
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-06

Model checking usage

policies

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy

Roberto Zunino
Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

published 4/4/08 – revised 30/6/08
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Model checking usage policies

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy

Roberto Zunino
Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

published 4/4/08 – revised 30/6/08

Abstract

We propose a model for specifying, analysing and enforcing safe usage
of resources. Our usage policies allow for parametricity over resources,
and they can be enforced through finite state automata. The patterns
of resource access and creation are described through a basic calculus of
usages. In spite of the augmented flexibility given by resource creation
and by policy parametrization, we devise an efficient (polynomial-time)
model-checking technique for deciding when a usage is resource-safe, i.e.
when it complies with all the relevant usage policies.

1 Introduction

A fundamental concern of security is to ensure that resources are used correctly.
Devising expressive, flexible and efficient mechanisms to control resource usages
is therefore a major issue in the design and implementation of security-aware
programming languages. The problem is made even more crucial by the current
programming trends, which provide for reusing code, and exploiting services
and components, offered by (possibly untrusted) third parties. It is indeed
common practice to pick from the Web some scripts, or plugins, or packages,
and assemble them into a bigger program, with little or no control about the
security of the whole. To cope with this situation, we proposed in [3] local
policies, that formalise and enhance the concept of sandbox, while being more
flexible than global policies and local checks spread over program code. Local
policies smoothly allow for safe composition of programs with their own security
requirements, also in mobile code scenarios, and they can drive call-by-contract
composition of services [4, 6].

Our contribution is twofold. First, we propose a model for local usage poli-
cies. Our policies are quite general: in the spirit of history-based security [1],
they can inspect the whole trace of security-relevant events generated by a run-
ning program. Unlike e.g. [18], our policies are not hard-wired to resources, yet
they are parametric over resources. For instance, a policy ϕ(x, y) means that

1

for all x and y the obligation expressed by ϕ must be obeyed. This is particu-
larly relevant in mobile code scenarios, where you need to impose constraints on
how external programs access the resources created in your local environment,
without being able to alter the code (e.g. to insert local security checks). We
prove that run-time enforcement of our policies is possible through finite state
automata.

The second contribution is a model-checking technique to statically detect
when a program violates the relevant local policies. The patterns of resource
access and creation are described by a calculus of usages, which can be automat-
ically inferred by a static analysis of programs [5]. We then devise a technique
to decide whether a given usage, locally annotated with policies, respects them
in every possible execution. Since programs may create an arbitrary number of
fresh resources, this may give rise to an infinite number of formulae to be in-
spected while checking a policy. We solve this problem by suitably abstracting
resources so that only a finite number of cases needs to be considered. This
allows us to extract from a usage a Basic Process Algebra and a regular for-
mula, to be used in model-checking [15]. The proposed technique correctly and
completely handles the case in which the number of fresh resources generated at
run-time has no bound known at static time. Our algorithm runs in polynomial
time on the size of the checked usage and policies.

Examples. To illustrate our model, we present some examples of real-world
usage policies, which are particularly relevant to the field of security.

Information flow. Consider a Web application that allows for editing docu-
ments, storing them on a remote site, and sharing them with other users. The
editor is implemented as an applet run by a local browser. The user can tag
any of her documents as private. To avoid direct information flows, the policy
requires that private files cannot be sent to the server in plain text, yet they
can be sent encrypted. This policy is modelled by ϕIF(x) in Fig. 1, left. After
having tagged the file x as private (edge from q0 to q1), if x were to be sent to
the server (edge from q1 to q2), then the policy would be violated: the double
circle around q2 marks it as an offending state. Instead, if x is encrypted (edge
from q1 to q3), then x can be freely transmitted: indeed, the absence of paths
from q3 to an offending state indicates that once in q3 the policy will not be
violated on file x. A further policy is applied to our editor, to avoid information
flow due to covert channels. It requires that, after reading a private file, any
other file must be encrypted before it can be transmitted. This is modelled by
ϕCC(x, y) in Fig. 1, right. A violation occurs if after some private file x is read
(path from q′0 to q′2), then some other file y is sent (edge from q′2 to the offending
state q′4).

Chinese Wall. A classical security policy used in commercial and corporate
business services is the Chinese Wall policy [11]. In such scenarios, it is usual
to assume that all the objects which concern the same corporation are grouped
together into a company dataset, e.g. bankA, bankB, oilA, oilB, etc. A conflict of
interest class groups together all company datasets whose corporations are in

2

q2q3

q′1

q′4 q′3q′2

q′0
private(x)

encrypt(y)send(y)

read(x)

q0 q1
private(x)

encrypt(x)

ϕIF(x) ϕCC(x, y)

send(x)

Figure 1: The information flow policy ϕIF(x) and the covert channels policy
ϕCC(x, y).

competition, e.g. Bank containing bankA, bankB and Oil containing oilA, oilB.
The Chinese Wall policy then requires that accessing an object is only permitted
in two cases. Either the object is in the same company dataset as an object
already accessed, or the object belongs to a different conflict of interest class.
E.g., the trace read(oilA, Oil) read(bankA, Bank) read(oilB, Oil) violates the
policy, because reading an object in the dataset oilB is not permitted after
having accessed oilA, which is in the same conflict of interests class Oil. The
Chinese Wall policy is specified by ϕCW(x, y) in Fig. 2, left. The edge from q0 to
q1 represents accessing the company dataset x in the conflict of interests class y.
The edge leading from q1 to the offending state q2 means that a dataset different
from x (written as x̄) has been accessed in the same conflict of interests class y.

Applet confinement. As a further example, consider the case of a Web
browser which can run applets. Assume that an applet needs to create files
on the local disk, e.g. to save and retrieve status information. Direct informa-
tion flows are avoided by denying applets the right to access local files. Also,
to prevent from interference, applets are not allowed to access files created by
other applets. This behaviour is modelled by the policy ϕAC(f, a) in Fig. 2,
right. The edge from q′0 to q′1 represents the applet a creating a file f . Access-
ing f is denied to any applet other than a (modelled by ā) through the edge
from q′1 to the offending state q′2. The edge from q0 to q′2 prohibits accessing
local files.

q2

q1q0

read(x̄, y)

read(x, y)
q′0 q′1

q′2f file
a applet

x company dataset
y conflict of interest class

ϕCW(x, y)

write(f, ā)write(f, a)
read(f, ā)read(f, a)

ϕAC(f, a)

new(f, a)

Figure 2: The Chinese Wall policy ϕCW(x, y) and the Applet Isolation policy
ϕAI(f, a).

The paper is organized as follows. We first introduce our usage policies,
and we show them enforceable through finite state automata. We then define
a calculus of usages, and we characterize when a usage is valid. Our model
checking technique follows, together with the main results, i.e. its correctness,

3

completeness and polynomial time complexity. We conclude by presenting some
possible extensions, and we discuss some related work. For simplicity we shall
only present the formal treatment of monadic usage policies (i.e. those with one
formal parameter). The extension to the polyadic case ϕ(x1, . . . , xn) is quite
direct; at each step of our formal development, we shall give the intuition for
adapting our theory to the polyadic case. We have designed and implemented
a tool for model checking usage policies [7]. The tool is written in Haskell, and
it is quite general: it supports for all of the features presented in this paper,
including polyadic policies and events. We have tested and experimented our
tool with the case studies presented in this paper, and also in some more complex
ones. The results and the performance are consistent with those anticipated by
the theoretical results presented in this paper.

2 Usage policies

We start by introducing the needed syntactic categories. Resources r, r′, . . . ∈
Res = Ress∪Resd are objects that can either be already available in the environ-
ment (static, included in the finite set Ress), or be freshly created at run-time
(dynamic, Resd). We assume a distinguished resource ? 6∈ Res to play the role
of an “unknown” one (typically, ? will result from static approximations). Re-
sources can be accessed through a given finite set of actions α, α′,new, . . . ∈ Act.
An event α(r) ∈ Ev abstracts from accessing the resource r through the action α.
The special actions new represent the creation of a fresh resource; this means
that for each dynamically created resource r, the event new(r) must precede
any other α(r). In our examples, we sometimes use polyadic events such as
α(r1, r2). These events do not increase the expressivity of our model, since the
can be simulated by e.g. a sequence α1(r1)α2(r2). A trace is a finite sequence of
events, typically denoted by η, η′, . . . ∈ Ev

∗. For notational convenience, when
the target resource of an action α is immaterial, we stipulate that α acts on
some special (static) resource, and we write just α for the event.

Usage policies (Def. 1) constrain the usage of resources to obey a regular
property. For instance, a file usage policy ϕ(x) might require that “before
reading or writing a file x, that file must have been opened, and not closed
by the while”. A usage policy gives rise to an automaton with finite states,
named policy automaton, when the formal parameter x is instantiated to an
actual resource r. Policy automata will be exploited to recognize those traces
obeying ϕ.

Edges in a usage policy can be of three kinds: either ϑ = α(r) for a static
resource r, or ϑ = α(x), or ϑ = α(x̄), where x̄ means “different from x”.
The extension to the polyadic case is as follows: the edges of a policy ϕ(x, y)
can mention static resources, the parameters x and y, and a special symbol ∗̄
denoting “different from x and y”. Quite notably, polyadic policies (unlike
polyadic events) increase the expressivity of our model e.g. the policies in Fig. 2
cannot be expressed with a single parameter.

Given r ∈ Res and a set of resources R, a usage policy ϕ(x) is instantiated

4

Definition 1. Usage policies

A usage policy ϕ(x) is a 5-tuple 〈S,Q, q0, F, E〉, where:

• S ⊂ Act × (Ress ∪ {x, x̄}) is the input alphabet,

• Q is a finite set of states,

• q0 ∈ Q \ F is the start state,

• F ⊂ Q is the set of final “offending” states,

• E ⊆ Q× S ×Q is a finite set of edges, written q
ϑ
−⊸ q′

into a policy automaton Aϕ(r,R) by binding x to the resource r and, accordingly,
making x̄ range over each resource in R\{r} (see Def. 2). The auxiliary relation
δ̈ (i) instantiates x to the given resource r, (ii) instantiates x̄ with all r′ 6= r, (iii)
maintains the transitions α(r′) for r′ static. Then. the relation δ̇ adds self-loops
for all the events not explicitly mentioned in the policy. Finally, we derive δ by
adding transitions to deal with ?, that represents resources not known at static

time. Intuitively, any transition q
α(r)
−−−→ q′ can also be played by α(?). Note that

policy automata are non-deterministic, e.g. because of the transitions labelled
α(?). Given a trace η and a policy ϕ, we want that all the paths of the instances
of ϕ(x) comply with ϕ. This is a form of diabolic (or internal) non-determinism.
To account for that, we make the “offending” states as final — thus going into
a final state represents a violation of the policy, while the other states mean
compliance to the policy. The construction of Def. 2 can be easily adapted to
polyadic policies such as ϕ(x, y), yielding the automata Aϕ(r,r′,R), where x is
instantiated to r, y to r′, and ∗̄ to R \ {r, r′}.

According to Def. 2, to check η |= ϕ we should instantiate infinitely many
policy automata (one for each r ∈ Res). These automata have a finite number
of states, but they may have infinitely many transitions, e.g. instantiating the

abstract edge q
α(x̄)
−−−⊸ q′ originates q

α(r)
−−−→ q′ for all but one r ∈ Res. Similarly

for self-loops. Interestingly enough, the compliance of a trace with a policy is a
decidable property: the next lemma shows that checking η |= ϕ can be decided
through a finite set of finite state automata.

Lemma 3. Let η be a trace, let ϕ be a policy, and let R(η) be the set of resources
occurring in η. Then, η |= ϕ if and only if η⊳Aϕ(r,R(η)) for each r ∈ R(η)∪{r′},
where r′ is an arbitrary resource in Res \ R(η).

When polyadic policies are used, e.g. ϕ(x, y), then Lemma 3 should be
changed to require η ⊳ Aϕ(r,r′,R(η)) for each r, r′ ∈ R(η) ∪ {r′′}, where r′′ is
an arbitrary resource in Res \ R(η).

5

Definition 2. Policy automata and policy compliance

Let ϕ(x) = 〈S,Q, q0, F, E〉 be a usage policy, let r ∈ Res, and let R ⊆ Res.
The usage automaton Aϕ(r,R) = 〈Σ, Q, q0, F, δ〉 is defined as follows:

Σ = {α(r′) | α ∈ Act and r′ ∈ R }

δ = δ̇ ∪ { q
α(?)
−−−→ q′ |∃ζ ∈ R : q

α(ζ)
−−−→q′ ∈ δ̇ } (unknown resources)

δ̇ = δ̈ ∪ { q
α(r′)
−−−→ q |r′ ∈ R, ∄q′ : q

α(r′)
−−−→ q′ ∈ δ̈ } (self-loops)

where the relation δ̈ is defined as follows:

δ̈ = { q
α(r)
−−−→ q′ | q

α(x)
−−−⊸ q′ ∈ E } (instantiation of x)

∪
⋃

r′∈(R∪{?})\{r}{ q
α(r′)
−−−→ q′ | q

α(x̄)
−−−⊸ q′ ∈ E } (instantiation of x̄)

∪ { q
α(r′)
−−−→ q′ | q

α(r′)
−−−⊸ q′ ∈ E } (static resources)

We write η⊳Aϕ(r,R) when η is not in the language of the automaton Aϕ(r,R).
We say that η respects ϕ, written η |= ϕ, when η ⊳ Aϕ(r,Res), for all r ∈ Res.
Otherwise, we say that η violates ϕ, written η 6|= ϕ.

Example 1. Consider the policy requiring that, in a history α(r1)α(r2)α(r3),
the three resources r0, r1, r2 are actually distinct. This is modelled by the usage
policy ϕ3(x, y) in Fig. 3. A straightforward generalisation of the above allows
for keeping distinct k resources, using a policy with arity k − 1.

q0 q1 q3
α(x) α(y)

α(x)

α(x)

α(y)
q2

Figure 3: The usage policy ϕ3(x, y) allows for keeping distinct three resources.

Example 2. To justify the extra resource of Lemma 3, let ϕ¬α(x) be the policy

〈{α(x̄)}, {q0, q1}, q0, {q1}, {q0
α(x̄)
−−−⊸ q1}〉. When a trace η contains some event

α(r), the instantiation Aϕ¬α(r′,Res) recognizes η as offending, for all r′ 6= r – so
ϕ¬α(x) actually forbids any α actions. Consider e.g. η = α(r0)β(r0). Although
η ⊳ Aϕ(r,R(η)) for all r ∈ R(η) = {r0}, as noted above η violates ϕ¬α, which
motivates Lemma 3 checking Aϕ(r′,R(η)) also for some r′ ∈ Res \ R(η). Finally,
note that replacing α(x̄) with α(x) in the policy would not affect trace validity,
because x is implicitly universally quantified in the definition of validity.

Example 3. Consider a trojan-horse applet that maliciously attempts to send
spam e-mail through the mail server of the browser site. To do that, the applet
first connects to the site it was downloaded from, and it implements some ap-
parently useful and harmless activity. Then, the applet inquires the local host to

6

check if relaying of e-mails is allowed: if so, it connects to the local SMTP server
to send unsolicited bulk e-mails. To protect from such malicious behaviour, the
browser prevents the applet from connecting to two different URLs. This can be
enforced by sandboxing the applet with the policy ϕSpam(x) defined in Fig. 3, left.
E.g., consider the trace η = start connect(u0) stop start connect(u1) connect(u2).
The policy automaton AϕSpam(u1,R), with R = {u0, u1, u2}, is in Fig. 3, right (the
self-loops for events other than start, stop and connect are omitted). Since η
drives an offending run in the policy automaton AϕSpam(u1,R), then η 6|= ϕSpam.
This correctly models the fact that the policy ϕSpam prevents applets from con-
necting to two different sites. Observe that removing the last connect(u2) event
from η would make the trace obey ϕSpam, since the stop event resets the policy
ϕSpam to the starting state. Actually, start connect(u0) stop start connect(u1)
is not in the language of any AϕSpam(r,R′), for all r ∈ Res and R′ ⊆ Res.

3 A calculus for usage control

We now introduce a basic calculus for usage control (the abstract syntax of our
calculus is in Def. 4). Usages are history expressions [5], that inherit from Basic
Process Algebras (BPAs, [10]) sequential composition, non-deterministic choice,
and recursion (though with a slightly different syntax). Quite differently from
BPAs, our atomic actions have a parameter which indicates the resource upon
which the action is performed; more precisely, our atomic actions are the events
from Sec. 2. We also have events the target of which is a name n, n′, . . . ∈ Nam.
In νn. U , the ν acts as a binder of the free occurrences of the name n in U .
The intended meaning is to keep track of the binding between n and a freshly
created resource. In a recursion µh.U , the free occurrences of h in U are bound
by µ. A usage is closed when it has no free names and variables, and it is initial
when closed and with no dynamic resources. The sandboxing construct ϕ[U]
asserts that each step of the execution of U must obey the policy ϕ. Aiming at
minimality, it is convenient to treat ϕ[U] as syntactic sugar for [ϕ·U ·]ϕ, where
[ϕ and]ϕ are special framing events that represent opening/closing of the scope
of ϕ. We assume that such framing events are disjoint from those in Ev.

The behaviour of a usage (Def. 5) is defined as the set of sequential traces
of its events. As usual, ε denotes the empty trace, and εη = η = ηε. The trace

q0

q2

connect(?)

start

connect(u2)

connect(u0)
connect(u1)

connect(u2)
connect(u0)

connect(?)

q0

q2

q1

stop

connect(x)

stop

connect(x̄)

connect(?)
connect(u2)

start, stop

connect(u0) q1
stop

stop

connect(u1)

connect(?) start

connect(u1)

connect(?)

Figure 4: The policy ϕSpam(x) (left) and the policy automaton
AϕSpam(u1,{u0,u1,u2}) (right).

7

Definition 4. Usages

U,U ′ ::= ε empty
h variable
α(ρ) event (ρ ∈ Res ∪ Nam ∪ {?})
U · V sequence
U + V choice
νn.U resource creation
µh. U recursion
ϕ[U] sandboxing (ϕ[U] = [ϕ·U ·]ϕ)

semantics is defined through a labelled transition relation U,R
a
−→ U ′,R′, where

a ∈ Ev ∪ {ε}. The set R in configurations accumulates the resources created at
run-time, so that no resource can be created twice. We assume that Ress ⊆ R,
to prevent dynamically created resources from colliding with static ones.

Definition 5. Trace semantics of usages

α(r), R
α(r)
−−−→ ε, R νn. U, R

ε
−→ U{r/n}, R∪ {r} if r ∈ Resd \ R

ε · U, R
ε
−→ U, R U · V, R

a
−→ U ′ · V, R′ if U, R

a
−→ U ′, R′

U + V, R
ε
−→ U, R U + V, R

ε
−→ V, R µh. U, R

ε
−→ U{µh. U/h}, R

Example 4. Let U = µh. νn. (ε + new(n) · α(n) · h). Given a starting R, the
traces of U are the prefixes of the strings with form new(r1)α(r1) · · ·new(rk)α(rk)
for all k ≥ 0 and pairwise distinct resources ri such that ri 6∈ R.

A trace is well-formed when (i) no static resource is the target of a new
event, (ii) no new is fired twice on the same resource, and (iii) no event α(r),
with r dynamic and α 6= new, is fired without a prior new(r). Hereafter, we
shall only consider usages U with well-formed traces. We conjecture this is a
decidable property of usages, e.g. suitably adapting the techniques of [17] should
enable us to identify and discard those U that produce non well-formed traces.

We now define when a trace respects all the relevant usage policies, i.e. when
the trace is valid (Def. 6). For example, let η = private(f) read(f) [ϕEd

send(f)]ϕEd

where ϕEd is the Editor policy of Sect. 1. Then, η is not valid, because the send
event occurs within a framing enforcing ϕEd, and private(f) read(f) send(f)
does not obey ϕEd. Note that we check the whole past, and not just the send(f)
event within the framing, as we follow the history–based security approach.
This makes our policies more expressive than those that can only look at the
part of the history enclosed within the framing events.

8

Definition 6. Active policies and validity

The multiset act(η) of the active policies of a trace η is defined as follows:

act(ε) = {| |} act(η [ϕ) = act(η) ∪ {|ϕ|}

act(η α(ρ)) = act(η) act(η]ϕ) = act(η) \ {|ϕ|}

A trace η is valid when |= η, defined inductively as follows:

|= ε |= η′β if |= η′ and (η′β)−[] |= ϕ for all ϕ ∈ act(η′β)

where η−[] is the trace η depurated from all the framing events.

A usage U is valid when, for all U ′,R,R′ and η: U,R
η
−→ U ′,R′ =⇒ |= η.

Validity of traces is a prefix-closed (i.e., safety) property (Lemma 7), yet it
is not compositional: in general, |= η and |= η′ do not imply |= ηη′. This is a
consequence of the assumption that no past events can be hidden (see Ex. 7).

Lemma 7. For all traces η and η′, if ηη′ is valid, then η is valid.

Example 5. Let η = [ϕα1[ϕ′α2]ϕ′α3. The active policies of η are as follows:

act(η) = act([ϕα1[ϕ′α2]ϕ′) = act([ϕα1[ϕ′α2) \ {|ϕ
′|} = act([ϕα1[ϕ′) \ {|ϕ′|}

= (act([ϕα1) ∪ {|ϕ′|}) \ {|ϕ′|} = act([ϕα1) = act([ϕ) = {|ϕ|}

Thereaore, η is valid if and only if: ε |= ϕ, α1 |= ϕ, α1α2 |= ϕ, α1α2α3 |= ϕ,
α1 |= ϕ′, and α1α2 |= ϕ′.

Example 6. Consider the policy ϕLoan that prevents from taking out a loan if

your account is in the red: 〈{red , black}, {q0, q1}, q0, {q1}, {q0
red
−−⊸ q1, q1

black
−−−⊸

q0}〉. Let η = red black [ϕLoan
, which is valid. Indeed, we have that red black |=

ϕLoan – while the prefix red is not required to respect the policy ϕLoan (so matching
the intuition that one can recover from a red balance and obtain a loan). Note
that, differently from validity, the relation η |= ϕ is not prefix-closed. So, we can
define policies which, as in this example, permit to recover from bad states.

Example 7. Consider the trace η = α[ϕ α]ϕα, where the policy ϕ requires that
α is not executed three times. Since α |= ϕ and αα |= ϕ, then η is valid. Note
that the first α is checked, even though it is outside of the framing: since it
happens in the past, our policies can inspect it. Instead, the third α occurs after
the framing has been closed, therefore it is not checked. Now, consider the trace
η′ = αη. In spite of both α and η being valid, their composition η′ is not. To see
why, consider the trace η̄ = αα[ϕ α, which is a prefix of η′. Then, act(η̄) = {|ϕ|},
but η̄−[] = ααα 6|= ϕ. This shows that validity is not compositional.

We specify in Def. 8 a transformation of policy automata that makes them
able to recognize valid traces. This is done by instrumenting a policy automaton
Aϕ(r,R) with framing events, so obtaining a framed usage automaton Aϕ[](r,R)

that will recognize those traces that are valid with respect to the policy ϕ.

9

q2q1

q̇0q̇1 q̇2
write(r)
read(r)

open(r)

close(r)

]ϕ[ϕ [ϕ]ϕ[ϕ

q0q1 q2q0

read(r)
write(r)open(r)

close(r)

read(x)

write(x)

open(x)

close(x)

AϕFile[](r,{r})ϕFile(x)

Figure 5: The file usage policy ϕFile(x) and the framed usage automaton
AϕFile(r,{r}).

Definition 8. Instrumenting policy automata with framing events

Let Aϕ(r,R) = 〈Σ, Q, q0, F, δ〉 be a policy automaton. Then, we define
Aϕ[](r,R) = 〈Σ′, Q′, q0, F

′, δ′〉 as follows: Σ′ = Σ ∪ {[ϕ,]ϕ, [ϕ′ ,]ϕ′ , . . .}, Q′ =
Q ∪ { q̇ | q ∈ Q }, F ′ = { q̇ | q ∈ F }, and:

δ′ = δ ∪ { q
[ϕ
−→ q̇ | q ∈ Q } ∪ { q̇

]ϕ
−→ q | q ∈ Q \ F } ∪ { q̇

ϑ
−→ q̇ | q̇ ∈ F ′ }

∪ { q̇
ϑ
−→ q̇′ | q

ϑ
−→ q′ ∈ δ and q ∈ Q \ F } ∪ { q

[ψ
−→ q, q

]ψ
−→ q | ψ 6= ϕ }

Intuitively, the automaton Aϕ[](r,R) is partitioned into two layers. Both are
copies of Aϕ(r,R), but in the first layer of Aϕ[](r,R) all the states are made non-
final. This represents being compliant with ϕ. The second layer is reachable
from the first one when opening a framing for ϕ, while closing gets back – unless
we are in a final (i.e. offending) state. The transitions in the second layer are a
copy of those in Aϕ(r,R), the only difference being that the final states are sinks.
The final states in the second layer are exactly those final in Aϕ(r,R). Note that
we shall only consider traces without “redundant” framings, i.e. of the form
η [ϕ η

′ [ϕ with]ϕ 6∈ η′. In [3] we defined a static transformation of usages that
removes these redundant framings. For instance, ϕ[U · ϕ[U ′]] is rewritten as
ϕ[U · U ′] since the inner ϕ[. . .] is redundant. Hereafter, we assume that usages
have been undergone to this transformation (minor modifications of [3] suffice).

Example 8. Consider the file usage policy ϕFile(x) in Fig. 5 (left), requiring
that only open files can be read or written. The initial state q0 represents the file
being closed, while q1 is for an open file. Reading and writing x in q0 leads to the
offending state q2, while in q1 you can read and write x. The instrumentation
AϕFile[](r,{r}) of AϕFile(r,{r}) is in Fig. 5 (right) – the self-loops are omitted.

We now relate framed usage automata with validity. A trace η (which has no
redundant framings, after the assumed transformation) is valid if and only if it
complies with the framed automata Aϕ[](r,R(η)) for all the policies ϕ spanning
over η. The adaptation of Lemma 9 to polyadic policies proceeds as for Lemma 3.

Lemma 9. A trace η is valid if and only if η ⊳Aϕ[](r,R(η)), for all ϕ occurring
in η, and for all r ∈ R(η)∪ {r′}, where r′ is an arbitrary resource in Res \R(η).

10

4 Model checking validity of usages

We statically verify the validity of usages by model-checking Basic Process
Algebras with policy automata. Note that the arbitrary nesting of framings
and the infinite alphabet of resources make validity non-regular, e.g. the usage
µh. νn.new(n)·α(n)+h ·h+ϕ[h] has traces with unbounded pairs of balanced [ϕ
and]ϕ and unbounded number of symbols - so it is not a regular language. This
prevents us from directly applying the standard decision technique for verifying
that a BPA P satisfies a regular property ϕ, i.e. checking the emptiness of the
pushdown automaton resulting from the conjunction of P and the finite state
automaton recognizing ¬ϕ.

To cope with the first source of non-regularity – due to the arbitrary nest-
ing of framings – we use the static transformation of usages that removes the
redundant framings [3]. For the second source of non-regularity, due to the
ν-binders, the major challenge for verification is that usages may create fresh
resources, while BPAs cannot. A näıve solution could lead to the generation of
an unbounded set of automata Aϕ(r) that must be checked to verify validity.
For example, the traces denoted by U = ϕ[µh. (ε+ νn.new(n) · α(n) · h)] must
satisfy all the policies ϕ(r0), ϕ(r1), . . . for each fresh resource. Thus, we would
have to intersect an infinite number of finite state automata to verify U valid,
which is unfeasible.

To this purpose, we shall define a mapping from usages to BPAs that reflects
and preserves validity. Our mapping groups freshly created resources in just two
categories. The intuition is that any policy ϕ(x) can only distinguish between
x and all the other resources, represented by x̄. There is no way for ϕ(x) to
further discriminate among the dynamic resources. Thus, it is sound to consider
only two representatives of dynamic resources: the “witness” resource # that
represents x, and the “don’t care” resource for x̄.

The transformation from usages U into BPAs B(U) is given in Def. 10. The
syntax of a BPA P and its trace semantics JP K are standard; for reference, we
include them in the Appendix (Defs. 14 and 15). Events, variables, concatena-
tion and choice are mapped by B(U) into the corresponding BPA counterparts.
A usage µh. U is mapped to a fresh BPA variable X , bound to the transla-
tion of U in the set of definitions ∆. The crucial case is that of new name
generation νn. U , which is dealt with two rules. If d = , then we generate a

Definition 10. Mapping usages to BPAs

The BPA associated with a usage U is defined as B(U) = B (U)∅, where
Bd(U)Θ, inductively defined below, takes as input a usage U and a function Θ
from variables h to BPA variables X. The parameter d can either be or #.

Bd(ε)Θ = 〈0, ∅〉 Bd(h)Θ = 〈Θ(h), ∅〉 Bd(α(ρ))Θ = 〈α(ρ), ∅〉

Bd(U · V)Θ = Bd(U)Θ · Bd(V)Θ Bd(U + V)Θ = Bd(U)Θ + Bd(V)Θ

B (νn.U)Θ = B (U{ /n})Θ + B#(U{#/n})Θ B#(νn.U)Θ = B#(U{ /n})Θ

Bd(µh.U)Θ = 〈X,∆ ∪ {X , p}〉 where 〈p,∆〉 = Bd(U)Θ{X/h}, X fresh

11

α(?)
α()

α(?)
α()

α(?)
α()

α(?)
α()

α(?)
α()

α(#)

α(#)

α(?)
α()

q0
α(x)

q1 q0 q1
α(#) α(#)

[ψ]ψ[ψ]ψ

q̇0
α(#) α(#)

[ψ

q̇1

α(x)

ψ(x)

α(?)α(?)

α(?) α(?)
q2

q2

q̇2

Aψ[](#,{# })

Figure 6: The policy ψ(x) and its instantiation Aψ[](#,{#, }) (some self-loops
omitted).

choice between two BPA processes: in the first, the name n is replaced by the
“don’t care” resource , while in the second, n is replaced by the “witness”
resource #. If d = #, this means that we have already witnessed #, so we
proceed by generating .

Theorem 12 below states the correspondence between usages and BPAs. The
traces of a usage are all and only the strings that label the computations of the
extracted BPA, where resources are suitably renamed to permit model-checking.

Definition 11. Let σ be a substitution from Res ∪ {?} to Res ∪ {?}. We say
that σ is name-collapsing when, for some set of dynamic resources R ⊂ Resd:

σ(r) = # if r ∈ R σ(#) = # σ(?) = ?
σ(r) = if r ∈ Resd \ R σ() = σ(r) = r otherwise

We call such σ uniquely-collapsing if σ(r) = # for exactly one r 6= #.

Theorem 12. For each initial usage U , trace η, and name-collapsing σ:

U,R
η
−→ U ′,R′ =⇒ ∃P : B(U)

ησ
−−→ P

Example 9. Let U = µh. (νn. ε + new(n) · α(n) · h). Then, B(U) = 〈X,∆〉,
where ∆ = {X , 0+new()·α()·X+0+new(#)·α(#)·X}. Consider the trace
η = new(r0)α(r0)new(r1)α(r1)new(r2)α(r2) of U . Let σ = { /r0,#/r1, /r2}.
Then, ησ = new()α()new(#)α(#)new()α() is a trace in J〈X,∆〉K.

Example 10. Let U = ψ[(νn.new(n) ·α(n)) · (νn′.new(n′) ·α(n′)) ·α(?)] where
the policy ψ asks that the action α cannot be performed twice on the same
resource (left-hand side of Fig. 6). Then:

B(U) = [ψ ·
(

new()·α()+new(#)·α(#)
)

·
(

new()·α()+new(#)·α(#)
)

·α(?) ·]ψ

The BPA B(U) violates Aψ[](#,{ ,#}), displayed in right-hand side of Fig. 6
(where we have omitted all the self-loops for the new action). The violation
is consistent with the fact that the wildcard ? represents any resource, e.g.
new(r′)α(r′)new(r)α(r)α(r) is a trace of U that violates ψ. Although U is valid
whenever B(U) is valid, such verification technique would not be complete. Con-
sider e.g. ψ′ requiring that α is not executed three times on the same resource,
and let U ′ = ψ′[(νn.new(n) ·α(n)) ·(νn′.new(n′) ·α(n′)) ·α(?)]. Note that B(U ′)
violates ψ′

[](#), while all the traces denoted by U ′ respect ψ′. Theorem 13 below
provides us with a sound and complete verification technique.

12

As shown in Ex. 10, the validity of U does not imply the validity of B(U),
so leading to a sound but incomplete decision procedure. The problem is that
B(U) uses the same “witness” resource # for all the resources created in U .
This leads to violations of policies, e.g. those that prevent some action from
being performed twice (or more) on the same resource, because B(U) identifies
(as #) resources that are distinct in U . To recover a (sound and) complete
decision procedure for validity, it suffices to check any trace of B(U) only until
the second “witness” resource is generated (i.e. before the second occurrence of
new(#)). This is accomplished by composing B(U) with the “unique witness”
automaton through a “weak until” operator. The weak until W is standard;
the unique witness A# is a finite state automaton that reaches an offending
state on those traces containing more than one new(#) event (see Def. 16 for
details).

Example 11. Consider again the usage U ′ in Ex. 10. The maximal traces
generated by B(U ′) are shown below.

[ψ′ new()α() new(#)α(#) α(?)]ψ′ [ψ′ new(#)α(#) new()α() α(?)]ψ′

[ψ′ new()α() new()α() α(?)]ψ′ [ψ′ new(#)α(#) new(#)α(#) α(?)]ψ′

The first three traces above comply with Aψ′
[]

(#,{#, }), which instead is vio-

lated by the last trace. Indeed, in η = [ψ′ new(#)α(#)new(#)α(#)α(?)]ψ′

the two fresh resources are identical, so contrasting with the semantics of us-
ages. To avoid incompleteness, η is not considered in model-checking, since
η ⊳ (Aψ′

[]
(#,{#, }) WA#), i.e. η is accepted by A# and filtered out by the weak

until. Note also that there is no need to consider the automaton Aψ′
[]

(,{#, }),

because if a violation has to occur, it will occur on Aψ′
[]

(#,{#, }).

The following theorem enables us to efficiently verify the validity of a usage U
by (i) extracting the BPA B(U) from U , and (ii) model-checking B(U) against
a finite set of finite state automata.

Theorem 13. Let Φ(U) = {Aϕ[](r0,R(U)) | r0, ϕ ∈ U }∪{Aϕ[](#,R(U)) | ϕ ∈ U },
where R(U) comprises #, , and all the static resources occurring in U .

An initial usage U is valid if and only if, for all Aϕ[](r,R) ∈ Φ(U):(a)

JB(U)K ⊳Aϕ[](r,R) W A#

The computational complexity of this method is PTIME in the size U .(b)

Valid usages are recognized by checking all Aϕ[](r,R) in Φ(U). The set Φ(U)
contains, for each policy ϕ and static resource r0, the framed usage automaton
Aϕ[](r0,R(U)). Also, Φ(U) includes the instantiations Aϕ[](#,R(U)), to be ready
on controlling ϕ on dynamic resources, represented by the witness #.

Example 12. Let U = µh. (ε+νn.new(n) ·α(n) ·h). Consider then Uϕ = ϕ[U],
where ϕ(x) asks that, for each resource x, the first occurrence of the event α(x)
is necessarily followed by another α(x) (Fig. 7a). Then, Uϕ is not valid, because
e.g. η = [ϕnew(r)α(r)new(r′)α(r′) is a trace of Uϕ, and η 6|= Aϕ[](r,{r,r′}) (the

13

α(?)
α(#)

q1q0

α(x)

q2

α(x)

q1q0

α(?)
α(?)

α(?)

q2

α(#)α(?)
α(#)

(c) ψ(x) (d) Aψ(#,{#, })

α(?)
α()

q1q0

q2

α(?)

α(?)
α()

q3
α(#)
α()
α(?)

q1q0

q2

α(x)

α(x̄)
q3

α(x)

α(#)

(a) ϕ(x) (b) Aϕ(#,{#, })

Figure 7: The usage policies ϕ(x) and ψ(x) and the policy automata Aϕ(#,{#, })

and Aψ(#,{#, }). The self-loops for the new events are omitted.

non-framed policy automaton is in Fig. 7b). So, Φ(Uϕ) = {Aϕ[](#,{#, })}, and:

B(Uϕ) = 〈[ϕ·X ·]ϕ, X , ε+ (new(#) · α(#) ·X) + (new() · α() ·X)〉

and the trace [ϕnew(#)α(#)new()α() ∈ JB(Uϕ)K drives the framed automaton
Aϕ[](#,{#, }) to an offending state. Consider now Uψ = ψ[U], where the policy
ψ(x) says that the action α cannot be performed twice on the same resource x
(Fig. 7c). We have that Φ(Uψ) = {Aψ[](#,{#, })}, and:

B(Uψ) = 〈[ψ ·X ·]ψ, X , ε+ (new(#) · α(#) ·X) + (new() · α() ·X)〉

Although Uψ obeys ψ, the BPA does not, since [ψnew(#)α(#)new(#)α(#)]ψ
violates Aψ[](#,{#, }) (the non-framed instantiation Aψ(#,{#, }) is in Fig. 7d).
Completeness is recovered through the weak until and unique witness automata,
that filter the traces, like the one above, where new(#) is fired twice.

Example 13. Recall from Ex. 8 the policy ϕFile (only open files can be read/written)
and consider the policy ϕDoS that forbids the creation of more than k files. Let:

U = ϕFile[ϕDoS[µh. ε+ νn.new(n) · open(n) · read(n) · close(n) · h]]

Then, Φ(U) = {ϕFile(#), ϕDoS(#)}, and B(U) = 〈[ϕ·[ϕDoS
·X ·]ϕDoS

·]ϕ, ∆〉, where
∆ comprises the following definition:

X , ε+ (new() · open() · read() · close() ·X)

+ (new(#) · open(#) · read(#) · close(#) ·X)

Note that each computation of B(U) obeys AϕFile[](#,{#, }), while there exist
computations that violate AϕDoS[](#,{#, }).

To handle polyadic policies (say with arity k), our technique can be adjusted
as follows. We use k witnesses #1, . . . ,#k. The set Φ(U) is computed as
Φ(U) = {Aϕ[](r1,...,rk,R(U)) | ϕ ∈ U, ∀i. ri ∈ U ∨ ri ∈ {#1, . . . ,#k} }. Moreover,
now A# must check that each #i has at most an associated new event. The
transformation of usages into BPAs should then be modified as follows:

14

B (νn.U)Θ = B (U{ /n})Θ + B#1(U{#1/n})Θ

B#i
(νn.U)Θ = B#i

(U{ /n})Θ + B#i+1(U{#i+1/n})Θ if i < k

B#k
(νn.U)Θ = B#k

(U{ /n})Θ

Theorem 13 still holds. The complexity of model-checking is still PTIME in
the size of U , and EXPTIME in k. Note that being EXPTIME in k has no big
impact in practice, as one expects k to be very small even for complex policies.

5 Conclusions
We proposed a model for policies that control the usage of resources. Usage
policies can be enforced through finite state automata. A basic calculus of us-
ages was presented to describe the patterns of resource access and creation, and
obligation to respect usage policies. We call a usage valid when all its possible
traces comply with all the relevant usage policies. In spite of the augmented
flexibility given by resource creation and by policy parametrization, we devised
an efficient (polynomial-time) and complete model-checking technique for decid-
ing the validity of usages. Our technique manages to represent the generation
of an unbounded number of resources in a finitary manner. Yet, we do not lose
the possibility of verifying interesting security properties of programs.

Local usage policies were originally introduced in [5]. The current work
thoroughly improves and simplifies them. Usage policies can now have an arbi-
trary number of parameters, which augments their expressive power and allows
for modelling significant real-world policies (see Sec. 1). The model checking
technique in [5] has exponential time complexity, while the current one is poly-
nomial.

Extensions. A first simple extension to our model is to assign a type to
resources. To do that, the set Act of actions is partitioned to reflect the
types of resources (e.g. Act = File ∪ Socket ∪ · · ·), where each element of
the partition contains the actions admissible for the given type (e.g. File =
{newFile, open, close , read ,write}, where newT represents creating a new resource
of type T). The syntax of the ν-constructor is extended with the type, i.e.
νn : T. U . Validity should now check that the actions fired on a resource also
respect its type. Our model checking technique can be smoothly adapted by
using a #-witness for each type (e.g. #File,#Socket, etc.), to be dealt with the
corresponding “unique witness” automata (e.g. A#File

, A#Socket
, etc.). The time

complexity is unaltered.
The language of usages has two simple extensions. The first consists in

attaching policies to resources upon creation, similarly to [18]. The construct
νn : ϕ. U is meant to enforce the policy ϕ on the freshly created resource. An
encoding into the existing constructs is possible. First, the whole usage has
to be sandboxed with the policy ϕν(x), obtained from ϕ(x) by adding a new
initial state qν and an edge labelled check(x) from qν to the old initial state. The
encoding then transforms νn : ϕ. U into νn. check(n) ·U . The second extension
consists in allowing parallel usages U |V . Model checking is still possible by

15

transforming usages into Basic Parallel Processes [12] instead of BPAs. However,
the time complexity becomes exponential in the number of parallel branches [20].

Related work. Many authors [13, 14, 19, 22] mix static and dynamic tech-
niques to transform programs and make them obey a given policy. Our model
allows for local, polyadic policies and events parametrized over dynamically cre-
ated resources, while the above-mentioned papers only consider global policies
and no parametrized events. Polymer [9] is a language for specifying, compos-
ing and enforcing (global) security policies. In the lines of edit automata [8],
a policy can intervene in the program trace, to insert or suppress some events.
Policy composition can then be unsound, because the events inserted by a policy
may interfere with those monitored by another policy. To cope with that, the
programmer must explicitly fix the order in which policies are applied. Being
Turing-equivalent, Polymer policies are more expressive than ours, but this gain
in expressivity has some disadvantages. First, a policy may potentially be un-
able to decide whether an event is accepted or not (i.e. it may not terminate).
Second, no static guarantee is given about the compliance of a program with the
imposed policy. Run-time monitoring is then necessary to enforce the policy,
while our model-checking tecnique may avoid this overhead. A typed λ-calculus
is presented in [18], with primitives for creating and accessing resources, and
for defining their permitted usages. Type safety guarantees that well-typed pro-
grams are resource-safe, yet no effective algorithm is given to check compliance of
the inferred usages with the permitted ones. The policies of [18] can only speak
about the usage of single resources, while ours can span over many resources,
e.g. a policy requiring that no socket connections can be opened after a local
file has been read. A further limitation of [18] is that policies are attached to
resources. In mobile code scenarios, e.g. a browser that runs untrusted applets,
it is also important that you can impose constraints on how external programs
manage the resources created in your local environment. E.g., an applet may
create an unbounded number of resources on the browser site, and never re-
lease them, so leading to denial-of-service attacks. Our local policies can deal
with this kind of situations. Shallow history automata are investigated in [16].
These automata can keep track of the set of past access events, rather than
the sequence of events. Although shallow history automata can express some
interesting security properties, they are clearly less expressive than our usage
policies. A model for history-based access control is proposed in [23]. It uses
control-flow graphs enriched with permissions and a primitive to check them,
similarly to [2]. The run-time permissions are the intersection of the static per-
missions of all the nodes visited in the past. The model-checking technique can
decide in EXPTIME (in the number of permissions) if all the permitted traces
of the graph respect a given regular property on its nodes. Unlike our local
policies, that can enforce any regular policy on traces, the technique of [23] is
less general, because there is no way to enforce a policy unless it is encoded as
a suitable assignment of permissions to nodes.

16

References

[1] M. Abadi and C. Fournet. Access control based on execution history. In
Proc. 10th Annual Network and Distributed System Security Symposium,
2003.

[2] M. Bartoletti, P. Degano, and G. L. Ferrari. Static analysis for stack in-
spection. In International Workshop on Concurrency and Coordination,
2001.

[3] M. Bartoletti, P. Degano, and G. L. Ferrari. History based access control
with local policies. In Proc. Fossacs, 2005.

[4] M. Bartoletti, P. Degano, and G. L. Ferrari. Types and effects for secure
service orchestration. In Proc. 19th CSFW, 2006.

[5] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Types and effects
for resource usage analysis. In Proc. Fossacs, 2007.

[6] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Semantics-based
design for secure web services. IEEE Transactions on Software Engineering,
34(1), 2008.

[7] M. Bartoletti and R. Zunino. LocUsT: a tool for checking usage policies.
Technical Report TR-08-07, Dip. Informatica, Univ. Pisa, 2008.

[8] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In
Foundations of Computer Security (FCS), 2002.

[9] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with
Polymer. In Proc. PLDI, 2005.

[10] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77–121, 1985.

[11] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In Proc.
of Symp. on Security and Privacy, 1989.

[12] S. Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, Edinburgh University, 1993.

[13] T. Colcombet and P. Fradet. Enforcing trace properties by program trans-
formation. In Proc. 27th ACM SIGPLAN-SIGACT PoPL, 2000.

[14] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies:
a retrospective. In Proc. 7th New Security Paradigms Workshop, 1999.

[15] J. Esparza. On the decidability of model checking for several µ-calculi
and Petri nets. In Proc. 19th Int. Colloquium on Trees in Algebra and
Programming, 1994.

17

[16] P. W. Fong. Access control by tracking shallow execution history. In IEEE
Symposium on Security and Privacy, 2004.

[17] A. Igarashi and N. Kobayashi. Type reconstruction for linear -calculus with
i/o subtyping. Inf. Comput., 161(1):1–44, 2000.

[18] A. Igarashi and N. Kobayashi. Resource usage analysis. In Proc. 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2002.

[19] K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource usage verification.
In Proc. First Asian Programming Languages Symposium, 2003.

[20] R. Mayr. Decidability and Complexity of Model Checking Problems for
Infinite-State Systems. PhD thesis, Technischen Universität München,
1998.

[21] F. B. Schneider. Enforceable security policies. ACM Transactions on In-
formation and System Security (TISSEC), 3(1):30–50, 2000.

[22] P. Thiemann. Enforcing safety properties using type specialization. In
Proc. ESOP, 2001.

[23] J. Wang, Y. Takata, and H. Seki. HBAC: A model for history-based access
control and its model checking. In Proc. ESORICS, 2006.

18

A Auxiliary definitions

Definition 14. Syntax of Basic Process Algebras

A BPA process is given by the following abstract syntax, where β ∈ Ev:

p, p′ ::= 0 | β | p · p′ | p+ p′ | X

A BPA definition has the form X , p. A set ∆ of BPA definitions is coherent
when X , p ∈ ∆ and X , p′ ∈ ∆ imply p = p′. A BPA is a pair 〈p,∆〉 such
that (i) ∆ is finite and coherent, and (ii) for all X occurring in p or ∆, there
exists some q such that X , q ∈ ∆. We write ∆+∆′ for ∆∪∆′, when coherent
(otherwise, ∆ + ∆′ is undefined). For all P = 〈p,∆〉 and P ′ = 〈p′,∆′〉, we
write P · P ′ for 〈p · p′,∆ + ∆′〉, and P + P ′ for 〈p+ p′,∆ + ∆′〉.

Definition 15. LTS for Basic Process Algebras

The semantics JP K of a BPA P = 〈p0,∆〉 is the set of the histories labelling

finite computations a { η = a1 · · · ai | p0
a1−→ · · ·

ai−→ pi }, where a ∈ Ev ∪ {ε},

and the relation
a
−→ is inductively defined by the following rules:

0 · p
ε
−→ p β

β
−→ 0 p+ q

ε
−→ p p+ q

ε
−→ q

p · q
a
−→ p′ · q if p

a
−→ p′ X

ε
−→ p if X , p ∈ ∆

aSince validity is a safety property [21] – nothing bad can happen in any (finite) trace of
execution steps – it is sound to consider finite computations only.

Definition 16. Weak until and Unique Witness automata

Let A0 = 〈Σ, Q0, q̄0, F0, ρ0〉 and A1 = 〈Σ, Q1, q̄1, F1, ρ1〉 be usage automata.
Assume that A0 and A1 are complete, i.e. for each state q and β ∈ Σ, there
exists a transition from q labelled β. The weak until automaton A0 WA1 is
defined as 〈Σ, Q0 ×Q1, 〈q̄0, q̄1〉, F0 × (Q1 \ F1), ρW 〉, where:

ρW = { 〈q0, q1〉
ϑ
−→ 〈q′0, q

′
1〉 | q0

ϑ
−→ q′0 ∈ ρ0, q1

ϑ
−→ q′1 ∈ ρ1, q1 ∈ Q1 \ F1 }

∪ { 〈q0, q1〉
ϑ
−→ 〈q0, q1〉 | q1 ∈ F1, ϑ ∈ Σ }

The unique witness automaton A# is 〈Σ, {q0, q1, q2}, q0, {q2}, ρ#〉, where:

ρ# = {q0
new(#)
−−−−−→ q1, q1

new(#)
−−−−−→ q2}

∪ { q0
ϑ
−→ q0, q1

ϑ
−→ q1 | ϑ ∈ Σ \ {new(#)} } ∪ { q2

ϑ
−→ q2 | ϑ ∈ Σ }

19

B Proofs

Lemma B.1. For each trace η, policy ϕ, and resource r:

∃R ⊇ R(η). η ⊳Aϕ(r,R) =⇒ ∀R′ ⊇ R(η). η ⊳Aϕ(r,R′)

Proof. We prove the contrapositive. Assume that there exists R′ ⊇ R(η) such

that η 6⊳ Aϕ(r,R′), i.e. there is an offending run q0
η
−→ qk of Aϕ(r,R′). For all

R ⊇ R(η), we show how to reconstruct an offending run of Aϕ(r,R) on η.

Let δR, δ̇R, δ̈R and δR′ , δ̇R′ , δ̈R′ be the sets of transitions (see Def. 2) of the
policy automata Aϕ(r,R) and Aϕ(r,R′), respectively.

First, we show that, for each r′ ∈ R(η), q
α(r′)
−−−→ q′ in δ̈R′ if and only if

q
α(r′)
−−−→ q′ in δ̈R. Consider an edge q

ϑ
−⊸ q′ of the usage policy ϕ(x). There are

the following exhaustive cases:

• if ϑ = α(r′) with r′ ∈ Ress, then q
α(r′)
−−−→ q′ is in δ̈R′ , as well as in δ̈R.

• if ϑ = α(x), then q
α(r)
−−−→ q′ is in δ̈R′ , as well as in δ̈R.

• if ϑ = α(x̄), then q
α(r′)
−−−→ q′ is in δ̈R′ for all r′ ∈ (R′ ∪ {?}) \ {r}, and

it is in δ̈R for all r′ ∈ (R ∪ {?}) \ {r}. Since r′ ∈ R(η), R′ ⊇ R(η), and

R ⊇ R(η), then q
α(r′)
−−−→ q′ is in δ̈R′ as well as in δ̈R.

Let r′ ∈ R(η). The above and R(η) ⊆ R,R′ imply q
α(r′)
−−−→ q′ in δ̇R′ if and only

if q
α(r′)
−−−→ q′ in δ̇R, which in turn implies the thesis.

Lemma 3. For all traces η and policies ϕ:

η |= ϕ ⇐⇒ ∃r′ ∈ Res \ R(η). ∀r ∈ R(η) ∪ {r′}. η ⊳Aϕ(r,R(η))

Proof. For the “only if” part, assume that η |= ϕ, i.e. that, for all r̄ ∈ Res,
η ⊳ Aϕ(r̄,Res). Choose any r′ ∈ Res \ R(η). Given r ∈ R(η) ∪ {r′}, we have
η ⊳Aϕ(r,Res). By Lemma B.1, this implies η ⊳Aϕ(r,R(η)).

For the “if” part, we prove the contrapositive. Assume that η 6|= ϕ, i.e.
there exists some r̄ ∈ Res such that η 6⊳ Aϕ(r̄,Res). We now prove that for all
r′ ∈ Res \ R(η) there is an r ∈ R(η) ∪ {r′} such that η 6⊳ Aϕ(r,R(η)). If r̄ ∈
R(η), then we are done by choosing r = r̄, because Lemma B.1 implies that
η 6⊳ Aϕ(r,R(η)). If r̄ 6∈ R(η), then for each r′ ∈ Res \ R(η), we let r = r′ and we
prove that η 6⊳ Aϕ(r′,Res), which is the thesis. To do that, consider an offending

run q0
η
−→ qk of the automaton Aϕ(r̄,Res) on η. We show how to reconstruct

an offending run of Aϕ(r′,R(η)) on η. Let δ̈r̄,Res and δ̈r′,R(η) be the respective
transition sets of these automata, as in Def. 2. We will show in a while that, for

each r′′ ∈ R(η), q
α(r′′)
−−−→ q′ in δ̈r̄,Res if and only if q

α(r′′)
−−−→ q′ in δ̈r′,R(η). Similarly

20

to the proof of Lemma B.1, this implies that Aϕ(r̄,Res) and Aϕ(r′,R(η)) have the
same transitions on the resources in R(η), which concludes the proof.

Let r′′ ∈ R(η), and consider an edge q
ϑ
−⊸ q′ of ϕ(x). There are the following

exhaustive cases:

• if ϑ = α(r′′) with r′′ ∈ Ress, then q
α(r′′)
−−−→ q′ is in δ̈r̄,Res and in δ̈r′,R(η).

• the case ϑ = α(x) does not apply, because r̄, r′ 6∈ R(η), while r′′ ∈ R(η).

• if ϑ = α(x̄), then q
α(r′′)
−−−→ q′ is in δ̈r̄,Res if r′′ ∈ (Res ∪ {?}) \ {r̄} ⊇ R(η),

and it is in δ̈r′,R(η) if r′′ ∈ (R(η) ∪ {?}) \ {r′} ⊇ R(η). Since r′′ ∈ R(η),

then q
α(r′′)
−−−→ q′ is in δ̈r̄,Res as well as in δ̈r′,R(η).

Lemma 7. For all traces η and η′, if ηη′ is valid, then η is valid.

Proof. Trivial from the definition of |= in Def. 6.

Lemma 9. A trace η is valid if and only if η ⊳ Aϕ[](r,R(η)), for all ϕ occurring
in η, and for all r ∈ R(η)∪{r′}, where r′ is an arbitrary resource in Res \R(η).

Proof. The statement holds trivially for η = ε, because ε is valid (act(ε) = {| |}),
and ε ⊳ Aϕ[](r,R(η)) (indeed, the initial state is in the first layer of the framed
policy automaton, where all the states are non-offending). Let then η = η′β,
where η′ = β1 · · ·βn.

For the “if” part, we proceed by induction on the length of η. Assume that,
for all policies ϕ occurring in η, η⊳Aϕ[](r,R(η)). Let r′ ∈ Res\R(η). Since all the
offending states in Aϕ[](r,R(η)) are sinks by construction, then η′ ⊳ Aϕ[](r,R(η)).
By the induction hypothesis, this implies that η′ is valid. To prove that also η
is valid, we have to consider the following cases on the form of the event β:

• if β ∈ Ev, then act(η) = act(η′). Let η̄ = η−[] = (η′)−[] β. So, we have
to prove that |= η′, and η̄ |= ϕ for all ϕ ∈ act(η′). The first statement
follows from the induction hypothesis. For the second statement, assume
by contradiction that η̄ 6|= ϕ. Then, by Lemma 3 there is an offending run

q̄(0)
η̄
−→ q̄(n̄) of Aϕ(r,R(η)), for some r ∈ R(η) ∪ {r′}. We shall show in a

while how to construct an offending run q(0)
η
−→ q(n+1) of Aϕ[](r,R(η)).

First, we introduce some notation. Let Q and Q̇ be respectively the states
in the first and in the second layer of Aϕ[](r,R(η)). Let F and Ḟ be the
final states in Aϕ(r,R(η)) and in Aϕ[](r,R(η)). For each state q in Aϕ[](r,R(η)),

let q@Q and q@Q̇ be the projections of q on the first and on second layer.

At the first step of our construction for an offending run, let q(0) = q̄(0).
For the remaining steps, we shall scan the trace η with the index k, the
trace η̄ with k̄, and at each step we shall define q(k). For the k-th step,
there are the following exhaustive cases:

21

– if βk = [ϕ, then q(k) ∈ Q, because η has no redundant framings.

Let q(k+1) = q(k)@Q̇. By construction (see Def. 8), Aϕ[](r,R(η)) has a

transition q(k)
[ϕ
−→ q(k+1).

– if βk =]ϕ, then q(k) ∈ Q̇, because η has no redundant framings.

Moreover, q̄(k̄) 6∈ F , otherwise we have found a (strict) prefix of η that
is offending for Aϕ[](r,R(η)). Let q(k+1) = q(k)@Q. Then, Aϕ[](r,R(η))

can take the transition q(k)
]ϕ
−→ q(k+1).

– if βk = [ϕ′ or βk =]ϕ′ for some ϕ′ 6= ϕ, then let q(k+1) = q(k).

– otherwise, if βk ∈ Ev, there are the following two subcases:

∗ if q(k) ∈ Q, then choose q(k+1) = q̄(k̄+1).

∗ if q(k) ∈ Q̇, then q̄(k̄) 6∈ F : otherwise, we have found a (strict)
prefix of η that is offending for Aϕ[](r,R(η)). Therefore, Aϕ(r,R(η))

has a transition q̄(k̄)
βk̄−→ q̄(k̄+1). Let q(k+1) = q̄(k̄+1)@Q̇. Then,

Aϕ[](r,R(η)) has the transition q(k)
βk−→ q(k+1).

We have then constructed a run q(0)
η
−→ q(n+1) of Aϕ[](r,R(η)). Since ϕ ∈

act(η), then in η the scope of ϕ has been entered but not exited. Thus,
q(n+1) is in the second layer of Aϕ[](r,R(η). The state q(n+1) is offending,
because q̄k ∈ F . This yields the expected contradiction.

• if β =]ϕ, then act(η) ⊆ act(η′), so the induction hypothesis suffices.

• if β = [ϕ, then act(η) = act(η′)∪{|ϕ|}. Thus, η is valid if η′ is valid (which
is true by the induction hypothesis), (η′)−[] |= ϕ′ for all ϕ′ ∈ act(η′),
and (η′)−[] |= ϕ. Similarly to the case β ∈ Ev, we can prove that the
hypothesis (η′)−[] 6|= ϕ leads to a contradiction, i.e. that η 6|= Aϕ[](r,R(η))

for some r ∈ R(η) ∪ {r′} and r′ ∈ Res \ R(η).

For the “only if” part, assume that η is valid. We proceed by induction on the
length of η. The base case η = ε is trivial. For the inductive case, assume that
η = η′β. We consider the following cases on the form of the event β:

• if β ∈ Ev, then act(η) = act(η′). Let η̄ = η−[] = (η′)−[]β. Since η is valid,
then Lemma 7 implies that η′ is valid. Also, η̄ |= ϕ for all ϕ ∈ act(η).
From the first fact, the induction hypothesis implies that η′ ⊳Aϕ′

[]
(r,R(η))

for all ϕ′ ∈ η′. By contradiction, assume that η 6⊳ Aϕ[](r,R(η) for some ϕ,
i.e. η drives Aϕ[](r,R(η)) to an offending state (note that any run on η′ is

non-offending). Let q(0)
η′

−→ q(n) β
−→ q(n+1) be such an offending run, with

q(n+1)@Q ∈ F . We now show that this contradicts the hypothesis η̄ |= ϕ.

To do that, we construct an offending run q̄(0)
(η′)−[]

−−−−→ q(n̄) β
−→ q(n̄+1) of

Aϕ(r,R(η)) on η̄.

22

At the first step of this construction, let q̄(0) = q(0). For the remaining
steps, we shall scan the trace η with the index k, the trace η̄ with k̄,
and at each step we shall define q̄(k̄). For the k-th step, Since framing
events are not present in η̄ = η−[], it suffices to deal with the case βk ∈

Ev. Consider the transition q(k)
βk−→ q(k+1) in Aϕ[](r,R(η)). Let q̄(k̄+1) =

q(k+1)@Q. Then, Aϕ(r,R(η)) has the transition q̄(k̄)
βk̄−→ q̄(k̄+1). Since

q̄(k̄+1) = q(n+1)@Q ∈ F , we have then found an offending run of Aϕ(r,R(η))

on η−[] – contradiction.

• if β = [ϕ, then act(η) = act(η′) ∪ {|ϕ|}. Since η is valid, then Lemma 7
implies that η′ is valid. Also, η−[] |= ϕ′ for all ϕ′ ∈ act(η′), and η−[] |= ϕ.
From the first fact, the induction hypothesis implies that η′ ⊳Aϕ′

[]
(r,R(η))

for all ϕ′ ∈ η′. If ϕ′ 6= ϕ, then appending the framing event [ϕ to η′

results in a self-loop in Aϕ′
[]

(r,R(η)), and so η⊳Aϕ′
[]

(r,R(η)). If ϕ′ = ϕ, then

(similarly to the previous case β ∈ Ev) we use the fact that η−[] |= ϕ in a
contrapositive argument, to show that there cannot be offending runs of
Aϕ[](r,R(η)) on η.

• if β =]ϕ, then act(η) = act(η′) \ {|ϕ|}. For all ϕ′, the automaton
Aϕ′

[]
(r,R(η)) has an edge labelled]ϕ′ from the second to the first layer,

which has no offending states. Therefore, since η′ ⊳ Aϕ′
[]

(r,R(η)), then the

event β results in a transition to the first layer, and so η⊳Aϕ′
[]

(r,R(η)).

Example 14. We now show a policy that would not be expressible without
abstract edges labelled x̄. Consider the policy ψ(x) that prohibits α(x)α(x)β and
α(x)α(y)γ for all x and y 6= x, and that allows α(x)α(x)γ for all γ 6= β. This
is modelled by the usage policy in Fig. 8.

q0

q4

q1 q2
α(x)α(x)

β

γ
q3

α(x̄)

Figure 8: The usage policy ψ(x).

Lemma B.2. For each well-formed trace η with # 6∈ R(η), policy ϕ, resource r,
and name-collapsing σ such that σ(r) 6= :

(a) if σ−1(#) ⊆ {r,#} (i.e., only r and # are mapped to # by σ), then:

η ⊳Aϕ(r,R(η)) ⇐= ησ ⊳Aϕ(rσ,R(ησ))

23

(b) if ησ ⊳A# and r ∈ R(η), then:

η ⊳Aϕ(r,R(η)) =⇒ ησ ⊳Aϕ(rσ,R(ησ))

(c) if r 6∈ R(η) ∪ R(ησ), then:

η ⊳Aϕ(r,R(η)) =⇒ ησ ⊳Aϕ(r,R(ησ))

Proof. Let η = β1 · · ·βk. Below, we shall refer to transition sets of the policy
automaton Aϕ(r,R) as δr,R, δ̇r,R and δ̈r,R. (see Def. 2).

For (B.2a), we prove the contrapositive. Assume that η 6⊳ Aϕ(r,R(η)). Then,
there exists an offending run of Aϕ(r,R(η)) on η:

q0
β0
−→ q1

β1
−→ · · ·

βk−1
−−−→ qk ∈ F

We now show how to construct an offending run of Aϕ(rσ,R(η)σ) on ησ. Consider

a transition qi
βi
−→ qi+1, for i ≥ 0. There are three cases, according to Def. 2:

either this transition was introduced by the relation δ̈r,R(η), or it was introduced

as a self loop by δ̇r,R(η), or as an unknown-resource transition by δr,R(η).

We consider first the case in which qi
βi
−→ qi+1 comes from the relation δ̈.

We have three subcases.

• the transition comes from instantiating qi
α(x)
−−−⊸ q′, and βi = α(r). The

thesis comes from instantiating x with rσ.

• the transition comes from instantiating qi
α(x̄)
−−−⊸ q′, and βi = α(r′) with

r′ ∈ (R(η) ∪ {?}) \ {r}. To instantiate x̄ with r′σ, we must prove that
r′σ ∈ (R(ησ)∪ {?}) \ {rσ}. Since r′σ ∈ R(ησ)∪ {?} is trivially implied by
the above, it suffices to check r′σ 6= rσ. There are the following cases.

– If r = #, since r′ 6= r then r′σ 6= # = rσ by the hypothesis of (a).

– If r ∈ Ress, we have rσ = r 6= r′ = r′σ.

– If r ∈ Resd, since by hypothesis rσ 6= then rσ = #. By the
hypothesis of (a), r 6= r′ implies r′σ 6= # = rσ.

• the transition comes from qi
α(r′)
−−−⊸ q′ for some r′ ∈ Ress and βi = α(r′).

Since βiσ = βi, the thesis trivially holds.

If instead the transition has been introduced by δ̇ as a self-loop, then ∄q′. qi
βi
−→

q′ ∈ δ̈r,R(η). To show that there is a corresponding self-loop qi
βiσ
−−→ qi+1 in

δ̇rσ,R(η)σ, we show that ∄q′. qi
βiσ
−−→ q′ ∈ δ̈rσ,R(η)σ. We proceed by proving the

contrapositive. There are the following three cases.

• the transition comes from instantiating qi
α(x)
−−−⊸ q′, and βiσ = α(rσ). We

have that βi = α(r′) for some r′, and therefore rσ = r′σ. We have the
following three cases.

24

– If r = #, then by the hypothesis of (a) we obtain r′ = # which
implies the thesis.

– Otherwise, if r ∈ Ress, then rσ = r = r′σ and so r′ = r.

– Otherwise, since r ∈ Resd and rσ 6= by hypothesis, we must have
rσ = # = r′σ. By the hypothesis of (a) there is only one such r.
Thus, r = r′, which implies the thesis.

• the transition comes from instantiating qi
α(x̄)
−−−⊸ q′, and βiσ = α(r′′) with

r′′ ∈ (R(ησ) ∪ {?}) \ {rσ}. We have that βi = α(r′) for some r′ such that
r′σ = r′′, and r′σ 6= rσ, which implies r′ 6= r. From this and r′ ∈ R(η),
we can instantiate x̄ with r′ to build a corresponding transition in δ̈r,R(η).

• the transition comes from qi
α(r′)
−−−⊸ q′ with r′ ∈ Ress, βi = α(r′), and

r′σ = r′. The thesis trivially holds.

The above settles the cases in which the transition qi
βi
−→ qi+1 has been

introduced by δ̈ or by δ̇. If instead the transition has been introduced as an
unknown-resource transition by δ, then βi = α(?) was derived from a transition
labelled α(r′), for some r′ ∈ R(η), in the relation δ̇r,R(η). By the above, there

exists a corresponding transition qi
α(rσ)
−−−→ qi+1 in δ̇rσ,R(η)σ. Therefore, we have

a transition qi
α(?)
−−−→ qi+1 in δrσ,R(η)σ.

The proof of (B.2b) is similar, by contrapositive. Assume that ησ 6⊳ Aϕ(rσ,R(η)σ).
Then, there exists an offending run of Aϕ(rσ,R(η)σ) on ησ:

q0
β0σ
−−→ q1

β1σ
−−→ · · ·

βk−1σ
−−−−→ qk ∈ F

We now show how to construct an offending run of Aϕ(r,R(η)) on η. Consider a

transition qi
βiσ
−−→ qi+1, for i ≥ 0.

There are three cases, according to Def. 2: either this transition was in-
troduced by the relation δ̈, or it was introduced as a self loop by δ̇, or as an
unknown-resource transition by δ.

We first consider the case in which qi
βiσ
−−→ qi+1 comes from the relation

δ̈rσ,R(η)σ. We have three subcases.

• the transition comes from instantiating qi
α(x)
−−−⊸ q′, and βiσ = α(rσ). So,

βi = α(r′) with rσ = r′σ. If r′ ∈ Ress, this implies r = r′, and the thesis
comes from instantiating x with rσ. Otherwise r′ ∈ Resd, and so r ∈ Resd.
Since rσ 6= , we must have r′σ = rσ = #. We now show r = r′, which
implies the thesis. If r 6= r′, by the well-formedness of η, we have two
distinct events new(r) and new(r′) in η. This would imply that we have a
duplicate new(#) in ησ, and thus ησ 6⊳ A#, contradicting the hypothesis.

25

• the transition comes from instantiating qi
α(x̄)
−−−⊸ q′, and βiσ = α(r′) for

some r′ ∈ R(η) such that r′σ ∈ (R(η)σ ∪ {?}) \ {rσ}. Similarly to the
previous case, this implies that r′ 6= r. So, we can instantiate x̄ with r′,
and obtain the thesis.

• the transition comes from qi
α(r′)
−−−⊸ q′ for some r′ ∈ Ress and βi = α(r′).

Since βiσ = βi, the thesis trivially holds.

If the transition has been added as a self-loop by δ̇rσ,R(η)σ, then ∄q′. qi
βiσ
−−→

q′ ∈ δ̈rσ,R(η)σ. To show that there is a corresponding self-loop in δ̇r,R(η), we show

that ∄q′. qi
βi
−→ q′ ∈ δ̈r,R(η). We proceed by proving the contrapositive. There

are the following three cases.

• the transition comes from qi
α(x)
−−−⊸ q′, and βi = α(r). Since r ∈ R(η) by

the hypotheses of (b), then rσ ∈ R(ησ), and so qi
βiσ
−−→ q′ ∈ δ̈rσ,R(ησ).

• the transition comes from qi
α(x̄)
−−−⊸ q′, and βi = α(r′) with r′ ∈ (R(η) ∪

{?}) \ {r}. If r′ ∈ Ress, then βi = βiσ which implies the thesis. If
r′ ∈ Resd, we have either r′σ = or r′σ = #. In the first case, since
rσ 6= by hypothesis, we have that r′σ ∈ (R(ησ) ∪ {?}) \ {rσ}, so we can
instantiate x̄ with r′σ. In the second case, we have rσ 6= #: otherwise,
the well-formedness of η would imply that both new(r) and new(r′) occur
in η, so there would be two new(#) in ησ, so contradicting the hypothesis
ησ ⊳ A#. Therefore, we have r′σ ∈ (R(ησ) ∪ {?}) \ {rσ}, which implies
the thesis.

• the transition comes from qi
α(r′)
−−−⊸ q′ and βi = α(r′) with r′σ = r′ ∈ Ress.

The thesis trivially holds.

If instead the transition has been introduced as an unknown-resource tran-
sition by δrσ,R(ησ), then βiσ = α(?)σ = α(?) has been derived from a transition

qi
α(r′)
−−−→ qi+1 in δ̇rσ,R(ησ), for some r′ ∈ R(ησ). By the above, there exists a cor-

responding transition qi
α(r′′)
−−−→ qi+1 in δ̇r,R(η), for some r′′ such that r′σ = r′′.

Therefore, we have a transition qi
α(?)
−−−→ qi+1 in δr,R(η).

For (B.2c), again we prove the contrapositive. Assume that ησ 6⊳ Aϕ(r,R(η)σ).
Then, there exists an offending run of Aϕ(r,R(η)σ) on ησ:

q0
β0σ
−−→ q1

β1σ
−−→ · · ·

βk−1σ
−−−−→ qk ∈ F

We now show how to construct an offending run of Aϕ(r,R(η)) on η. Consider a

transition qi
βiσ
−−→ qi+1, for i ≥ 0. Similarly to the above items, we deal with the

following cases.

If qi
βiσ
−−→ qi+1 has been introduced by δ̈r,R(η)σ, there are three subcases.

26

• the transition comes from qi
α(x)
−−−⊸ q′, and βiσ = α(r). This contradicts

the assumption r 6∈ R(ησ).

• the transition comes from qi
α(x̄)
−−−⊸ q′, and βiσ = α(r′) for some r′ such

that r′ ∈ (R(ησ) ∪ {?}) \ {r}. Then, βi = α(r′′), for some r′′ ∈ R(η) such
that r′′σ = r′. Since r 6∈ R(η) by the hypotheses of (c), then r′′ 6= r.
Therefore r′′ ∈ (R(η) ∪ {?}) \ {r}.

• the transition comes from qi
α(r′)
−−−⊸ q′ for some r′ ∈ Ress and βiσ = α(r′).

Since βiσ = βi, the thesis trivially holds.

If the transition is a self-loop, then ∄q′. qi
βiσ
−−→ q′ ∈ δ̈r,R(η)σ. To show that

there is a corresponding self-loop qi
βi
−→ qi+1 in δ̇r,R(η), we show by contrapositive

that ∄q′. qi
βi
−→ q′ ∈ δ̈r,R(η). We have three cases.

• the transition comes from qi
α(x)
−−−⊸ q′, with βi = α(r). This contradicts

the assumption r 6∈ R(η).

• the transition comes from qi
α(x̄)
−−−⊸ q′, and βi = α(r′) for some r′ ∈

(R(η) ∪ {?}) \ {r}. This implies that r′σ ∈ R(ησ) ∪ {?}. Since r 6∈ R(ησ)
by the hypotheses of (c), then r′σ 6= r. Thus, r′σ ∈ (R(ησ) ∪ {?}) \ {r}.

• the transition comes from qi
α(r′)
−−−⊸ q′ with βi = α(r′) and r′σ = r′ ∈ Ress.

The thesis trivially holds.

Definition 17. Let R be a binary relation over BPAs. We say that R is a
simulation if and only if, whenever P RQ:

• if Q
a
−→ Q′, then there exists P ′ such that P

a
−→ P ′ and P ′ RQ′

• if Q 6−→, then P 6−→

Let R be a binary relation over BPAs. We say that R is a bisimulation if and
only if, whenever P RQ:

• if P
a
−→ P ′, then there exists Q′ such that Q

a
−→ Q′ and P ′ RQ′, and

• if Q
a
−→ Q′, then there exists P ′ such that P

a
−→ P ′ and P ′ RQ′.

We say that P simulates Q (P ≻ Q in symbols) when there exists a simulation
R such that P RQ. We say that P is bisimilar to Q (P ∼ Q in symbols) when
there exists a bisimulation R such that P RQ.

27

Lemma B.3. The similarity relation ≻ between BPAs is a simulation, and
a preorder. The bisimilarity relation ∼ is a bisimulation, and an equivalence
relation. Moreover, for all BPAs P,Q,R and substitution σ:

P ∼ Q =⇒ Pσ ∼ Qσ(3a)

P ∼ Q =⇒ P · R ∼ Q · R(3b)

P ≻ Q =⇒ P · R ≻ Q · R ∧R · P ≻ R ·Q(3c)

P ∼ Q ⇐⇒ P ≻ Q ∧Q ≻ P(3d)

Proof. These are well-known properties. Item (B.3a) is trivially true. To
prove (B.3b), it suffices noting that if P ∼ 0, then P = 0.

Definition 18. Let ζ be a substitution from BPA variables to BPA variables,
and let P = 〈p,∆〉 be a BPA. We say that ζ is a coherent renaming of P when
∆ζ is coherent.

Lemma B.4. Let ζ be a coherent renaming of P . Then, P ∼ Pζ.

Proof. It is straightforward to check that the relation { 〈P, Pζ〉 | P is a BPA }
is a bisimulation.

Note. In what follows, we compare the traces of U to the traces of B(U).
While the similarity preorder ≻ is used in the auxiliary results, the main lem-
mata (7d and B.8b) only care about traces, as well as Theorem 13. Because
of this, without loss of generality we can use here a slightly different defini-
tion of B(U), which does not affect the generated traces. More in detail, the
equation B#(νn.U)Θ = B#(U{ /n})Θ of Def. 10 is changed to B#(νn.U)Θ =
0 · B#(U{ /n})Θ. This minor modification shall allow us to state Lemma B.6.

Lemma B.5. For all d, U, U ′, h′ and Θ, there exists a coherent renaming ζ of
Bd(U{U ′/h′})Θ such that ζ is the identity on the BPA variables in Θ, and:

Bd(U{U ′/h′})Θ ζ = Bd(U)Θ{B(U ′)Θ/h′}

where Bd(U)Θ{〈p,∆〉/h} is a shorthand for 〈p′,∆+∆′〉 if Bd(U)Θ{p/h} = 〈p′,∆′〉.

Proof. By induction on the structure of U . The base cases U = ε, α(r), h and
the inductive cases U = U0 · U1, U = U0 + U1, U = νn. U ′′ and U = ϕ[U ′′] are
straightforward. Consider U = µh. U ′′. If h = h′, trivial. Otherwise:

Bd(U{U ′/h′})Θ = 〈X, {X , p} + ∆〉 where 〈p,∆〉 = Bd(U
′′{U ′/h′})Θ{X/h}

Bd(U)Θ{Bd(U ′)Θ/h′} = 〈X, {X , p′} + ∆′〉 where 〈p′,∆′〉 = Bd(U
′′)Θ{X/h,Bd(U ′)Θ/h′}

(note that we can choose the fresh variable X in both the equations). By the in-
duction hypothesis, there exists a renaming ζ coherent with Bd(U

′′{U ′/h′})Θ{X/h},
such that ζ leaves the variables in Θ{X/h} untouched (thus Xζ = X), and:

Bd(U
′′{U ′/h′})Θ{X/h} ζ = Bd(U

′′)Θ{X/h,Bd(U ′)Θ/h′}

28

i.e. pζ = p′ and ∆ζ = ∆′. Therefore, it follows that:

Bd(U{U ′/h′})Θ ζ = 〈X, {X , p} + ∆〉 ζ

= 〈Xζ, {Xζ , pζ} + ∆ζ〉

= 〈X, {X , p′} + ∆′〉

= Bd(U)Θ{Bd(U ′)Θ/h′}

which concludes the proof.

Lemma B.6. For all closed usages U , B (U) ≻ B#(U).

Proof. By induction on the size of U . Most cases follow directly by the induc-
tion hypothesis, since B (U) and B#(U) are defined through similar inductive
equations. The only significant case is U = νn.U ′, for which we have:

B (νn. U ′) = B#(U ′{#/n}) + B (U ′{ /n}) ≻ ε · B (U ′{ /n}) = B#(νn. U ′)

Lemma B.7. Let U be a closed usage, let R be a finite set of resources, and let
σ be a uniquely-collapsing substitution, with witness r 6= # satisfying σ(r) = #.

Then, for all a, U ′,R′ such that U,R
a
−→ U ′,R′:

R′ \ R = {r} =⇒ ∀P ∼ B (U)σ. ∃P ′ ≻ B#(U ′)σ : P
aσ
−−→ P ′(7a)

r 6∈ R′ =⇒ ∀P ∼ B (U)σ. ∃P ′ ∼ B (U ′)σ : P
aσ
−−→ P ′(7b)

r ∈ R =⇒ ∀P ∼ B#(U)σ. ∃P ′ ∼ B#(U ′)σ : P
aσ
−−→ P ′(7c)

Moreover, if U is initial, then, for all η and U ′:

U, ∅
η
−→ U ′,R′ =⇒ ∃P ′ : B (U)

ησ
−−→ P ′(7d)

Proof. For (B.7a-c), we proceed by induction on the structure of U .

• U = ε. Trivial case, since ε is a final configuration.

• U = α(r′), with r′ ∈ Res ∪ {?}. Then a = α(r′), U ′ = ε, and R′ = R.

For (7a), the fact R′ = R contradicts the hypothesis.

For (7b) and (7c), by hypothesis we have P ∼ Bd(U)σ = α(r)σ, for all d.

By Def. 17, P
α(r)σ
−−−→ P ′, with P ′ ∼ 0. Then, P ′ ∼ Bd(U

′)σ = 0.

• U = νn.U ′′. Then a = ε, and U ′ = U ′′{r′/n}, R′ = R ∪ {r′} with
r′ ∈ Resd \ R. We have three cases.

– For (7a), we have r′ = r. By hypothesis, P ∼ B (U)σ = B (U ′′{ /n})σ+

B#(U ′′{#/n})σ
ε
−→ B#(U ′′{#/n})σ. By Def. 17, we have P

ε
−→ P ′ ∼

B#(U ′′{#/n})σ = B#(U ′′{r/n})σ = B(U ′)σ.

29

– For (7b), we have r′ 6= r. Since σ is uniquely-collapsing, σ(r′) = .

By hypothesis, P ∼ B (U)σ = B (U ′′{ /n})σ+B#(U ′′{#/n})σ
ε
−→

B (U ′′{ /n})σ. By Def. 17, we have P
ε
−→ P ′ ∼ B (U ′′{ /n})σ =

B (U ′′{r′/n})σ = B (U ′)σ.

– For (7c), we have r′ 6= r. Since σ is uniquely-collapsing, σ(r′) = .

By hypothesis, P ∼ B#(U)σ = ε·B#(U ′′{ /n})σ
ε
−→ B#(U ′′{#/n})σ.

By Def. 17, we have P
ε
−→ P ′ ∼ B#(U ′′{ /n})σ = B#(U ′′{r′/n})σ =

B#(U ′)σ.

• U = U0 · U1. There are two subcases, i.e. U0 = ε or U0 6= ε.

If U0 = ε, then a = ε, U ′ = U1, and R′ = R.

For (7a), this contradicts the hypothesis R′ 6= R.

For (7b) and (7c), let P ∼ Bd(U)σ, for any d. By bisimilarity, since

Bd(U)σ = 0 · Bd(U
′)σ

ε
−→ Bd(U

′)σ then there exists P ′ ∼ Bd(U
′)σ such

that P
ε
−→ P ′.

If U0 6= ε, assume that U0,R
a′
−→ U ′

0,R
′. Then, a = a′, and U ′ = U ′

0 · U1.
We have two further subcases:

– For (7a) let P ∼ B (U)σ = B (U0)σ · B (U1)σ. Let P0 = B (U0)σ.
By the induction hypothesis, there exists P ′

0 ≻ B#(U ′
0)σ such that

P0
aσ
−−→ P ′

0. Let P ′ = P ′
0 · B (U1)σ. Then, P ∼ P0 · B (U1)σ

aσ
−−→

P ′
0 · B (U1)σ = P ′. By Lemma B.3c and Lemma B.6, it follows that
P ′ = P ′

0 · B (U1)σ ≻ B#(U ′
0)σ · B (U1)σ ≻ B#(U ′

0)σ · B#(U1)σ =
B#(U ′)σ.

– For (7b) and (7c), for any d, let P ∼ Bd(U)σ = Bd(U0)σ · Bd(U1)σ.
Let P0 = Bd(U0)σ. By the induction hypothesis, there exists P ′

0 ∼

Bd(U
′
0)σ such that P0

aσ
−−→ P ′

0. Let P ′ = P ′
0 · Bd(U1)σ. Then, P ∼

P0 ·Bd(U1)σ
aσ
−−→ P ′

0 ·Bd(U1)σ = P ′. By Lemma B.3b, it follows that
P ′

0 · Bd(U1)σ ∼ Bd(U
′
0)σ · Bd(U1)σ = Bd(U

′)σ.

• U = U0+U1. Then, a = ε and R′ = R. For (7a), this contradicts R′ 6= R.

For (7b) and (7c), there are two further subcases for U ′, i.e. either U ′ = U0

or U ′ = U1. By hypothesis, for any d, P ∼ Bd(U)σ = Bd(U0)σ+Bd(U1)σ.

If U ′ = U0, then P
ε
−→ P ′ ∼ Bd(U0)σ = Bd(U

′)σ. The second case is
similar.

• U = µh. U ′′. We have a = ε, U ′ = U ′′{U/h}, and R′ = R.

For (7a), this contradicts R′ 6= R.

For (7b) and (7c), for any d, we proceed as follows.

Let P ∼ Bd(µh. U
′′)σ = 〈X, {X , p}+∆〉σ, where 〈p,∆〉 = Bd(U

′′){X/h}.

By Definition 17, since 〈X, {X , p} + ∆〉σ
ε
−→ 〈p, {X , p} + ∆〉σ, then,

for some BPA P ′, P
ε
−→ P ′ ∼ 〈p, {X , p} + ∆〉σ. Note that:

〈p, {X , p} + ∆〉σ = Bd(U
′′){X/h}σ ∪ {X , p}σ = Bd(U

′′){Bd(U)/h}σ

30

By Lemma B.5, it follows that:

Bd(U
′′{U/h})ζ = Bd(U

′′){Bd(U)/h}

for some renaming ζ coherent with Bd(U
′′{U/h}). Then, by Lemma B.4:

Bd(U
′′{U/h})ζ ∼ Bd(U

′′{U/h}) = Bd(U
′)

Summing up, Lemmata B.3a and B.3d allow us to conclude that:

P ′ ∼ 〈p, {X , p} + ∆〉σ ∼ Bd(U
′)σ

For (7d) it suffices to use the previous statements in an inductive argument
over the number of transitions. For the first step we pick P = B (U): indeed,
B (U)σ = B (U) because U is initial. We start with R = ∅, to be later
pupulated with freshly created resources. We can split the transition steps in
two phases. In the first phase, the witness r has not yet been generated, so
we keep applying (7b). Let η′ the trace produced in this phase. If r is never
generated in η, then we are done, because η = η′ and (7b) gives us a P0 such that

B (U)
ησ
−−→ P0. Otherwise, r is eventually generated, say upon the transition

U0,R0
ε
−→ U1,R1. We then apply (7a) once, obtaining for some P1 ≻ B#(U1):

B (U)
η′σ
−−→ P0

ε
−→ P1

After that, we consider B#(U1), and apply (7c) to it, following every move of
U1 in this second phase: let η′′ the trace generated in this way. Clearly, we have

η = η′η′′. We get B#(U1)
η′′σ
−−→ P2 for some P2. Since P1 ≻ B#(U1), then for

some P ′
2 we have P1

η′′σ
−−→ P ′

2. Summing everything up:

B (U)
η′σ
−−→ P0

ε
−→ P1

η′′σ
−−→ P ′

2

Lemma B.8. Let U be a closed usage, and let σ be a name-collapsing substitu-
tion, mapping infinitely many resources to # and infinitely many to . Then,
for each d, a,R, each P and P ′:

(B.8a)
P ∼ B (U)σ ∧ P

a
−→ P ′

=⇒ ∃U ′,R′, b. (U,R
b
−→ U ′,R′ ∧ P ′ ≺ B (U ′)σ ∧ bσ = a)

Moreover, if U is initial, then for each η̄, P and R:

(B.8b) B (U)
η̄
−→ P =⇒ ∃U ′, η,R′. (U,R

η
−→ U ′,R′ ∧ ησ = η̄)

Proof. For (B.8a), we proceed by induction on the structure of U .

• If U = ε, then B (U)σ = 0 has no transitions.

31

• If U = α(r), then a = α(r)σ and B (U)σ
α(r)σ
−−−→ 0 ∼ P ′. The thesis holds

for U ′ = ε.

• If U = νn.U ′′, then P ∼ B (U)σ = B#(U{#/n})σ + B (U{ /n})σ. In

both cases, we have a = ε. So, either B (U)σ
a
−→ B#(U ′′{#/n})σ or

B (U)σ
a
−→ B (U ′′{ /n})σ.

If B (U)σ
ε
−→ B#(U ′′{#/n})σ, we have P ′ ∼ B#(U ′′{#/n})σ. By Lemma B.6,

this implies P ′ ≺ B (U ′′{#/n})σ. Choose a fresh r ∈ Resd \ R such that
rσ = #: this is possible because there is an infinite number of such re-
sources. Then, we let U ′ = U ′′{r/n}. Finally, we have U,R

ε
−→ U ′,R∪{r}

and P ′ ≺ B (U ′′{#/n})σ = B (U ′)σ.

Otherwise, if B (U)σ
ε
−→ B (U ′′{ /n})σ, we proceed in a similar way,

with P ′ ∼ B (U ′′{ /n})σ, and choosing a fresh r such that rσ = .

• If U = U0 · U1, we have two further subcases:

– If U0 = ε, then P ∼ B (U0)σ · B (U1)σ = 0 · B (U1)σ. So, a = ε
and P ′ ∼ B (U1)σ. The thesis follows choosing U ′ = U1.

– If U0 6= ε, then P ∼ B (U0)σ · B (U1)σ, with B (U0)σ 6= 0. So, we

must have that B (U0)σ ·B (U1)σ
a
−→ P ′′ ·B (U1)σ with B (U0)σ

a
−→

P ′′ and P ′ ∼ P ′′ · B (U1)σ. The induction hypothesis (with U =
U0, and P = B (U0)σ) implies that there exists some U ′

0 and R′
0

such that U0,R
b
−→ U ′

0,R
′
0 and P ′′ ≺ B (U ′

0)σ with bσ = a. By
Lemma B.3c, P ′′ · B (U1)σ ≺ B (U ′

0)σ · B (U1)σ. Let U ′ = U ′
0 ·U1:

then U = U0 · U1,R
b
−→ U ′,R′

0. Moreover P ′ ∼ P ′′ · B (U1)σ ≺
B (U ′

0)σ · B (U1)σ = B (U ′)σ.

• If U = U0 + U1, then P ∼ B (U0)σ + B (U1)σ. So we have a = ε,
and either P ′ ∼ B (U0)σ or P ′ ∼ B (U1)σ. In the first case, we choose
U ′ = U0, while in the second U ′ = U1. Then the thesis trivially holds.

• If U = µh. U ′′, then P ∼ B (U)σ = 〈X, {X , p} + ∆〉σ, where 〈p,∆〉 =
B (U ′′){X/h}. From 〈X, {X , p} + ∆〉σ there is only one transition,

going to 〈p, {X , p}+∆〉σ. We must then have a = ε, and P ′ ∼ 〈p, {X ,

p} + ∆〉. Let U ′ = U ′′{U/h}. Clearly, U
ε
−→ U ′. By Lemma B.5 there is

some coherent renaming ζ such that B (U ′′{U/h})ζ = B (U ′′){B (U)/h}.
So, by Lemma B.4, B (U ′′{U/h}) ∼ B (U ′′{U/h})ζ. Then:

B (U ′)σ = B (U ′′{U/h})σ

∼ B (U ′′){B (U)/h}σ

= B (U ′′){〈X,{X,p}+∆〉/h}σ

= 〈p, {X , p} + ∆ + {X , p} + ∆〉σ

= 〈p, {X , p} + ∆〉σ ∼ P ′

32

For B.8(b), we proceed by induction on the number of transitions. At the
first step B (U)σ = B (U), since U is initial. By applying B.8(a), we obtain

U,R
b
−→ U ′,R′ with a = bσ and P ′ ≺ B (U ′). Further moves of P ′ are simulated

by B (U ′), so we can apply B.8(a) again. That is, if P ′ a′
−→ P ′′, we also have

B (U ′)
a′

−→ P̄ ′′ with P ′′ ≺ P̄ ′′, so we have that U ′,R′ b′

−→ U ′′,R′′ for some U ′′

such that P ′′ ≺ P̄ ′′ ≺ B (U ′′) and some b′ such that b′σ = a′. By further
repeating these steps, we can construct a trace η for U such that ησ = η̄.

Theorem 13. Let U be an initial usage without redundant framings. Then, U
is valid if and only if:

∀Aϕ[](r,R) ∈ Φ(U) : JB(U)K ⊳Aϕ[](r,R) W A#

Proof. For the “if” case (soundness), we prove the contrapositive. Assume
U is not valid. By Lemma 9, let η ∈ JUK be such that η 6⊳ Aϕ[](r,R) for some
Aϕ[](r,R) in Φ(U). Let σ be a name-collapsing substitution such that σ(#) = #,
σ(r) = # and σ(r′) = for all the other dynamic resources r′. Note that this
σ satisfies the hypothesis of Lemma B.2(a). Since U is initial, then # does

not occur in U , so # 6∈ R(η). By Lemma B.7(b), B(U)
ησ
−−→ P ′, for some

P ′. By Lemma B.2(a), η 6⊳ Aϕ[](r,R(η)) implies that ησ 6⊳ Aϕ[](#,R(ησ)). Since
R(ησ) ⊆ R(U), by Lemma B.1 it follows that ησ 6⊳ Aϕ[](#,R(U)). By Defini-
tion 10, Aϕ[](#,R(U)) ∈ Φ(U). The “unique witness” policy A# is satisfied by η,
because U can generate only well-formed traces. Therefore, ησ 6⊳ Aϕ[](#,R(U)) WA#.

For the “only if” part (completeness) we prove the contrapositive. Assume
some η̄ ∈ JB(U)K such that η̄⊳A# and η̄ 6⊳ Aϕ[](r,R(U)) for some r ∈ U or r = #.
Let σ be a name-collapsing substitution such that σ(r) 6= and such that there
are infinitely many resources mapped to # and infinitely many mapped to .

By Lemma B.8(b), U
η
−→ U ′, for some U ′ and η such that ησ = η̄. Since U is

initial, then rσ = r and R(U)σ = R(U). We can then rephrase η̄ 6⊳ Aϕ[](r,R(U)) as
ησ 6⊳ Aϕ[](rσ,R(U)σ). Since R(ησ) ⊆ {r ∈ R(η)∩Ress}∪{#, } ⊆ R(U) = R(U)σ,
by Lemma B.1 it follows that ησ 6⊳ Aϕ[](rσ,R(ησ)). We have the following three
cases:

• If r = # 6∈ ησ, by Lemma B.2(c) then η 6⊳ Aϕ[](#,R(η)).

• If r = # ∈ ησ, then α(#) occurs in ησ, for some action α. This im-
plies that, for some dynamic r′, α(r′) occurs in η and r′σ = #. By
Lemma B.2(b), η 6⊳ Aϕ[](r′,R(η)).

• Otherwise, # 6= r, then r ∈ Ress and we have two further subcases.

If r ∈ R(η), by Lemma B.2(b) η 6⊳ Aϕ[](r,R(η)).

Otherwise r 6∈ R(η), which implies r 6∈ R(ησ) and then by Lemma B.2(c),
η 6⊳ Aϕ[](r,R(η)).

In all the cases above, we have found an r′ such that η 6⊳ Aϕ[](r′,R(η)). Therefore,
from Lemma 9 it follows that U is not valid.

33

