
Control Flow Analysis
for Security Protocols

Chiara Bodei and Pierpaolo Degano
Dipartimento di Informatica, Università di Pisa, Italy

Mikael Buchholtz, Han Gao, Hanne Riis Nielson,
and
Flemming Nielson
Informatics and Mathematical Modelling,
Technical University of Denmark

Calculi and Models for Security, Pisa, September 2007 – p.1/26

Approach
Define a protocol (using a process calculus)

Define a Dolev-Yao style attacker

Track message flow for protocol and attacker
using control flow analysis

If messages end up in a wrong place then there
may be a problem

Attacker can alter message flow arbitrarily
Focus on encryption and decryption

Calculi and Models for Security, Pisa, September 2007 – p.2/26

Making Narrations Precise
Typically, protocols are described by narrations
and a textual description but details may be
imprecise

We make systematic translations of the protocol
narrations into a process calculus called LYSA

LYSA is inspired by the Spi-calculus but
processes:

communicate through a global network
match values on input and decryption
use symmetric key cryptography

Calculi and Models for Security, Pisa, September 2007 – p.3/26

LySa Syntax
E ::= n name (n ∈ N)

x variable (x ∈ X)

{E1, · · · , Ek}E0
encryption

P ::= 〈E1, · · · , Ek〉. P output

(E1, · · · , Ej; xj+1, · · · , xk). P input (with matching)

decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0
in P

decryption (with matching)

P1 | P2 parallel composition

(ν n)P introduce new name n

!P replication

0 terminated process

Calculi and Models for Security, Pisa, September 2007 – p.4/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A

B

S Network

A,B, {K}KA

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A

B

S Network

A, {K}KB

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A

B

S Network{m1, · · · ,mk} K

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈 A,B, {K}KA
〉.

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

|

(A,S,A; xB, x).

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Encoding a Protocol in LySa
A key exchange inspired protocol by the Wide Mouthed Frog:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

|

(A,S,A; xB, x). decrypt x as {;xK}KA
in . . .

Calculi and Models for Security, Pisa, September 2007 – p.5/26

Multiple Instances

A1 | B1

A2 | B2

. . .

An | Bn

. . .Network

Calculi and Models for Security, Pisa, September 2007 – p.6/26

Multiple Instances

A1 | B1

A2 | B2

. . .

An | Bn

. . .Network

Calculi and Models for Security, Pisa, September 2007 – p.6/26

Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}KA
〉.

|

(A,S,A; xB, x). decrypt x as {;xK}KA
in . . .

Calculi and Models for Security, Pisa, September 2007 – p.7/26

Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}A
KA

〉.

|

(A,S,A; xB, x). decrypt x as {;xK}S
KA

in . . .

Calculi and Models for Security, Pisa, September 2007 – p.7/26

Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}A
KA

[dest S]〉.

|

(A,S,A; xB, x). decrypt x as {;xK}S
KA

in . . .

Calculi and Models for Security, Pisa, September 2007 – p.7/26

Adding Annotation
1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

(ν K)〈A,S,A,B, {K}A
KA

[dest S]〉.

|

(A,S,A; xB, x). decrypt x as {;xK}S
KA

[orig A] in . . .

Calculi and Models for Security, Pisa, September 2007 – p.7/26

Semantics
Standard reduction semantics P → P ′

The standard semantics ignores annotations

We can also make a reference monitor
semantics P →RM P ′

The reference monitor gets stuck when
annotations are violated

The reference monitor aborts the execution of P

whenever P →∗ Q→ Q′

but P →∗
RM

Q 6→RM Q′

Calculi and Models for Security, Pisa, September 2007 – p.8/26

The Analysis
We make a control flow analysis that calculates
(an over-approximation) to

the messages on the network κ ∈ P(V∗)

the values of the variables ρ : X → P(V)

where V is the set of values (variable-free terms).

For example:

〈A,S,A,B, {K}A
KA

[dest S]〉 ∈ κ

{K}A
KA

[dest S] ∈ ρ(x)

K ∈ ρ(xK)

Calculi and Models for Security, Pisa, September 2007 – p.9/26

The Error Component
The error component ψ collects pairs of
crypto-points where the assertions in annotations
may be violated. For example,

(A,B) ∈ ψ

reads

“Something encrypted at A may unexpectedly

be decrypted at B.”

Calculi and Models for Security, Pisa, September 2007 – p.10/26

The Analysis
The analysis is specified as a Flow Logic with
judgements

(ρ, κ) |= P : ψ

and auxiliary judgements for terms:

ρ |= E : ϑ

where ϑ ∈ P(V) approximates the set of values that
E may evaluate to

Calculi and Models for Security, Pisa, September 2007 – p.11/26

Judgement for Decryption
(of binary terms)

ρ |= E : ϑ ∧ evaluate terms

ρ |= E0 : ϑ0 ∧ ρ |= E1 : ϑ1 ∧ and subterms

∀ {V1, V2}
ℓ

V0
[dest L] ∈ ϑ : for all encrypted term

V0 E ϑ0 ∧ V1 E ϑ1 ⇒ if values match

V2 ∈ ρ(x) ∧ x has the value V2

ℓ′ 6∈ L ∨ ℓ 6∈ L′ ⇒ (ℓ, ℓ′) ∈ ψ ∧ check annotations

(ρ, κ) |= P : ψ analyse the rest

(ρ, κ) |= decrypt E as {E1; x}
ℓ′

E0
[orig L′] in P : ψ

Calculi and Models for Security, Pisa, September 2007 – p.12/26

Correctness of the Analysis
Theorem (subject reduction)

If (ρ, κ) |= P : ψ and P → Q then also (ρ, κ) |= Q : ψ

In fact, this holds for the standard semantics as well
as the reference monitor semantics.

Theorem (ψ = ∅ means we’re happy)

If (ρ, κ) |= P : ∅ then the reference monitor cannot
abort the execution of P .

Calculi and Models for Security, Pisa, September 2007 – p.13/26

The Attacker
Dolev-Yao style attacker that can receive, send,
encrypt, decrypt, etc.

Specified at analysis level (using ρ and κ)

The knowledge is kept in a special variable z•
For example, receive is written as

∀〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1

Vi ∈ ρ(z•)

There exists a process – a “hardest attacker” –
which has the capabilities of this formula

The formula also checks annotations

The attacker has a special crypto-point called ℓ•

Calculi and Models for Security, Pisa, September 2007 – p.14/26

Validating Authentication
Definition
P guarantees dynamic authentication if P | Q cannot
abort regardless of the choice of the attacker Q.

Definition
P guarantees static authentication if (ρ, κ) |= P : ∅
and (ρ, κ, ∅) satisfies the formula describing the
attacker.

Theorem
If P guarantees static authentication then
P guarantees dynamic authentication.

Calculi and Models for Security, Pisa, September 2007 – p.15/26

Implementation
Transform the analysis into (an extension of)
Horn clauses.

Calculate the solution using the Succinct Solver.

Main challenge:
The analysis is specified using the infinite
universe of terms.
Use an encoding of terms in tree grammars
where terms are represented as a finite
number of production rules.

Runs in polynomial time in the size of the
process P .

Calculi and Models for Security, Pisa, September 2007 – p.16/26

Example Revisited
A→ S : A,B, {K}KA

S → B : A, {K}KB

A→ B : {m1, · · · ,mk}K

The analysis of n instances of the protocol gives

ψ = { (Ai, Bj), (Ai, ℓ•), (ℓ•, Bj) | 1 ≤ i, j ≤ n}

Calculi and Models for Security, Pisa, September 2007 – p.17/26

An Attack

A

B

S MNetwork

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

Calculi and Models for Security, Pisa, September 2007 – p.18/26

An Attack

A

B

S MNetwork

A,B, {K}KA

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

Calculi and Models for Security, Pisa, September 2007 – p.18/26

An Attack

A

B

S MNetwork
A, {K}KB

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

Calculi and Models for Security, Pisa, September 2007 – p.18/26

An Attack

A

B

S MNetwork
A, {K}KB

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

Calculi and Models for Security, Pisa, September 2007 – p.18/26

An Attack

A

B

S MNetwork

C, {K}KB

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

M(S) → B : C, {K}KB

Calculi and Models for Security, Pisa, September 2007 – p.18/26

An Attack

A

B

S MNetwork{m1, · · · ,mk}K

Flawed protocol inspired by “Wide Mouthed Frog”

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

M(S) → B : C, {K}KB

A→ B : {m1, · · · ,mk}K

Calculi and Models for Security, Pisa, September 2007 – p.18/26

Example Revisited
A→ S : A,B, {K}KA

S → B : A, {K}KB

A→ B : {m1, · · · ,mk}K

A→ S : A,B, {K}KA

S →M(B) : A, {K}KB

M(S) → B : C, {K}KB

A→ B : {m1, · · · ,mk}K

The analysis of n instances of the protocol gives

ψ = { (Ai, Bj), (Ai, ℓ•), (ℓ•, Bj) | 1 ≤ i, j ≤ n}

Calculi and Models for Security, Pisa, September 2007 – p.19/26

Analysis of Standard Protocols
Our analysis identifis a number of authentication
flaws in symmetric key protocols such as
Needham-Schroeder, Otway-Rees, Yahalom and
Andrew Secure RPC. It shows that

many classical problems occur precisely
because some crucial distinctions (between
identities and roles) are not sufficiently clear.

Many protocols become insecure when old
session keys are compromised.

Calculi and Models for Security, Pisa, September 2007 – p.20/26

General Considerations (1)
The analysis identifies the well-known attacks on
the protocols we have considered

When well-known amendments are performed
the analysis reports that there are no attacks

Very few false positives

Polynomial time validation procedure

Improve the precision of the analysis

Calculi and Models for Security, Pisa, September 2007 – p.21/26

General Considerations (2)
The same approach is valid also for

Other cryptographic features, such as
asymmetric cryptography

Other security properties (by checking other
annotations): e.g. on freshness and type flaws,
...

Other calculi: variations of LySa, Beta Binders, ...

Calculi and Models for Security, Pisa, September 2007 – p.22/26

Asymmetric Cryptography
E ::= n/(m+,m−) key/key pair

{E1, · · · , Ek}E0
symm. encryption

{|E1, · · · , Ek|}E0
asymm. encryption

P ::= ...

〈E1, · · · , Ek〉. P output

(E1, · · · , Ej; xj+1, · · · , xk). P input (with matching)

decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0
in P

symm. decryption (with matching)

decrypt E as {|E1, · · · , Ej; xj+1, · · · , xk|}E0
in P

asymm. decryption (with matching)

(νn)/(νm+,m−)P key/key pair creation
Calculi and Models for Security, Pisa, September 2007 – p.23/26

Considerations
Our CFA (and the related tool) is able to deal
with asymmetric cryptography

The analysis identifies the well-known attacks on
the protocols considered (e.g. Lowe’s one on
Needham Schroeder PK)

The analysis discover an undocumented flow in
the Beller-Chang-Jacobi MSR protocol

Calculi and Models for Security, Pisa, September 2007 – p.24/26

Some References (1)
BDNN01 C.Bodei, P.Degano, F.Nielson and H. Riis Nielson. Static

Analysis for the Pi-Calculus with Applications to Security.

Information and Computation, 168: 68-92, 2001.

BDNN02 Bodei, Degano, Nielson, Riis Nielson. Flow Logic for

Dolev-Yao Secrecy in Cryptographic Processes, FGCS 18,

2002.

BBDNN03 Bodei C., Buchholtz M., Degano, P., Nielson, F. & Riis

Nielson, H. Automatic Validation of Protocol Narration, Proc.

CSFW’03.

BDP05 Bodei, C., Degano, P., Priami, C. Checking Security Policies

through an Enhanced Control Flow Analysis. Journal of

Computer Security, 13(1): 49-85, 2005.

Calculi and Models for Security, Pisa, September 2007 – p.25/26

Some References (2)
BBDNN05 Bodei C., Buchholtz M., Degano, P., Nielson, F. & Riis

Nielson, H. Static Validation of Security Protocols. Journal of

Computer Security, 13(3): 347-390, 2005.

GBDN07 Gao H., Bodei C., Degano, P. & Riis Nielson H. A Formal

Analysis for Capturing Replay Attacks in Cryptographic

Protocols. Proc. of ASIAN’07. To appear in LNCS, 2007.

BDGB07 Bodei C., Degano, P., Gao H. & Brodo L. Detecting and

Preventing Type Flaws: a Control Flow Analysis with tags. Proc.

of SecCO’07. To appear in ENTCS, 2007.

Calculi and Models for Security, Pisa, September 2007 – p.26/26

	Control Flow Analysis\ for Security Protocols
	Approach
	Making Narrations Precise
	LySa Syntax
	Encoding a Protocol in LySa
	Multiple Instances
	Adding Annotation
	Semantics
	The Analysis
	The Error Component
	The Analysis
	Judgement for Decryption
	Correctness of the Analysis
	The Attacker
	Validating Authentication
	Implementation
	Example Revisited
	An Attack
	Example Revisited
	Analysis of Standard Protocols
	General Considerations (1)
	General Considerations (2)
	Asymmetric Cryptography
	Considerations
	{
ed Some References (1)}
	{
ed Some References (2)}

