A Driver for NFA (DFA):

 How to remove Backtracking - 1$$
\mathrm{f}(\gamma)=\begin{aligned}
& \text { accept if move } 1^{*}(\gamma) \cap \mathrm{F} \neq\{ \} \\
& \text { noaccept otherwise }
\end{aligned}
$$

movel

	b	ε	
$\{0\}$	$\{1\}$		
$\{1\}$	$\{2\}$		
$\{2\}$	$\{0\}$	$\{1,2\}$	
$\{1,2\}$	$?$	$?$	

The states of move1 are Sets of the states of move

How to remove Backtracking Function move1: S x $\Sigma>S$

How to computes transitions using Set of States instead of single States

> Let $\operatorname{move} l(\mathrm{~S}, \mathrm{c})=\operatorname{Clos}\left(\cup_{\mathrm{s} \in \operatorname{Clos}(\mathrm{s})}\{\operatorname{move}(\mathrm{s}, \mathrm{c})\}\right)$ remember: $\operatorname{Clos}(\mathrm{S})=\mathrm{S} \cup \operatorname{Clos}\left(\cup_{\mathrm{s} \in \mathrm{S}} \operatorname{move}(\mathrm{s}, \varepsilon)\right)$
movel
move

a	b	ε
0	$\{1\}$	

	a	b	
\{0\}	\{1\}		
\{1\}	\{2\}		
\{2\}	\{0\}	$\{1,2\}$	
\{1,2\}	$\{0,2\}$?	

A Converter from NFA to DFA

based on compiling move1 into a Transition Table Preliminaries Definitions:

Structures and Notational Conventions

Star: Set $->(\Sigma \rightarrow$ Set $)$ is a function representing tables

- with Set-indexed rows and Σ-indexed columns
- Star[s] - is the s-indexed row of table Star
- Star[s]c - is the value at the row \mathbf{s} and column \mathbf{c}
- Star does not contain any $\boldsymbol{\varepsilon}$-indexed column

A Basic Operation on Tables

$$
\operatorname{merge}(\text { move }, S)=\operatorname{merge}-\operatorname{row}(\{\operatorname{move}[\mathrm{s}] \mid \mathrm{s} \in \mathrm{~S}\})
$$

$$
\forall_{c \in \Sigma} \operatorname{merge-row}\left(\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{k}}\right\}\right) \mathrm{c}=\left(\cup_{1 \leq i \leq \mathrm{k}} \operatorname{Clos}\left(\mathrm{R}_{\mathrm{i}} \mathrm{c}\right)\right)
$$

	digit	.	ε
0	1		1
1	3	2	$\{1,3\}$
2		2	
3	0	4	
4	4	5	
5	6		
6	6		

$$
\text { merge-row }(\{0,1,3\})=\begin{array}{|l|l|}
\hline 0,1,3\} & \{2,4\} \\
\hline
\end{array}
$$

A Converter from NFA to DFA

based on compiling move1 into a Transition Table Implementation: A Routine

Table movestar() //DFA Transition Table.

\{EntryStar = \varnothing;
List $=\operatorname{Clos}\left(\left\{\mathrm{s}_{0}\right\}\right)$;
while (List \neq emptylist) $\{$ $\mathrm{S}=$ firstout(List); if ($\mathrm{S} \notin$ EntryStar) \{ add(S,EntryStar); Star[S]= merge(move,S); List=List+\{Star[S]c |c $\in \Sigma\}$; \}
\}
return Star;

Results automaton A^{\prime}

$$
\mathbb{S}=\{0,1,2\}, \Sigma=\{a, b\},
$$

$$
\text { move }=\{\ll 0, \mathrm{a}>1>, \ll 1, \mathrm{~b}>2>
$$

$$
\ll 2, b>2>\}
$$

$$
s_{0}=0, \mathbf{F}=\{2\} \geqslant
$$

Renaming $\{1,2\}$ with 2

$$
\begin{aligned}
& \text { Applying it to automaton } A \\
& \text { \&S }=\{0,1,2\}, \boldsymbol{\Sigma}=\{\mathrm{a}, \mathrm{~b}\} \text {, } \\
& \text { move }=\{\ll 0, a>\{1\}>\text {, } \\
& \ll 1, \mathrm{~b}>\{1,2\}>\} \\
& s_{0}=0, \mathbf{F}=\{2\} \geqslant
\end{aligned}
$$

A Driver for DFA

```
Answer StarDriver()
    {s= s
        nextchar(c);
        while(c\not=eof) and (s\not={}) {
            s=Star[s]c;
                nextchar(c);}
        if ((s\not\in\textrm{F}) or (c\not=eof)) return 'noaccept'
        return 'accept';
    }
```

Apply it to automaton B
$\langle S=\{0,1,2\}, \Sigma=\{a, b\}$,
meve $=\{\ll 0, \mathrm{a}>1>, \ll 1, \mathrm{~b}>2>$,
$\ll 2, b>2>\}$
$s_{0}=0, \mathbf{F}=\{2\} \geqslant$
when scanning: abb\$

```

\section*{How to build Scanner for a Lexics L}

Use the following steps in order to obtain the structure on the right side:
1. Define a Regular Grammar G for L;
2. Check \(\mathrm{L}(\mathrm{G})=\mathrm{L}\) holds;
3. Define an Automaton A for G (using a safe transformation technique)
4. Convert A into a deterministic B having a Transition Table T.
5. Use the following setting:

Analysis Table \(=\mathrm{T}\)

2-buffered input


How to do step 3? By extending Thompson's stransformation to work on grammars, or by using other techniques (dotted automata)

\section*{Conclusions}
- Lexics is a Regular Language
- Regular Languages is a subset \(\mathfrak{R} \subseteq 2^{\Sigma^{*}}\) of languages on \(\Sigma\) :
- let \(\mathrm{F}=\left\{\mathrm{I} \subseteq \Sigma^{*} \mid \# \mathrm{I}<\mathrm{n}\right.\), for some natural n\(\}\) be the set of all finite languages on \(\Sigma\) :
\(\mathfrak{R}\) can be obtained from F by finite unions and concatenations, and Kleene's star
\[
\mathfrak{R}=\mathrm{F}_{\left\{\cup, \mathrm{X}_{\bullet},{ }^{*}\right\}}
\]
- FSA furnishes linear analyzers for \(\mathfrak{R}\)

\section*{Basic Properties (1)}

Let L1 and L2 be Regular.

Union: is L1 UL2 Regular? yes
Product: is L1 \(\times\) L2 Regular? yes
Intersection: is L1 \(\cap \mathrm{L} 2\) Regular? yes
Complement: is C(L1) Regular? yes
Decidability: Exists \(g\) computable such that \(g(L)=y e s ~ i f f ~ L\) is Regular?

\section*{Basic Properties (2)}

\section*{Let \(\mathbf{L}\) be Regular, and} \(\mathrm{A}=\left\langle\mathrm{S}, \sum, \mathrm{m}, \mathbf{s}_{0}, \mathrm{~F}>\right.\) be \(\mathrm{L}(\mathrm{A})=\mathrm{L}\)

Th ifteration Pumping Lemma \(\mathrm{L}, \quad \# \mathrm{~S} \in \boldsymbol{K}\)
If \(x \in L,|x|>\# S\), then: \(\exists u, w, v\) such that \(0<|w| \leq \# S, x=u . w . v\),
\(\mathrm{u}, \mathrm{w}^{\mathrm{k}}, \mathrm{v} \in \mathrm{L}\), for each natural \(k\)

\section*{L, \#S}

If \(x \in L,|x|>\# S\), then: \(\exists \mathrm{u}, \mathrm{w}, \mathrm{v}\) such \(0<l u w 1 \leq \# S, x=u . w . v\),

Apply it to prove that \(L \equiv\left\{a^{n} b^{n} \mid n\right.\) naturall \(\}\)
is not Regular
u.w., \(\mathrm{v} \in \mathrm{L}\), for each natural \(k\)

\section*{Exercise: Application of the Iteration Theorem}

\section*{Problem. Prove that the language \(L=\left\{a^{n} b^{n} \mid n \in \mathcal{N}, a, b \in \Sigma\right\}\), for given \(\Sigma\), is not a regular language}

Proof. (by contradiction, using pumping lemma)
- Assume L be regular.
- Then, the pumping lemma applies to L. Let m be the characteristic constant \#S, of \(L\), mentioned in the lemma.
- Then, let \(\mathrm{x}=\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{m}}\) :
\(\cdot x \in L\), since \(m \in \mathcal{K}\)
- \(|\mathrm{x}|=2 \mathrm{~m}>\mathrm{m}\), since \(\mathrm{m}>0\)
- hence, \(\exists \mathrm{u}, \mathrm{w}, \mathrm{v}\) :
- \(\mathrm{x}=\mathrm{uwv}\)
- luw \(\leq \mathrm{m}\) \& \(|w| \neq 0\) :
- hence, \(\exists \mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3\) :
\(\cdot m 2 \neq 0 \quad \& \quad m=m 1+m 2+m 3 \quad \& \quad w=a^{m 2} \quad \& \quad x=a^{m 1} a^{m 2} a^{m 3} b^{m}\)
- hence:
- \(\mathrm{a}^{\mathrm{m} 1} \mathrm{a}^{\mathrm{m} 3} \mathrm{~b}^{\mathrm{m}} \in \mathrm{L}\) according Lemma since \(\mathrm{k} * \mathrm{~m} 2=0\) for \(\mathrm{k}=0\)
\(\cdot \mathrm{a}^{\mathrm{m} 1} \mathrm{a}^{\mathrm{m} 3} \mathrm{~b}^{\mathrm{m}} \notin \mathrm{L}\) by definition of \(L\) since

\section*{Exercises}

Consider the lexics \(L\) of the numerals for integer and fixed-point numbers in decimal notation and arbitrary number of digits.
1. Give separate regular expressions for: integers, S , fixed point integers, F , the union of the two ones.
2. Give a regular grammar for lexics L.
3. Give an automaton for lexics L.
4. Give a deterministic automaton for \(L\).
5. Give deterministic recognizer \(Y\) for lexics \(L\)
6. Modify Y for recognizing word sequences of L, separated by any character not in \(\left\{0, . ., 9,{ }^{\prime} \cdot\right\}\). The new recognizer generates a sequence of \(\langle\mathrm{pi}, \mathrm{li}>\) where pi=position, li=length of the i-th recognized word. (words not in L are ignored)
7. Modify Y so that it recognizes the first, longer (7.1- shorter) word of the lexics that occur in a string on an alphabet containing \(\left\{0, . ., 9,{ }^{\prime}.\right\}\).

\section*{Exercise - 1}
1. Give separate regular expressions for: integers, \(S\), fixed point integers, F , the union of the two ones.
```

S = digit digit*
F = digit*.digit digit*
Digit = 0|1|... |9

```

\section*{Exercise - 2}
2. Give a regular grammar for lexics \(L\).
```

S = digit digit*
F = digit*.digit digit* It is Regular since: digit < S,F
Digit = 0|11. . . }1
or
$\mathrm{F}=\operatorname{digit}^{*} . \mathrm{S}$ $\mathrm{S}=$ digit digit* It is Regular since: digit $<\mathrm{S}<\mathrm{F}$ Digit $=0|1| \ldots \mid 9$

```

\section*{Exercise - 3}

\section*{2. Give an automaton for lexics \(L\).}

Remark. We simplify the construction by using digit as a character, thus avoiding the use of 10 distinct edges for each...

\(\mathrm{F}=\operatorname{digit}^{*} . \operatorname{digit}\) digit*

digit

> digit digit*| digit*. digit digit*


\section*{Exercise - 4}

\section*{4. Give a deterministic automaton for \(L\).}

\begin{tabular}{|c|c|c|}
\hline & digit & • \\
\hline\(\{0\}\) & \(\{0,1\}\) & \(\{2\}\) \\
\hline\(\{0,1\}\) & \(\{0,1\}\) & \(\{2\}\) \\
\hline\(\{2\}\) & \(\{3\}\) & \\
\hline\(\{3\}\) & \(\{3\}\) & \\
\hline
\end{tabular}

\section*{Exercise - 5}

\section*{5. Give deterministic recognizer Y for lexics L}
\begin{tabular}{|c|c|c|c|}
\hline Answer Star Driven() & & \multicolumn{2}{|l|}{Tabella di analisi: Star} \\
\hline \[
\left\{\mathrm{s}=\mathrm{s}_{0}\right.
\] & & digit & - \\
\hline \begin{tabular}{l}
nextchar(c); \\
while \((c \neq e o f)\) and \((s \neq\{ \})\)
\end{tabular} & & \{0,1\} & \{2\} \\
\hline \(\mathrm{s}=\mathrm{Star}[\mathrm{s}] \mathrm{c}\); & & \{0,1\} & \{2\} \\
\hline nextchar(c);\} & & \{3\} & \\
\hline if \(((\mathrm{s} \notin \mathrm{F})\) or \((\mathrm{c} \neq \mathbf{e o f}))\) answer='noaccept' & & \{3\} & \\
\hline
\end{tabular}

\section*{Exercise - 6}
6. Modify Y for recognizing word sequences of \(L\), separated by any character not in \(\{0, . ., 9, ’\).\(\} . The new recognizer generates a sequence\) of \(\langle\mathrm{pi}, \mathrm{li}\rangle\) where pi=position, li=length of the i-th recognized word. (words not in L are ignored)
```

Answer StarDriven()
{input=0;
while(nextchar(c) != eof){
length=0; cur=input;
s= so,
while(c\in\Sigma\&\&\& s}={{})
s=Star[s]c;
nextchar(c); //incr. anche input
length++;}
if (s\inF) answer= answer ++ <cur,length>;}
return (answer);}

```

Tabella di analisi: Star
\begin{tabular}{|c|c|c|}
\hline & digit & • \\
\hline\(\{0\}\) & \(\{0,1\}\) & \(\{2\}\) \\
\hline\(\{0,1\}\) & \(\{0,1\}\) & \(\{2\}\) \\
\hline\(\{2\}\) & \(\{3\}\) & \\
\hline\(\{3\}\) & \(\{3\}\) & \\
\hline
\end{tabular}```

