
1

Scanning of the charactersScanning of the characters and Checking of the language wordsChecking of the language words
and symbolsand symbols used in the syntactic structures
(identifiers, numerals, keywords, separators, delimiters, ...)

The Lexical Languages are, in general, quite simple.

• They are:
 Regular Languages: ℜℜ

• They can be defined using:
Regular Expressions
Regular (or Linear) Grammars
Transition Diagrams

• They can be analysed using:
N/D Automata

Lexical AnalysisLexical Analysis

2

Scanner Parser
get

tokenSource is a
Sequence of
characters

Symbol
Table

Entries
Lexemes

Entries
Symbols

 Lexical Analysis (ScannerScanner) is driven from
Syntactic Analysis (ParserParser) which is asking for next token

Where Where and and How How in a in a CompilerCompiler::
One Pass Structure - First Phase

3

Token = a Lexical Category

lexeme = a Value of a Category

pattern = Lexical rules defining Tokens and Lexemes

Exemple
 source: const pigreco = 3.1416
 scanning: const id rel num

DefinitionsDefinitions: TokenToken, , LexemeLexeme, Pattern, Pattern

4

• Source Symbols are maintained in Information Colums

• Scanner does not generate token but: <token,attribute>
<const, > <id, k > <rel, = > <num, k+1 >

pigreco
3.1416

k
k+1

SymbolTable

LexemeLexeme::
Where source symbols are stored ?

lexeme

Information Colums

5

• Patterns may be defined using many different Formalisms:
• Regular Expressions
• Regular Grammars
• Transition Diagrams

• Though equivalent, such Formalisms:
• Have different expressiveness.
• Hence the use of some is easier, clearer, and neater than that of
 the other.
• Have different working frameworks.
• Hence, the mechanization of the underlying analysis process is
 different for the different formalisms

PatternsPatterns::
How Tokens are unambiguously defined ?

6

Scanner GeneratorsScanner Generators

beginner forward

2-buffered input

Analysis
Table

 I/O Control

driver

3.1416=pigreco

• Today scanners Today scanners are are automatically generated using automatically generated using Regular Regular GrammarsGrammars,,
 Regular Regular ExpressionsExpressions, , DFAutomataDFAutomata, in , in this orderthis order;;

•• Meaning preserving transformationsMeaning preserving transformations::
•• allow to allow to pass pass from from one one formulation to formulation to the the next next one, andone, and
•• result into result into the the structure belowstructure below::

7

Regular Expressions EEΣΣ on an alphabet Σ are:
The minimum set recursively defined by:

1. εε ∈∈EEΣΣ

2. aa ∈∈EEΣΣ, ∀a ∈Σ
3. ee1 1 . . ee22 ∈∈EEΣΣ, ∀e1,e2 ∈EΣ

4. ee1 1 | | ee22 ∈∈EEΣΣ, ∀e1,e2 ∈EΣ
5. ee** ∈∈EEΣΣ, ∀e ∈EΣ

6. eeii ∈∈EEΣΣ, ∀e ∈EΣ

Regular Regular GrammarsGrammars
((but beforebut before)) Regular Regular ExpressionsExpressions: : EEΣΣ

The SyntaxThe Syntax

8

The meaning of EEΣΣ is ℜℜ ⊆ 2Σ*

1. [ε] = {λ} - singleton with nullary string

2. [a] = {a} - singleton with 1 char string

3. [e1.e2] = {uv | u ∈[e1], v ∈[e2]} = [e1] ×. [e2] - juxtaposition of the product set

4. [e1|e2] = {u| u ∈[e1] ∪ [e2]} - set union

5. [e*] = {u| u ∈∪i∈N [e]i} - exponentiation set

6. [ei] = {u| u ∈ [e]i} shortening - ith-power

Σ = {a,b}, Σi = Σ ×.Σi-1, Σ0 = {λ}, Σ2= {aa, ab, bb, ba}
Σ∗= ∪i∈N Σi = {λ,a,b,aa, ab, bb, ba, aaa, ... }
2Σ∗= {u| u⊆ Σ∗} = {{λ},{a},{b},...,{λ,a},…,{λ,a,b,ab},…,}

Regular Regular ExpressionsExpressions::
The The MeaningMeaning

[[__]]: E: EΣΣ −> ℜℜ

Exponentiation

Power Set

9

0 | 1 | … | 9

[0 | 1 | … | 9] = {0,1,…,9}

(0 | 1 | … | 9)*

[(0 | 1 | … | 9)*] = {0,1,…,9, 00, 01,…, 3808, ...}

(1 | … | 9).(0 | 1 | … | 9)*

[(1 | … | 9).(0 | 1 | … | 9)*] = {1,…,9, 10, 11,…, 3808, ...}

Regular Regular ExpressionsExpressions::
ExamplesExamples

Usually, dot notation in concatenation operator is omitte. Then:

(1 | … | 9)(0 | 1 | … | 9)* is written instead of

10

GG = < V, < V, ΣΣ, s, s∈∈V, P >V, P >
• VV non-terminal set (Tokens and auxiliarys categories)
• ΣΣ terminal set
• ss initial symbol (of V)
• PP ⊆ V × EΣ∪V production set

GrammarsGrammars on Σ

11

GG is Regular, if in addition:

• V has a complete ordering < such that:
• ∀ v::=e ∈ P, e e ∈∈ EEΣΣ∪∪{v{v’’<v}<v}

GrammarsGrammars
When it is a Regular Grammar

12

The use of a regular grammar G in a lexic for numbers

Only grammar productions Only grammar productions are are shownshown: :
• What is Σ ?
• And, the other components of G ?
• Easily inferable: V (look left), s (look top)

num::= simple | fract | exp
simple::= digit digit*
fract::= simple.simple
exp::= fract E simple |
 fract E (+|-) simple
digit::= 0 | 1 | … | 9

GrammarGrammar
ExampleExample: : Relations between grammars,

expressions

How proving that G is regular?How proving that G is regular?::
• Look for a complete ordering < on V
• Prove that < satisfies the second property

How proving that How proving that G G defines defines the the language we language we are are looking forlooking for?: ?:
• Another Story Begins.

13

Grammars Grammars - Meaning L(G):Meaning L(G):
 Equations on LanguagesEquations on Languages

e ∈EΣ ======> [[ee]] ∈∈22ΣΣ**

v::=e ======> L(v) = [[e]] ∈(V×2Σ*)
{v1::=e1,…, vk::=ek} ======>
 {L(v1),…,L(vk) | ∀i, L(vi) ∈2Σ*and L(vi) ≡ [[[L(vj)/vj |vj<vi]ei]]}

G = <V,Σ,s∈V,P> ======> L(G) = L(s)

Meaning associates toMeaning associates to: :
• EachEach non-terminal, V, OneOne language, L(V)∈ 2Σ*.
• EachEach production, v::=ev::=e, OneOne equation, L(v) =L(v) =[[ee]]

see below on how do it

14

Meaning of (Regular) GrammarsMeaning of (Regular) Grammars:
An Example of Computation

n::= s | f | e
s::= d d*
f::= s.s
e::= f E s |
 f E (+|-) s
d::= 0 | 1 | … | 9

 L(0|1|…|9) = {0,…,9} ∈ (V×2Σ*)
{L(d)={0,…,9},
 L(s)=L([{0,…,9}/d] d d*)
 ={0,…,9}{0,…,9}* ={0,…,9}+

 L(e)= …
 ={u.vEw | u,v,w ∈ {0,…,9}+}
L(n) = {0,…,9}+ ∪

{u.v | u,v ∈ {0,…,9}+} ∪
{u.vEw | u,v,w ∈ {0,…,9}+}

…

15

Regular Grammars: MeaningRegular Grammars: Meaning
Compare the formulation in the previous slide,

{v1::=e1,…, vk::=ek} ======>
 {L(v1),…,L(vk) | ∀i, L(vi) ∈2Σ*and L(vi) ≡ [[[L(vj)/vj |vj<vi]ei]]}

with the the one below.
{v1::=e1,…, vk::=ek} ======>
 {L(v1),…,L(vk) | ∀i, L(vi) ∈2Σ*and L(vi) ≡ [[[ei

1,…,ei
ni/vi

1,…,vi
ni]ei]]}

 where: 1) {vi
1,…,vi

ni}={vj ∈V| vj<vi};
 2) vi

1<…<vi
ni ;

 3) [ei
1,…,ei

ni/vi
1,…,vi

ni]ei = [ei
1,…,ei

ni-1/vi
1,…,vi

ni-1]([ei
ni/ vi

ni]ei)

Comment the differences.
Justify why the last one is more correct than the other.

16

How to Recognize the How to Recognize the LexicLexic
defined by a Grammardefined by a Grammar

Engine

beginner forward

input 3.E+14

recover

Nextchar
Retract
Istall-num
…..

token

n::= s | f | e
s::= d d*
f::= s.s
e::= f E s |
 f E (+|-) s
d::= 0 | 1 | … | 9

ScannersScanners do it

