Exercise 1.
Let $\mathrm{E}=\mathrm{abb}{ }^{*} \mathrm{c} \mid \mathrm{d} \mathrm{b}^{*} \mathrm{~g}$.
(a) Show how the technique of dotted automata ha to be applied to compute a deterministic automaton for E
(b) Prove that the obtained automaton is minimal

Exercise 2.
Let $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{C}^{\mathrm{p}} \mid \mathrm{n}+\mathrm{m}=\mathrm{p}\right\}$. Is L a member of R ? Answer by either furnishing an FSA automaton or proving $L$ is not a member.

Exercise 3.
Let $A=<S, \sum, M, 0,\{3\}>$ be the automaton whose Transition function M is as in the enclosed figure. Show how the algorithm for removing nondeterminist applies to A.

Exercise 4.
Let $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{p}} \mid \mathrm{n}+\mathrm{m}=\mathrm{p}, \mathrm{n}>0, \mathrm{~m} \geq 0\right\}$.

(a) Write an LL(1) grammar G for L ;
(b) Prove that $\mathrm{G} \in \mathrm{LL}(1)$;
(c) Show how to compute an adaptive parsing table for G, by computing it;
(d) Use such a table in parsing "aac" (use the driver defined by the LL(1) push-down automaton)

$$
\begin{aligned}
& E \times 1: E=a b^{2} b^{2} c / d b^{n} f
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\Delta \underline{a} b b^{2} c, s h^{2} p\right] \\
& \left.r(0, a)=C_{s}\left(2 \Delta b b^{2} c\right\}\right)=c\left(\Delta b b_{0}^{\infty} c\right)= \\
& =\left\{b b^{2} c\right\}=I_{1} \\
& M(0, d)=C\left(\Delta b^{x} g\right)=\left\{\Delta b l^{x} p, \Delta g\right\} \\
& =\text { Iq } \\
& M(1, b)=C\left(\Delta b^{x} c\right)=\left\{\Delta b b^{t} c, \Delta c\right\} \\
& =工 3 \\
& M(2, b)=k\left(\Delta b^{2} f\right)=I 2 \\
& M(2, f)=\{\Delta\}=I_{q}
\end{aligned}
$$

$$
\begin{aligned}
& M(3, b)=C\left(\Delta h^{z} c\right)=I 3 \\
& H(3,2)=\{\Delta\}=I 4
\end{aligned}
$$

b) $\operatorname{step1} \pi=\langle\{0,1,2,3\},\{4\}\rangle$

$$
\begin{aligned}
& \Pi_{V}=<0 \quad\{1 \quad\{2 \\
& 0+1<\langle(0, a\rangle 1\rangle \\
& \text { 〈 ( } 1, a\rangle \perp\rangle \\
& 0+2 \rightleftarrows\langle\langle 0, a\rangle 1\rangle \\
& \ll 2, a\rangle 1\} \\
& 1+2\langle\langle 1, q\rangle \downarrow\rangle \\
& e\left\langle 2, g^{2} \text { < }\right\rangle
\end{aligned}
$$

Ex4.

$$
L=\left\{a^{m} b^{m} c^{p} \left\lvert\, \begin{array}{c}
n+m \div P, \mu \geqslant 0, \\
m \geqslant 0
\end{array}\right.\right\}
$$

(a)

$$
\begin{aligned}
& S: \because=a S c \mid a B^{\prime} c \\
& B:=b B c \mid \varepsilon
\end{aligned}
$$

Gramor $s$ is: (ly fe etomiy):

$$
\begin{aligned}
& 5 \because=^{0} a D_{1}{ }^{2} R_{c} \\
& D \vdots=\left.\left.S c^{2}\right|^{2}\right|_{\varepsilon} \\
& B=1
\end{aligned}
$$

(b) We umit comiter reporotely
the pomatim fu is rul is
Alant $D$, we lude:

$$
\text { hart } D \text {, we hade: } \operatorname{lat}(B c)=\{b, e\}
$$

$$
f^{n}+(\xi c) \cap f t(B c)=\{\xi
$$

- vaitur $s$ e rur $B C$ ore rewing $d$
- veith se rus $B C$ ore rewing $d$

Ahent B,

$$
\begin{aligned}
& \text { hot }(b B c)=\{b\}, h+(\xi)=\varepsilon \\
& \text { fut }(b B c) n \operatorname{not}(\varepsilon)=\{ \} \\
& h A(b B C)=\{h\}, h u(B)=\{c\} \\
& \operatorname{fut}(L B=) \cap \operatorname{lov}(B)=\{ \}
\end{aligned}
$$

thon everbes the kel.
c)



