
Principi di Linguaggi di Programmazione
Programming Paradigms

prof. M. Bellia
Regular Exam VI - sept. 10th 2014

(Available Time: 2 hours. Mandatory: In each exercise get at least, one half of the assigned points)

Exercise 1 (pts 10)
Let filter: ‘a list -> (‘a -> boolean) -> ‘a list be the well known operator, on generic lists,
that given a predicate as its second argument, returns the list without the elements for
which the predicate does not compute true. For this operator, provide in Caml:

1. A recursive definition;
2. A tail-recursive definition;
3. A (functional) iterative definition.

Exercise 2 (pts 10)
Let Tree be an ADT for immutable, finite, generic, trees with vertices labelled with
values of a generic type A. The ADT provides the following public operations:

• cons is a 2-argument constructor that applies to a value vA of type A and to a finite
list of trees. It returns if possible, a generic tree rooted on a vertex that is labelled
with vA and has, as sons, the trees (in the same order in which they occur) in the
list. It raises an exception otherwise.

• empty is 0-argument constructor that returns the empty tree of generic type.
• root is 1-argument operator that applies to a tree and returns the label of the tree

root, if any. It raises an exception otherwise.
• sons is 1-argument operator that applies to a tree and returns the son list of the

tree root, if any. It raises an exception otherwise.
• treeAt is 2-argument operator that applies to a tree and to a finite list of integers. It

uses the list as a path in the tree: The first integer n1 selects the n1-th son, if any, of
the tree and the next ones form a path in the selected son. The empty path is the
empty list. The operator returns the tree selected as son, if any, at the end of the
path. It raises an exception otherwise.

1. Provide one Caml definition of the API;
2. Provide one Caml definition of an ADT implementing the API defined in (1).
3. Using the API, provide a definition of the function pathLabel that applies to a tree

of a generic A, and to an integer list. It returns a list of A's containing the labels of
the roots of the sons, if any, that are visited by the path specified in the list.

Exercise 3 (pts 10)

1. Show a Java abstract class TreeJ for the API of Exercise 2 except that now the
trees are mutable values.

2. Let TreeJADT be an extension of TreeJ providing an implementation for TreeJ.
Define a class TreeJADTE that extends TreeJADT with an additional public
operation anEq that applies to two trees and returns true if and only if the two
trees have same shape and same labels on the corresponding vertices.

3. Define a class TreeJADTG that extends (and specializes) TreeJADT to trees
having distinct vertices labeled with distinct labels.

