
Calculi and Models for Security

Chiara Bodei, Massimo Bartoletti,
Pierpaolo Degano, Gian-Luigi Ferrari,

and Roberto Zunino

Dipartimento di Informatica,
Università di Pisa, Italy

Pisa, 17-28 Settembre 2007

Calcoli e Modelli per Sicurezza – p.1/51

Models for Security
What is security?

What is security model?

Focus on

systems (protocols)

wanted properties

Today, we provide some background

models (in general)

models based on process algebras

Calcoli e Modelli per Sicurezza – p.2/51

Models for Security
Two distinct approaches

Calcoli e Modelli per Sicurezza – p.3/51

Models for Security
Two distinct approaches

Computational Complexity Theory

Formal Models

Calcoli e Modelli per Sicurezza – p.3/51

Models for Security
Two distinct approaches

Computational Complexity Theory
Algorithms and probability
In–depth, detailed view

Formal Models

Calcoli e Modelli per Sicurezza – p.3/51

Models for Security
Two distinct approaches

Computational Complexity Theory
Algorithms and probability
In–depth, detailed view

Formal Models
Process algebras
Simpler semantics (abstraction)
(Semi)–automatic correctness proofs
Stronger assumptions

Calcoli e Modelli per Sicurezza – p.3/51

Models for Security
Two distinct approaches

Computational Complexity Theory
Algorithms and probability
In–depth, detailed view

Formal Models
Process algebras
Simpler semantics (abstraction)
(Semi)–automatic correctness proofs
Stronger assumptions
e.g. perfect cryptography

Calcoli e Modelli per Sicurezza – p.3/51

Computational Model
Pros:

Calcoli e Modelli per Sicurezza – p.4/51

Computational Model
Pros:

• precise, in–depth view
probability, complexity

• many properties can be expressed
(“all”)

Calcoli e Modelli per Sicurezza – p.4/51

Computational Model
Pros:

• precise, in–depth view
probability, complexity

• many properties can be expressed
(“all”)

Cons:

• too low–level for some purposes

• proving correctness is hard

Calcoli e Modelli per Sicurezza – p.4/51

Formal Models
Pros:

Calcoli e Modelli per Sicurezza – p.5/51

Formal Models
Pros:

• abstraction
easy to understand/reason about

• (semi–)automatic proofs of correctness

Calcoli e Modelli per Sicurezza – p.5/51

Formal Models
Pros:

• abstraction
easy to understand/reason about

• (semi–)automatic proofs of correctness

Cons:

• abstraction(!)

• strong assumptions needed

Calcoli e Modelli per Sicurezza – p.5/51

Formal Models
Pros:

• abstraction
easy to understand/reason about

• (semi–)automatic proofs of correctness

Cons:

• abstraction(!)

• strong assumptions needed
e.g. perfect cryptography

fixed crypto algebra

Calcoli e Modelli per Sicurezza – p.5/51

The Dolev-Yao Adversary Model
An adversary can

eavesdrop messages

intercept messages

reroute messages

manipulate messages (“reasonably”)

impersonate participants

Effectively, the adversary is the network.

This can be seen in both models.

Calcoli e Modelli per Sicurezza – p.6/51

Messages

Calcoli e Modelli per Sicurezza – p.7/51

A Formal Model for Messages
Values are terms in an algebra (possibly free)

M,N ::= {M}k encryption
| (M,N) pair
| k key
| n nonce

The adversary can construct/destruct terms only via

some standard operations

Calcoli e Modelli per Sicurezza – p.8/51

Some Standard Operations
Really simple rules:

M,N 7→ (M,N)

(M,N) 7→ M

(M,N) 7→ N

M, k 7→ {M}k

{M}k, k 7→ M

Calcoli e Modelli per Sicurezza – p.9/51

Some Standard Operations
Really simple rules:

M,N 7→ (M,N)

(M,N) 7→ M

(M,N) 7→ N

M, k 7→ {M}k

{M}k, k 7→ M

The adversary must know the key to decrypt a term.

Otherwise, it is semantically infeasible. In other

words, the cryptosystem is perfect.

Calcoli e Modelli per Sicurezza – p.9/51

Computational Model
Messages = bit strings

Turing Machines for crypto algorithms

key generation

encryption, decryption, etc.

tractable complexity w.r.t. η (security parameter)

Recall complexity classes P,NP

Actually, probabilistic TM

Keys are ∼ ηc bits long

Calcoli e Modelli per Sicurezza – p.10/51

Protocols

Calcoli e Modelli per Sicurezza – p.11/51

Computational Model
Network of Turing Machines

protocol participants

hostile network (adversary)

Focus on
computational complexity vs. attack probability

Calcoli e Modelli per Sicurezza – p.12/51

Preliminary Definitions

A function f(η) is negligible iff it is asymptotically
smaller than any rational function.

∀c > 0.∃η0.∀η > η0.|f(η)| < η−c

Example: 2−η is negligible, η−2 is not

Calcoli e Modelli per Sicurezza – p.13/51

Significant Attacks
Intuitively:

If an adversary wins only with negligible probability,
it is not significant.

“luck always wins”

If an adversary is not in P, it is not significant.
“(extreme) power always wins”

(not completely true for some ZK protocols)

Calcoli e Modelli per Sicurezza – p.14/51

Attacks to Algorithms
Naïve attack

Given {m}k, deduce m.
Complexity/probability must be taken into account.

Calcoli e Modelli per Sicurezza – p.15/51

Attacks to Algorithms
Naïve attack

Given {m}k, deduce m.
Complexity/probability must be taken into account.

Still, not enough!

Discovering the first half of m is still dangerous.

Calcoli e Modelli per Sicurezza – p.15/51

Other Well-known Attack Types
How to distinguish {m0}k from {m1}k?

Chosen Plaintext Attack
The adversary can use the encryption machine then
must guess

Chosen Ciphertext Attack
The adversary can use the encryption and the
decryption machine (not on mi) then must guess

Negligible advantage

Adv = P[informed guess]−P[blind guess] = pi.g. − 1/2

Calcoli e Modelli per Sicurezza – p.16/51

Protocol Computational Security
Similar definitions: e.g.

indistinguishability from ideal behaviour
(∼ without the adversary)

negligible advantage (e.g. for secrecy)

execution traces “not too different” from ideal
ones

. . .

Calcoli e Modelli per Sicurezza – p.17/51

Protocol Formal Security
Differences from the computational approach:

no Turing machines

protocol source code

no bit strings

terms in an algebra

Properties

indistinguishability (w.r.t. formal semantics)

reachability (eaiser to prove)

no probability/complexity

Calcoli e Modelli per Sicurezza – p.18/51

Bridging the Gap
Does formal security imply computational security?

Abadi, Rogaway
terms equivalence

Jürjens
protocol equivalence (passive adversary)

Pfitzmann, Backes, Waidner, Canetti
simulatability, universal composability

Calcoli e Modelli per Sicurezza – p.19/51

Modelling Protocols
Many formal methods use process algebras (calculi)
to specify the protocol logic

π calculus

SPI

applied pi

LYSA

. . .

Calcoli e Modelli per Sicurezza – p.20/51

π calculus

Calcoli e Modelli per Sicurezza – p.21/51

The π Calculus
A programming language core featuring:

concurrency (parallelism)

send/receive primitives

message passing

creation of new channels

creation of new “tags” (e.g. keys)

mobility (∼ network reconfiguration)

Calcoli e Modelli per Sicurezza – p.22/51

The π Calculus
Warning: many, many variants!
E.g.

what is a message?
an atomic name
. . .
a generic term (e.g. f(g(x), y))

many ways to define the semantics

Suggestion: focus on the main concepts rather than

the details of the particular variant we present here.

Calcoli e Modelli per Sicurezza – p.23/51

Basics
P,Q processes

Semantics through transitions
P1 → P2 → P3 → · · ·

Sometimes, we shall annotate the transitions with
some label, to make some event observable

Example:

P1 → P2
boom
−−−→ P3 → · · ·

We can then answer questions such as “does P1

make the bomb explode?”

Calcoli e Modelli per Sicurezza – p.24/51

Syntax: nil

0 nil process

stopped/terminated

no further interaction

Of course
0 6→

Calcoli e Modelli per Sicurezza – p.25/51

Syntax: output (send)
a〈x〉.Q

a is the channel (∼ network address)

x is the object being sent (message)

Q is the continuation process (what to do next)

Let’s make the message observable:

a〈x〉.Q
a〈x〉

−−−−→ Q

Calcoli e Modelli per Sicurezza – p.26/51

Syntax: input (receive)
a(x).Q

a is the channel (∼ network address)

x is a variable for the object being received

Q is the continuation process (what to do next)

Q usually depends on x.

Examples:
a(x).b〈x〉.c〈x〉.0

a(x).x〈b〉.0
In the second one, x is used as a channel.

Calcoli e Modelli per Sicurezza – p.27/51

Syntax: parallel composition
P | Q

Some structural congruence rules:
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

Commutativity + associativity

P | 0 ≡ P

Stopped processes are immaterial

Summing up: networks as “sets of processes”

Calcoli e Modelli per Sicurezza – p.28/51

Syntax: parallel composition
P | Q

Processes P and Q can

evolve independently

if P
α
−→ P ′ then P | Q

α
−→ P ′ | Q

non-deterministic: “who goes first?”

interact (communicate)

a〈x〉.P | a(y).Q −−→ P | Q{x 7→ y}

The channel a must be the same.
The variable y is bound to the message x,
through a substitution on Q.

Calcoli e Modelli per Sicurezza – p.29/51

Example
a〈a〉.0 | a(y).c〈y〉.0

→

0 | c〈a〉.0
c〈a〉
−−→

0 | 0 ≡ 0

Calcoli e Modelli per Sicurezza – p.30/51

Example
a〈a〉.0 | a(y).c〈y〉.0

→

0 | c〈a〉.0
c〈a〉
−−→

0 | 0 ≡ 0

But also:
a〈a〉.0 | a(y).c〈y〉.0
a〈a〉
−−→

0 | a(y).c〈y〉.0 (stuck)

Calcoli e Modelli per Sicurezza – p.30/51

Syntax: restriction
(νx)P

creates a new name and binds it to x in P .

new name ∼ new channel, or new tag, or new key

A low-level semantics:
(νx)P → P{x 7→ c}

where c is a globally fresh name

Calcoli e Modelli per Sicurezza – p.31/51

Example: restriction
(νz)(z〈a〉.0 | z(y).y〈z〉.0)

→

c〈a〉.0 | c(y).y〈c〉.0

→

0 | a〈c〉.0
a〈c〉
−−→

0 | 0 ≡ 0

Calcoli e Modelli per Sicurezza – p.32/51

Example: restriction
(νz)(z〈a〉.0 | z(y).y〈z〉.0) | Q

→

c〈a〉.0 | c(y).y〈c〉.0 | Q

→

0 | a〈c〉.0 | Q
a〈c〉
−−→

0 | 0 | Q ≡ Q

Note that there is no way Q can communicate on z.

Calcoli e Modelli per Sicurezza – p.32/51

Syntax: match
[x = y]P

behaves as P if x = y.
Otherwise it is stuck.

Semantics:
[x = x]P → P

Calcoli e Modelli per Sicurezza – p.33/51

Summary of the first part
What is the computational power of the calculus, as
seen so far?

Is it possible for a process to diverge?
P →→→ · · · (infinite trace)

Calcoli e Modelli per Sicurezza – p.34/51

Summary of the first part
What is the computational power of the calculus, as
seen so far?

Is it possible for a process to diverge?
P →→→ · · · (infinite trace)

No. Each communication makes a process
syntactically smaller.

Is the calculus Turing-complete?

Calcoli e Modelli per Sicurezza – p.34/51

Summary of the first part
What is the computational power of the calculus, as
seen so far?

Is it possible for a process to diverge?
P →→→ · · · (infinite trace)

No. Each communication makes a process
syntactically smaller.

Is the calculus Turing-complete? No.

We must introduce some kind of recursion in the
calculus.

Calcoli e Modelli per Sicurezza – p.34/51

Syntax: replication
A useful recursive construct

!P

Intuition:
!P ≡ P | P | P | · · · (ad infinitum)

Formally,
!P ≡ P | !P

Useful to model servers
! a(x).Q

Roughly mimicks the accept/fork loop.

Calcoli e Modelli per Sicurezza – p.35/51

Example: replication
P =! (νz)(a〈z〉.0)

≡→

a〈c1〉.0 | P

≡→

a〈c1〉.0 | a〈c2〉.0 | P
a〈c2〉
−−→

a〈c1〉.0 | 0 | P

P keeps generating fresh names, sending them over

channel a

Calcoli e Modelli per Sicurezza – p.36/51

Example: replication vs. recursion
With some (slight) extensions, we can write a
factorial function:

! fact(x, ret).if x = 0

then ret〈1〉.0

else (νz)(fact〈x − 1, z〉.

z(y).

ret〈x × y〉.0)

x is the argument, ret is the return channel. Note the

fresh return channel z for the recursive call (invoca-

tion). Its result is y.
Calcoli e Modelli per Sicurezza – p.37/51

Restriction: alternative semantics
Local, compositional semantics

((νx).P)|Q ≡ (νx).(P |Q) if x 6∈ free(Q) · · ·

We need alpha-conversion (renaming of x)

Scope enlargement rules stop at replication.
! (νx)P 6≡ (νx)! P

Scope extrusion (when output is performed).

Calcoli e Modelli per Sicurezza – p.38/51

Other classical definitions
P + Q

Non deterninistic choice
P + Q → P
P + Q → Q

Who chooses?
External/Angelic vs. Internal/Demonic

Example: coffee machine

coin.(tea + coffee) angelic
coin.tea + coin.coffee demonic

Security: the adversary chooses (worst case)
Calcoli e Modelli per Sicurezza – p.39/51

Other classical definitions
(Too) many equivalences between processes

traces
a + a.b ≡ a.b

bisimulation
a + a.b 6≡ a.b
a.b + b.a ≡ a|b

observational equivalence

barbed equivalence

testing equivalence

. . .

Calcoli e Modelli per Sicurezza – p.40/51

A simple property: (un)reachability

Reachability, e.g. ¬(P →∗ 〈secret〉
−−−−→)

secrecy
no secret is disclosed

authentication
no end before begin

forward secrecy
no old secret is disclosed

Calcoli e Modelli per Sicurezza – p.41/51

A simple property: (un)reachability
Reachability, unlike equivalences

defines strong attacks

community consensus

easier to check automatically

Many techniques/tools exist:

model checking

static analysis
type systems
control flow analysis (tomorrow)

Calcoli e Modelli per Sicurezza – p.42/51

Modelling Protocols in π calculus
Steps:

define the term algebra
often, the free algebra

define the protocol participants

allow for an unbound number of parallel sessions
(use replaciation)

define the adversary

put everything in parallel

Calcoli e Modelli per Sicurezza – p.43/51

Modelling Protocols in π calculus
How to handle network scheduling?
(non determinism)

Calcoli e Modelli per Sicurezza – p.44/51

Modelling Protocols in π calculus
How to handle network scheduling?
(non determinism)

Security: the adversary chooses (worst case)

“err on the safe side”

Not different from the computational models

Calcoli e Modelli per Sicurezza – p.44/51

Dolev-Yao Formal Adversary
Message rerouting ⇐⇒ only one channel

a〈x〉.P vs 〈x〉.P
a(x).P vs (x).P

Private channels vs. global channel

Restriction (νz) still useful

key generation

nonce generation

. . .

Calcoli e Modelli per Sicurezza – p.45/51

Example

Wide mouthed frog example

We now show the actual specification for a tool
(Rewrite).

Calcoli e Modelli per Sicurezza – p.46/51

Example
Dolev-Yao adversary.

!.(in W . in Z .
! . out W . out Z .
out enc(W, Z) . out dec(W, Z) . ()

| new Nonce . out Nonce . ()
)

Decription is in the term algebra, but it does not
need to be. Alternative:

decrypt x as {y}k in Py

Calcoli e Modelli per Sicurezza – p.47/51

Example
! . new AS . new BS . # Unbounded sessions

(# The server S

in X .

out enc(dec(X,AS),BS) . ()

| # Participant A

new Key .

out enc(Key,AS) .

out enc(msg,Key) . () # msg is the secret

| # Participant B

in N . in Key1 .

let Key2 = dec(Key1,BS) .

let Mess2 = dec(N,Key2) .

out hash(Mess2) . ())

Calcoli e Modelli per Sicurezza – p.48/51

Modelling Protocols in π calculus
Reachability result

¬(Proto | Adv →∗ 〈msg〉
−−−→)

Can be automatically checked

“Hard” to do by hand

cost problems

confidence problems

Calcoli e Modelli per Sicurezza – p.49/51

Open Discussion
How to model

random nonces

signatures

public key crypto

exclusive or

secure sessions (e.g. SSL)

“toss a coin”

quantitative aspects (DoS: denial of service)

zero-knowledge protocols

Calcoli e Modelli per Sicurezza – p.50/51

Tomorrow
automatic security proofs

techniques

tools

static analysis

control flow analysis

Calcoli e Modelli per Sicurezza – p.51/51

	�egin {center} \ \ {
ed Calculi and Models for Security} end {center}
	Models for Security
	Models for Security
	Computational Model
	Formal Models
	The Dolev-Yao Adversary Model
	Messages
	A Formal Model for Messages
	Some Standard Operations
	Computational Model
	Protocols
	Computational Model
	Preliminary Definitions
	Significant Attacks
	Attacks to Algorithms
	Other Well-known Attack Types
	Protocol Computational Security
	Protocol Formal Security
	Bridging the Gap
	Modelling Protocols
	$pi $ calculus
	The $pi $ Calculus
	The $pi $ Calculus
	Basics
	Syntax: nil
	Syntax: output (send)
	Syntax: input (receive)
	Syntax: parallel composition
	Syntax: parallel composition
	Example
	Syntax: restriction
	Example: restriction
	Syntax: match
	Summary of the first part
	Syntax: replication
	Example: replication
	Example: replication vs. recursion
	Restriction: alternative semantics
	Other classical definitions
	Other classical definitions
	A simple property: (un)reachability
	A simple property: (un)reachability
	Modelling Protocols in $pi $ calculus
	Modelling Protocols in $pi $ calculus
	Dolev-Yao Formal Adversary
	Example
	Example
	Example
	Modelling Protocols in $pi $ calculus
	Open Discussion
	Tomorrow

