Lecturel3-14

Procedural, Functional Abstractions and
Parameter Passing

March 18, 2013

Lecturel3-14 Procedural, Functional Abstractions and Paramete

Control Abstractions: Parameter Passing

Parameters: Where and Why

Procedure and Function Invocation: In-depth
By Value Parameter Passing: FUI

By Name P. P. (command and expression): FUI
By Need P. P.: Implementative variant

By Function, Procedure P. P. (Closure Transmission):
Implementative variant

By reference P.P.: FUI

By Constant P.P.: FUI
By Result P.P.: FUI

By Value-Result P.P.: FUI

Lecturel3-14 Procedural, Functional Abstractions and Paramete

Parameters: Where and Why

@ Where. Anywhere an abstraction (i.e. generalization) is introduced, the
problem of its use in possibly, many different contexts, must be considered;

@ The use in a specific context requires an instantiation mechanism which
intimately connects the abstraction to the context of use;

@ Why.The connection is realized through the use of formal parameters (with
which abstraction is made) and the actual parameters which express the context
in which abstraction must be used;

@ Then, the instantiation of the abstraction consists in the creation of the bindings
which connect each formal parameter to the corresponding actual parameter.;

@ The mechanism that creates this connection is called Parameter Passing (or P.
Transmission).

Lecturel3-14 Procedural, Functional Abstractions and Paramete

Procedure and Function Invocation: In more depth

@ Parameter Passing consists of 3 distinct steps:

@ Transmission: It evaluates the arguments (i.e. actual parameters)
according to the kind of transmission that has been specified (in the
corresponding formal parameter) and results into a list, the transmission
list, of denotable or storable values, one for each argument;

@ Binding: It makes a binding between each formal parameter and the
corresponding value of the transmission list. The effective form of the
binding depends on the kind of transmission of the formal parameter;

@ Return: It binds back the values, computed by body execution, to the
arguments that have been passed by one of various form of by result
parameter passing. It results in various modifications of the store.

@ Hence, the effective structure of the invoked code consists of:

@ Prologue: it includes code for the steps Binding;
@ Body: it corresponds to the body of the procedure or function
@ Epilogue: It includes code for the step Return

@ Then, where is put the code for the step Transmission?

Lecturel3-14 Procedural, Functional Abstractions and Paramete

Procedure and Function Invocation: In more depth

The Structure of General Invocation

@ Q: Then, where is put the code for the step Transmission?

@ A: In the code for invocation, of course.

@ Step Transmission is formally defined by function 7 in definitional tables.

Auxiliary Syntactic Domains
A ::=byValue E |byName E |byReference E
|byConst E |byResult E |byValueResult E

Semantic Functions
M][Call I (A1...Aq)],: Store — Store
T : A® — Env — Store — ((ValUDen)® X Store);

M][Call I (A1...A0)],06) =
Let&{((w-n)vz),)sn)ﬂ [(A1..-A0)],6), F(£)=p@}
f(vi...vn)(Sq,

Lecturel3-14 Procedural, Functional Abstractions and Paramete

Procedure and Function Invocation: In more depth

The Structure of General Declaration

@ Step Binding is formally defined by function B
@ Step Return is formally defined by function R
@ Dg is for stressing that the declaration of a procedure is an invariant of the store

Auxiliary Syntactic Domains
P ::= byValue I |byName I |byReference I
|byConst I |byResult I |byValueResult I

Semantic Functions
D[D]: Env — Store — (Env X Store),
De[[Proc I (Py...Py) C] : Env — Env
D[p], = As.(De[D],, s)
B :P* — (Env X (Val UDen)* X Store) — (Env X () X Store);
R : P* — Env — ((Val UDen)™ X Store) — Store;

De[Proc I (P1...Py) C], =
Let{f = A(v1...vn).AsS.sr
where{(pu.-,52) = BI(P1..Pa)](p: (v1...va),)}
e = MICln (50)}
{50 = RI(P1 -Pa)|pal(71.-72), 50}
bind(L, F(2), p)

Lecturel3-14 Procedural, Functional Abstractions and Paramete

By Value Parameter Passing: FUI

By Value Parameter Passing : 7,8, R
Auxiliaries Semantic Functions
TI(Ar-4a)]p(s) = Ti[Ailp o . 0 TillAal, (). 5)
Ti[byVvalue AMem(E)],((v1.. Vi), Sw) =
Let{(va+1, sn+1) =L sE[E]p(su)} (v vaVM(vi11)), Smt1)

BI(P1...Pa)]p(v1-.-va),) = (B1[P1] o ... o Bi[Pa]od3 5)(o,(v1..-v1),9)
Bl |IbyValue Ik]l(pkfl, (Vk...Vn)7 Skfl) =
Let{(lk, sp) =allocate(sk—1)}
{Sk :upd(lk, Vk, S]/(), Pk :bind(Ik, 1k7 pkfl)}
(ox, (Vi1 i), s%)

RIPs-P)lp(1-8),8) = (RalPely o ... o Ra[Pal,043) (v1--v0),)
RilbyValue Iy]p((vk...va), sk—1) =
Let{sk = sx—1}(Vkt1---Vn), SK)

@ The actual parameter must be an expression whose evaluation must result a
storable value: This is stressed by AMem(E)

@ Binding creates a mutable value 1x

@ Return does nothing

Lecturel3-14 Procedural, Functional Abstractions and Paramete

By Value Parameter Passing: FUI /2

o Use.

e It is the default parameter passing of almost all languages
(Algol 60, Simula, Pascal, C/C++, ML, Ocaml, Ada, C#,
Java)

o It makes a One-way connection: The callee has a copy of the
storable value in the caller context

e It is used in some programming techniques, for passing values
to the caller and for using the formal parameter as a mutable
for temporary values or for an accumulator

o No Side Effects in the(store of) caller context

@ Implementation
o Similar to that of the variable declaration with initialization

Lecturel3-14 Procedural, Functional Abstractions and Paramete

By Name Parameter Passing: FUI /1

By Value Parameter Passing : 7,8, R
Auxiliaries Semantic Functions
TI(A1.-A0)1o(s) = Ti[Ar]p 0 ... 0 TilAnl, ((), 8)
T1[byName ACodeC(C)],(vi-.-Vi); Sm) = (vi...vaZ(M[C]p)); Sm+1)
T1i[byName ACodeE(E)],(v1...v), Sw) = (vi.--vwZ(E[E]), Snt1)

BI(P1...P)lp(v1-.-va),) = (Bi[P1] o ... 0 Bi[Pu]od3 5)(o,(v1...v1),9)
Bi[byName Ix](px—1, (vk--- Vo), sx—1) =
Let{pk :bind(Ik, Vi, pk—l); Sk:Sk_1}
(s (Vi1 vi), 1)

RI(Ps-.Po) (10, 8) = (RalP1l 0 . 0 RlPalp043) (v, 5)
Ri[byName Iy],((vk...va), sx—1) =
Let{sk = sx—1}(Vkt1---Vn), SK)

Auxiliaries Semantic Functions
Z : Code — Den (injection)

@ The actual parameter must be a Code: This is stressed by ACodeC(C) and
ACodeE(E)

@ Binding creates a binding between name of the formal parameter and the Code

@ Return does nothing

Lecturel3-14 Procedural, Functional Abstractions and Paramete

By Name Parameter Passing: FUI /2

@ The code, passed to the callee, is closed with the bindings (i.e. environment) of
the caller;

@ The code may be an expression (possibly, an anonymous function, lambda
astrazione) in the scope of the environment of the caller;

@ The code may be a denotable expression that is used from caller/callee for
sharing a mutable value

@ Hence,] must be extended on the expressions Z(v) that are bound to formals

Semantic Functions

Va0 =14 v(s) if p(1) = 2(v),

for v € Store —(Val x Store);

EPen(D]o(s) = {(i‘,'s) if (p(1) = (1)), 1 € Loc

Example

By using by name passing, in Algol 60, a code for the computation of expressions with
summation like the one below:

z=y+5 Z (3x® — 5x +2)
n<x<m

introduces a specific function for > and invokes it, as an operator, in the expression.

Lecturel3-14 Procedural, Functional Abstractions and Paramete

