several types, some of the resources the
defender allocates to a type are ineffective, i.e. they could be removed from the defender pool without
increasing the overall loss.
Hence, any pair of allocations where the defender allocation is an overflow one always defines a game
equilibrium. Any pair of allocations with an excess of defender resources for all the types but where the
defender pool is too small for an overflow allocation is not a game equilibrium because the attacker
may improve its utility by assigning all its resources to just one type. This always increases the attacker
utility. In this case there is not equilibrium because one allocation is optimal for a player but the
opponent on is not optimal.

Let us consider now an equilibrium that not corresponds to an overflow allocation. Since any update of
one configuration only cannot improve the corresponding utility, any resource shift for the attacker or
the defender does not change the corresponding utility. If we consider that the shift of some resources
by either the attacker or by the defender should not result in a change of the corresponding utility
function conditions for equilibrium may be deduced. As an example, a shift that involves one resource
does not change the utility function if, for any pair of types Ti and Tj the following condition holds:

jjj

jjj

iii

iii

NdNdpd

NaNapa

NdNdpd
NaNapa

)1(
)1(

)1(
)1(

+
+

=
−
−

The condition can be generalized by taking into account the shift of several resources. However,
from our point of view, the important property is that a player can exploit conditions such this one to
play a move that results in equilibrium only if it knows the opponent allocation. Instead, an overflow
allocation results in equilibrium independently of the opponent allocation and it can be played provided
that the player knows the size of the opponent pool.

Taking into account that the notion of overflow allocation also applies to the attacker, and that a
move of a player forces equilibrium if it defines a game equilibrium independently of that of the
other player, the previous discussion may be resumed by the following theorem.

Theorem 4

A player is sure of having forced a game equilibrium if and only if it knows the size of the pool of its
opponent and it can play an overflow allocation.

4.1. Examples

First of all we notice that in the fairly common case where, for any type, the attacker and the
defender resources have the same probability of finding the vulnerability, an overflow allocation is
possible if nAD ≥ . This implies that the defender is sure of having avoid a loss only if the size of its
pool is n times that of the attacker.

Let us consider now a simple case with two types T1 and T2 and where:
1. M1= 10, M2=15,
2. D=30, A=20
3. α1=α2
4. pd1=pd2=1/105
5. pa1=pa2=5/106

Consider a pair of allocations where Na1=Na2=10, Nd1=Nd2=15. In this case, the overall average
loss for the defender is zero, because there is an excess for both types. However, a loss is possible
because the size of the defender pool cannot force a game equilibrium. As an example, there is a loss

for the defender if Na1=0 and Nd1=25, because 4

22

10
1 −=
Napa

 while 4

22

105
1 −⋅=
Ndpd

.

If, instead D=A=20, pd1=pa1 and pd2=pa2, the optimal allocation for the defender is the one where
it matches the resources of the attacker, i.e. where Nd1=Na1 and Nd2=Na2 .

Consider now the case where

1. M1= 10, M2=15, M3=20,
2. D = 45,
3. A = 30,
4. α1=α2=α3
5. pd1 = pa1 = 1/105,
6. pd2 = pa2 = 5/106,
7. pd3 = pa3=1/104.

Also in this case, the defender cannot force equilibrium because �
=

<
3

1i i

i

pd
pa

AD . Consider a

defender allocation where Nd1=20, Nd2=20 and Nd3=5, while in the attacker one Na1=Na2=Na3=10. In
this instance of the game, there is an excess of resources for both T1 and T2 that do not contribute to
the overall loss because there are at least six resources allocated to each type. Hence, to optimize the
defender allocation, the minimization operation shifts resources from either T1 or T2 to T3 till Nd3>10.

5. Generalization and Preliminary Applications

This section generalizes the model as far as concerns the number of vulnerabilities of a type and
alternative utility functions. Then, a first application of the results is illustrated.

5.1. Generalization

At first, we consider the presence of several vulnerabilities in a component, a case that can be
handled in several ways. As an example, if we assume that all the vulnerabilities enable attacks with
the same severity, i.e. attacks with similar impacts, then the existence of several vulnerabilities can be
handled by properly defining the probability value of finding just one vulnerability. If, instead, the
vulnerabilities have distinct severities we can model the search by considering the goal of the attackers,
Some attackers will be satisfied even if they find a vulnerability that enable low impact attacks only.
Instead, other attackers will neglect such vulnerabilities and focus their search for those that enable
high impact attacks. In this case, several searches occur simultaneously. The proposed model can be
exploited to model each search in isolation and the information it returns on the optimal allocation of
resources for a single search can be used to allocate resources among the various searches. In this way,
we define a two level hierarchical model. The highest level allocates resources to distinct pools, one for
each severity class. The second level allocates the resources of a pool to the types of the information
infrastructure components.

5.2. Alternative Utility Functions

As a first alternative utility function, assume that the defender is interested in minimizing the
probability of a successful attack, i.e. the probability that the attacker resources find a vulnerability
before the defenders one. To handle this case, at first we define DFirsti as the probability that a
defender resource finds Vi before an attacker one. It may be proved [10] that

iiii

ii
i NapaNdpd

Ndpd
Dfirst

+
=

We can now define the defender utility as �=
=

n

i
iDfirstDU

1

Also in this case, the attacker utility is the inverse of the defender one, i.e. AU = -DU. Dfirsti is
important because it allows us to define utility functions that take catastrophic attacks into account. In
fact, the only defender strategy that can prevent such attacks is the one that finds any vulnerability of a
component before than the attacker. The corresponding allocations can be evaluated by utility functions
defined in terms of Dfirsti. Even in the case of these utilities, we can define an optimisation strategy
based upon resource shifts and excess of resources. Consider, as an example, the shift of a resource
from Ti to Tj such that there is no excess before and after the shift. In this case,

iiii

i
i NapaNdpd

pd
TDLoss

+
≅)(

jjjj

j
j NapaNdpd

pd
TDBenefit

+
−≅)(

The update to the overall utility depends upon the sign of -DBenefit(Tj) + Dloss(Ti).

A further definition of the defender utility may consider the probability that the defender finds all the
vulnerabilities before than the attacker. Hence, the attacker utility is the probability that it finds at least
one vulnerability before than the defender. The resulting game is not a zero sum one because

∏= =
n
i iDFirstDU 1 while AU=1-DU.

In this case, a shift from Ti to Tj increases the defender utility if
j

i

j

i

Nd
Nd

Nd
Nd >

+
−

1
1

5.3. Some Preliminary Applications

A first important application of the previous results concerns the adoption of open code, cots,
components in an information infrastructure. A component is open code if its code is available for peer
review and analysis; otherwise the component is a closed code one. These notions may be applied also
to hardware-firmware components because even in this case the component behaviour depends upon
some code in an internal memory. Obviously, open source components are open code ones but the
inverse is not true. When evaluating the benefit of adopting an open code component vs. that of a
closed code one, the main difference to be considered is the large number of resources that search for a
vulnerability to patch the component but that are not managed by the defender. In the most general
case, if Ti is an open code type, there are two sets of people, Sai and Spi searching for the vulnerability.
People in Sai are interested in selling the information on the vulnerability to those interested in
attacking the infrastructure, instead the results of people in Spi is public and may be exploited by both
the attacker and the defender. If Naoi and Ndoi are, respectively, the sizes of Sai and Spi, we can apply
the results of the previous sections to compute the size of the vulnerability window by taking into
account that the size of the attacker pool is Naoi+Ndoi while that of the defender one is Ndoi. In fact,
any information found by a defender resource is public and the attacker can use it as well. To compare
the vulnerability window of open code against that of closed code, we assume that

1. Naci, the size of the attacker pool for a closed code component is a fraction of that of an open

code one so that 1, ≥= k
k

Nao
Nac i

i

2. an attacker and a defender resource find a vulnerability in an open code component with the
same probability p. In a closed code component, the probability that a defender resource finds a
vulnerability does not change, since it can access the same information. Instead, that of an

attacker one is 1, ≥h
h
p due to the lower amount of available information.

Under these assumptions, the adoption of an open code component results in a smaller

vulnerability window anytime

�
�
�
�

�

�

�
�
�
�

�

�

−<��
�

�
��
�

�

+
−

k
Nao

h
pNdcpNdoNaoppNdo iiiii

11
)(

11

If w=h*k ,
i

i
cs

i

i
oc Ndc

Nao
r

Ndo
Nao

r == , , rcs>roc, the previous condition may be rewritten as:

wr
r

r
cs

os

os −<
+1

2

In general, Ndoi>>Ndci because the number of people that search for vulnerability in an open code
component is much larger than the one that can be afforded by the infrastructure owner. This condition
may not be satisfied in the case of very specialized components only. The condition to determine when
an open code component is more convenient can be applied anytime we can assume that an owner that
adopts an open code will apply the patch produced by any defender resource as it were produced by its
own resources. If, instead, the owner neglects the results of people in Spi because, as an example, it
does not monitor the mailing lists or forum where these results are published, then the adoption of an
open code component cannot be convenient.

Anytime an open code component is more convenient, the owner may reallocate some of its
resources to the closed code ones. In this way, an overflow allocation for closed code components may
be convenient. Hence, the owner should consider the following alternatives

• adopt closed code components only. This is obviously the best solution anytime the owner
manages a pool so that an overflow allocation is feasible;

• if an overflow allocation is not possible, replace some closed code components through open
code ones so that available resources can be partitioned among a lower number of types.

6. Conclusion and Future Developments

We have considered the allocation of resources to the search for vulnerabilities and presented some
formal results on optimal allocations and game equilibrium. In particular, we have shown that the
allocation that surely results in an equilibrium is not cost effective for the infrastructure owner. The
results have also been applied to define the conditions where the adoption of open code components in
information infrastructures results in a more secure infrastructure. The adoption of open code
components allows the owner to focus its resources on closed code components only so that
equilibrium may be achieved in a more cost effective way. Other applications are possible for specific
infrastructures or infrastructure components.

Among the possible developments of this work, we have the more accurate evaluation of the
allocations chosen by the attacker and the defender by taking into account the distribution of the impact
values rather than the average values only. Also other models for the search should be considered. As
an example, the probability that a resource finds a vulnerability may increase with time because of the
experience it has accumulated. A further issue to be considered is the adoption of distinct utility
functions for distinct components.

References

[1] A. Acquisti, Privacy and security of personal information. Economic incentives and technological solutions, Workshop on

Economics of Information Security, University of California, Berkley, CA, USA, 2002
[2] J.Akins, An Insurance Style Model for Determining the Appropriate Investment Level against Maximum Loss arising from

an Information Security Breach, Workshop on Economics of Information Security, University of Minnesota, Twin Cities,
USA, 2004

[3] J.Alberts, J. A Dorofee, A.J, An introduction to the OCTAVE Method. http://www.cert.org/octave/methodintro.html , 2000
[4] R.J.Anderson, Why Information Security is Hard-An Economic Perspective, 17th Applied Computer Security Applications

Conference, New Orleans, Louisiana, USA, 2001.
[5] R.J.Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley & Sons, Inc, ISBN:

0-471-38922-6, 2001.
[6] R.J.Anderson, Security in Open versus Closed Systems - The Dance of Boltzmann, Coase and Moore, Conf. on Open

Source Software Economics, Toulouse (France), 2002-
[7] S. Anton, R.H. Anderson, R. Mesic, M. Scheiern, Finding and fixing vulnerabilities in information systems, MR-1601,

Rand Corporation, 2003.
 [8] A. Arbaugh, W.L. Fithen, J. McHugh, Windows of Vulnerability: A Case Study Analysis, IEEE Computer, vol.12, p. 52-

59, 2002.
[9] R. Arora, R. Telang, H. Xu, Optimal Policy for Software Vulnerability Disclosure, Workshop on Economics of Information

Security, University of Minnesota, Twin Cities, USA, 2004
[10] F.Baiardi, C. Telmon, Theoretical Model for the Average Impact of Attacks Against Billing Infrastructures. Mathematical

Methods and Model for Advance Computer Network Security, S.Petersburg. LNCS, Vol. 3685, ISBN: 3-540-29113-X, 2005
[11] S.Beattie, S. Arnold. et al. Timing the Application of Security Patches for Optimal Uptime. 16th USENIX Sys.

Administration Conf. (LISA 2002), Berkley, CA, USA,2002.
[12] D.A. Burke, Towards a game theory model of information warfare, Master Thesis, Air Force Institute of Technology.

USA,1999.
[13] B.Carini, Dynamics and Equilibria of Information Security Investments, Workshop on Economics of Information Security,

University of California, Berkley, CA, USA, 2002
[14] B.S. Frey, S. Luechinger., A. Stulzer, Calculating Tragedy: Assessing the Cost of Terrorism, Inst. for Empirical Research

in Economics, University of Zurich, 2004
[15] L.A. Gordon, M.P. Loeb, The Economics of Information Security Investment, ACM Trans. on Information and System

Security, Vol. 5. No.4, pp. 438-457, 2002
[16] S.N. Hamilton, W.L. Miller, A. Ott, O.S. Saydjari, The Role of Game Theory in Information Warfare. 4th Information

Survivability Workshop, Vancouver, B.C., Canada, 2002.
[17] K.S. Hoo, How Much Is Enough? A Risk Management Approach to Computer Security, Ph.D. Thesis, Standford

University, Standford CA, USA, 2002.
[18] K. Kannan, R. Telang, An Economic Analysis of Market for Software Vulnerabilities, Workshop on Economics of

Information Security, University of Minnesota, Twin Cities, USA, 2004
[19] I.V. Krsul , Software Vulnerability Analysis, Ph.D. Thesis , Purdue University Purdue West Lafayette, IN,USA,1998
[20] J.A. Major, Advanced Techniques for Modeling Terrorism Risk, Journal of Risk and Finance, Vol. 4, No. 1, pp. 15-24,

2002
[21] G.Owen, Game Theory, Academic Press, 1995, Third Edition, ISBN 0-12-531151-6.
[22] E. Rescorla Is Finding Security Holes a Good Idea?, Workshop on Economics of Information Security, University of

Minnesota, Twin Cities, USA, 2004
[23] S.E. Schechter. Computer Security Strength & Risk: A Quantitative Approach, Ph.D. thesis, Harvard University, Boston

USA, 2004
[24] B. Schneier, B Full disclosure and the window of vulnerability, Crypto-Gram http://www.counterpane.com/crypto-gram-

0009.html 2000
[25] B. Schneier, Closing the Window of Exposure: Reflections on the Future of Security,

Securityfocus.com,http://www.securityfocus.com., 2000
[26] G. Schudel, .B Wood, Adversary work factor as a metric for information assurance, Workshop on New Security Paradigms,

Ballycotton, County Cork, Ireland, 2000

