Laurea Magistrale in INFORMATICA Principi di Linguaggi di Programmazione **Compiler Techniques**

prof. M. Bellia Mid Term Exam - 4 November 2014

(Available Time: 2 hours - Get, in each exercise, at least, half of the total points assigned to it)

Exercise 1 (pts 3 - 6) Let $E = a b^* b | d b b^* a$

(a) (pts 4) Show how the technique of "dotted automata" has to be applied to compute a deterministic automaton for E;

(b) (pts 2) Prove that the obtained automaton is minimal

Exercise 2 (pts 3 - 6) Let $L = \{d^q a^n b^m c^p | n+m=p, n,m,p,q \ge 0\}$. Is L a regular language? The answer must furnish either an automaton for L or a prove of the opposite.

Exercise 3 (pts 3 - 5) Let $A = \langle S, \Sigma, M, \{3,5\} \rangle$ be the automaton whose transition function M is as in the en- 4closed figure. Show how the algorithm for removing nonderminism applies to it.

	R	6	C	٤
\bigcirc	<i>[2.3]</i>	-		{1]
4	-	40,1J	{4}	
Z	-	-	-	[5]
3	{3]	{5}	fof	{o}
4	{1}	{2}	-	{ 3]
5	-	{ 5∫		{4]

Exercise 4 (pts 7 - 13) Let $\{a^n b^m c^p \mid n+m=p, n \ge 0, m>0\}$. (a) (pts. 5) Write an LL(1) grammar G for \hat{L} ;

(b) (pts. 2) Prove that $G \in LL(1)$:

(c) (pts. 4) Show how to compute an adaptive parsing table for G, by computing it;

(d) (pts. 2) Use such a table in parsing "aabccc"