
Principi di Linguaggi di Programmazione
Programming Paradigms

prof. M. Bellia
 Exam III - June18th, 2014

(Time to do it: 2 hours – Mandatory: Get one half at least, of the total points assigned to each exercise)

Exercise 1 (pts 10)
a) Provide a definition, in a language of Your choice, of the function, fib, computing the

n-th of the Fibonacci series and using
a) tail-recursive technique;
b) memoization technique;
Comments the codes.

b) How many invocations of fib are needed in order to compute the expressions fib(2)
and fib(4) in this order, in the case (a) and in the case (b), respectively?

Exercise 2 (pts 10)
Let graph be an abstract data type for immutable graphs in Ocaml. Nodes are labelled by
distinct values of a generic type. Edges are directed and labelled by values of a generic
type. The type graph has the following public operations
 empty() returns an empty graph;
 add(g,x,y,u) returns a graph that differs from g for at most one edge, if not already

in g, from x to y and labelled by u.
edges(g) returns a list of distinct pairs which contains the pair (x,y) if and only if g

has at least one edge from x to y.
outgoing(g,x) returns a list of distinct pairs which contains the pair (y,u) if and
only if g contains an edge from x to y and labelled by u.

Noting that multi-digraphs are allowed, i.e. graphs may contains more that one edge from
x to node y, provided they are labelled by different values.

(a) Show the Ocaml API of the type graph;
(b) Show one Ocaml ADT for the API;
(c) Let equals: graph * graph -> boolean be a predicate that returns true if and only

the two arguments are the same graph. Provide a definition of equals.

Exercise 3 (pts 10)
(a) Show a Java abstract class Graph for the API of Exercise 2.a, above, except that

now the graphs are mutable values.
(b) Let GraphADT be an extension of Graph providing an implementation for the

ADT. Show a class GraphADTE that extends GraphADT with an additional
public operation equals that computes analogously to the one in 2.c above.

(c) Show a class GraphADTA that extends GraphADT on acyclic graphs and has an
additional public operation:

reached returns a LinkedList containing all the nodes that are reached
from the argument.

