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Approach
Define a protocol (using a process calculus)

Define a Dolev-Yao style attacker

Track message flow for protocol and attacker
using control flow analysis

If messages end up in a wrong place then there
may be a problem

Attacker can alter message flow arbitrarily
Focus on encryption and decryption
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Making Narrations Precise
Typically, protocols are described by narrations
and a textual description but details may be
imprecise

We make systematic translations of the protocol
narrations into a process calculus called LYSA

LYSA is inspired by the Spi-calculus but
processes:

communicate through a global network
match values on input and decryption
use symmetric key cryptography
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LySa Syntax
E ::= n name (n ∈ N )

x variable (x ∈ X )

{E1, · · · , Ek}E0
encryption

P ::= 〈E1, · · · , Ek〉. P output

(E1, · · · , Ej; xj+1, · · · , xk). P input (with matching)

decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0
in P

decryption (with matching)

P1 | P2 parallel composition

(ν n)P introduce new name n

!P replication

0 terminated process
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Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A

B

S Network

A,B, {K}KA
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Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈 A,B, {K}KA
〉.
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Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.
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Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

|

(A,S,A; xB, x).
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Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

|

(A,S,A; xB, x). decrypt x as {;xK}KA
in . . .
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Multiple Instances

A1 | B1

A2 | B2

. . .

An | Bn

. . .Network
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Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

|

(A,S,A; xB, x). decrypt x as {;xK}KA
in . . .
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Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}A
KA

[dest S]〉.

|

(A,S,A; xB, x). decrypt x as {;xK}S
KA

in . . .
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Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}A
KA

[dest S]〉.

|

(A,S,A; xB, x). decrypt x as {;xK}S
KA

[orig A] in . . .
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Semantics
Standard reduction semantics P → P ′

The standard semantics ignores annotations

We can also make a reference monitor
semantics P →RM P ′

The reference monitor gets stuck when
annotations are violated

The reference monitor aborts the execution of P

whenever P →∗ Q→ Q′

but P →∗
RM

Q 6→RM Q′
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The Analysis
We make a control flow analysis that calculates
(an over-approximation) to

the messages on the network κ ∈ P(V∗)

the values of the variables ρ : X → P(V)

where V is the set of values (variable-free terms).

For example:

〈A,S,A,B, {K}A
KA

[dest S]〉 ∈ κ

{K}A
KA

[dest S] ∈ ρ(x)

K ∈ ρ(xK)
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The Error Component
The error component ψ collects pairs of
crypto-points where the assertions in annotations
may be violated. For example,

(A,B) ∈ ψ

reads

“Something encrypted at A may unexpectedly

be decrypted at B.”
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The Analysis
The analysis is specified as a Flow Logic with
judgements

(ρ, κ) |= P : ψ

and auxiliary judgements for terms:

ρ |= E : ϑ

where ϑ ∈ P(V) approximates the set of values that
E may evaluate to

Calculi and Models for Security, Pisa, September 2007 – p.11/26



Judgement for Decryption
(of binary terms)

ρ |= E : ϑ ∧ evaluate terms

ρ |= E0 : ϑ0 ∧ ρ |= E1 : ϑ1 ∧ and subterms

∀ {V1, V2}
ℓ

V0
[dest L] ∈ ϑ : for all encrypted term

V0 E ϑ0 ∧ V1 E ϑ1 ⇒ if values match

V2 ∈ ρ(x) ∧ x has the value V2

ℓ′ 6∈ L ∨ ℓ 6∈ L′ ⇒ (ℓ, ℓ′) ∈ ψ ∧ check annotations

(ρ, κ) |= P : ψ analyse the rest

(ρ, κ) |= decrypt E as {E1; x}
ℓ′

E0
[orig L′] in P : ψ
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Correctness of the Analysis
Theorem (subject reduction)

If (ρ, κ) |= P : ψ and P → Q then also (ρ, κ) |= Q : ψ

In fact, this holds for the standard semantics as well
as the reference monitor semantics.

Theorem (ψ = ∅ means we’re happy)

If (ρ, κ) |= P : ∅ then the reference monitor cannot
abort the execution of P .
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The Attacker
Dolev-Yao style attacker that can receive, send,
encrypt, decrypt, etc.

Specified at analysis level (using ρ and κ)

The knowledge is kept in a special variable z•
For example, receive is written as

∀〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1

Vi ∈ ρ(z•)

There exists a process – a “hardest attacker” –
which has the capabilities of this formula

The formula also checks annotations

The attacker has a special crypto-point called ℓ•
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Validating Authentication
Definition
P guarantees dynamic authentication if P | Q cannot
abort regardless of the choice of the attacker Q.

Definition
P guarantees static authentication if (ρ, κ) |= P : ∅
and (ρ, κ, ∅) satisfies the formula describing the
attacker.

Theorem
If P guarantees static authentication then
P guarantees dynamic authentication.
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Implementation
Transform the analysis into (an extension of)
Horn clauses.

Calculate the solution using the Succinct Solver.

Main challenge:
The analysis is specified using the infinite
universe of terms.
Use an encoding of terms in tree grammars
where terms are represented as a finite
number of production rules.

Runs in polynomial time in the size of the
process P .
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Example Revisited
A→ S : A,B, {K}KA

S → B : A, {K}KB

A→ B : {m1, · · · ,mk}K

The analysis of n instances of the protocol gives

ψ = { (Ai, Bj), (Ai, ℓ•), (ℓ•, Bj) | 1 ≤ i, j ≤ n}
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An Attack

A

B

S MNetwork

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K
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1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA
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An Attack

A

B

S MNetwork

C, {K}KB

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

M(S) → B : C, {K}KB
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An Attack

A

B

S MNetwork{m1, · · · ,mk}K

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

M(S) → B : C, {K}KB

A→ B : {m1, · · · ,mk}K
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Example Revisited
A→ S : A,B, {K}KA

S → B : A, {K}KB

A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

M(S) → B : C, {K}KB

A→ B : {m1, · · · ,mk}K

The analysis of n instances of the protocol gives

ψ = { (Ai, Bj), (Ai, ℓ•), (ℓ•, Bj) | 1 ≤ i, j ≤ n}
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Analysis of Standard Protocols
Our analysis identifis a number of authentication
flaws in symmetric key protocols such as
Needham-Schroeder, Otway-Rees, Yahalom and
Andrew Secure RPC. It shows that

many classical problems occur precisely
because some crucial distinctions (between
identities and roles) are not sufficiently clear.

Many protocols become insecure when old
session keys are compromised.

Calculi and Models for Security, Pisa, September 2007 – p.20/26



General Considerations (1)
The analysis identifies the well-known attacks on
the protocols we have considered

When well-known amendments are performed
the analysis reports that there are no attacks

Very few false positives

Polynomial time validation procedure

Improve the precision of the analysis
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General Considerations (2)
The same approach is valid also for

Other cryptographic features, such as
asymmetric cryptography

Other security properties (by checking other
annotations): e.g. on freshness and type flaws,
...

Other calculi: variations of LySa, Beta Binders, ...
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Asymmetric Cryptography
E ::= n/(m+,m−) key/key pair

{E1, · · · , Ek}E0
symm. encryption

{|E1, · · · , Ek|}E0
asymm. encryption

P ::= ...

〈E1, · · · , Ek〉. P output

(E1, · · · , Ej; xj+1, · · · , xk). P input (with matching)

decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0
in P

symm. decryption (with matching)

decrypt E as {|E1, · · · , Ej; xj+1, · · · , xk|}E0
in P

asymm. decryption (with matching)

(νn)/(νm+,m−)P key/key pair creation
Calculi and Models for Security, Pisa, September 2007 – p.23/26



Considerations
Our CFA (and the related tool) is able to deal
with asymmetric cryptography

The analysis identifies the well-known attacks on
the protocols considered (e.g. Lowe’s one on
Needham Schroeder PK)

The analysis discover an undocumented flow in
the Beller-Chang-Jacobi MSR protocol
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