
Lecture13-14
Procedural, Functional Abstractions and

Parameter Passing

prof. Marco Bellia, Dip. Informatica, Università di Pisa

March 18, 2013

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Control Abstractions: Parameter Passing

Parameters: Where and Why

Procedure and Function Invocation: In-depth

By Value Parameter Passing: FUI

By Name P. P. (command and expression): FUI

By Need P. P.: Implementative variant

By Function, Procedure P. P. (Closure Transmission):
Implementative variant

By reference P.P.: FUI

By Constant P.P.: FUI

By Result P.P.: FUI

By Value-Result P.P.: FUI

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Parameters: Where and Why

Where. Anywhere an abstraction (i.e. generalization) is introduced, the
problem of its use in possibly, many different contexts, must be considered;

The use in a specific context requires an instantiation mechanism which
intimately connects the abstraction to the context of use;

Why.The connection is realized through the use of formal parameters (with
which abstraction is made) and the actual parameters which express the context
in which abstraction must be used;

Then, the instantiation of the abstraction consists in the creation of the bindings
which connect each formal parameter to the corresponding actual parameter.;

The mechanism that creates this connection is called Parameter Passing (or P.
Transmission).

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Procedure and Function Invocation: In more depth

Parameter Passing consists of 3 distinct steps:

Transmission: It evaluates the arguments (i.e. actual parameters)
according to the kind of transmission that has been specified (in the
corresponding formal parameter) and results into a list, the transmission
list, of denotable or storable values, one for each argument;
Binding: It makes a binding between each formal parameter and the
corresponding value of the transmission list. The effective form of the
binding depends on the kind of transmission of the formal parameter;
Return: It binds back the values, computed by body execution, to the
arguments that have been passed by one of various form of by result
parameter passing. It results in various modifications of the store.

Hence, the effective structure of the invoked code consists of:

Prologue: it includes code for the steps Binding;
Body: it corresponds to the body of the procedure or function
Epilogue: It includes code for the step Return

Then, where is put the code for the step Transmission?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Procedure and Function Invocation: In more depth
The Structure of General Invocation

Q: Then, where is put the code for the step Transmission?

A: In the code for invocation, of course.

Step Transmission is formally defined by function T in definitional tables.

Auxiliary Syntactic Domains
A ::= byValue E |byName E |byReference E

|byConst E |byResult E |byValueResult E

Semantic Functions
M[[Call I (A1...An)]]ρ : Store→ Store

T : An → Env→ Store→ ((Val∪Den)n×Store)⊥

M[[Call I (A1...An)]]ρ(s) =
Let{((v1...vn), sn)=T [[(A1...An)]]ρ(s), F(f)=ρ(I)}

f(v1...vn)(sn)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Procedure and Function Invocation: In more depth
The Structure of General Declaration

Step Binding is formally defined by function B
Step Return is formally defined by function R
DE is for stressing that the declaration of a procedure is an invariant of the store

Auxiliary Syntactic Domains
P ::= byValue I |byName I |byReference I

|byConst I |byResult I |byValueResult I

Semantic Functions
D[[D]] : Env→ Store→ (Env× Store)⊥
DE [[Proc I (P1...Pn) C]] : Env→ Env

D[[D]]ρ = λs.(DE [[D]]ρ, s)
B :Pn → (Env× (Val ∪ Den)n × Store)→ (Env×()× Store)⊥
R : Pn → Env→ ((Val ∪ Den)n × Store)→ Store⊥

DE [[Proc I (P1...Pn) C]]ρ =
Let{f = λ(v1...vn).λs.sr

where{(ρn, ,sn)=B[[(P1...Pn)]](ρ, (v1...vn), s)}
{sc =M[[C]]ρn (sn)}
{sr =R[[(P1...Pn)]]ρn((v1...vn), sc)}

bind(I, F(f), ρ)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Value Parameter Passing: FUI

By Value Parameter Passing : T ,B,R
Auxiliaries Semantic Functions
T [[(A1...An)]]ρ(s) = T1[[A1]]ρ ◦ ... ◦ T1[[An]]ρ ((), s)
T1[[byValue AMem(E)]]ρ((v1...vm), sm) =

Let{(vm+1, sm+1)=⊥S
E[[E]]ρ(sm)}((v1...vmVM(vm+1)), sm+1)

B[[(P1...Pn)]]ρ((v1...vn), s) = (B1[[P1]] ◦ ... ◦ B1[[Pn]]◦↓3
1−3)(ρ,(v1...vn),s)

B1[[byValue Ik]](ρk−1, (vk...vn), sk−1) =
Let{(lk, s′k)=allocate(sk−1)}
{sk =upd(lk, vk, s′k), ρk =bind(Ik, lk, ρk−1)}

(ρk, (vk+1...vn), sk)

R[[(P1...Pn)]]ρ((v1...vn), s) = (R1[[P1]]ρ ◦ ... ◦ R1[[Pn]]ρ◦↓2
2)((v1...vn), s)

R1[[byValue Ik]]ρ((vk...vn), sk−1) =
Let{sk = sk−1}((vk+1...vn), sk)

The actual parameter must be an expression whose evaluation must result a
storable value: This is stressed by AMem(E)

Binding creates a mutable value lk

Return does nothing

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Value Parameter Passing: FUI /2

Use.

It is the default parameter passing of almost all languages
(Algol 60, Simula, Pascal, C/C++, ML, Ocaml, Ada, C#,
Java)
It makes a One-way connection: The callee has a copy of the
storable value in the caller context
It is used in some programming techniques, for passing values
to the caller and for using the formal parameter as a mutable
for temporary values or for an accumulator
No Side Effects in the(store of) caller context

Implementation

Similar to that of the variable declaration with initialization

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Name Parameter Passing: FUI /1

By Value Parameter Passing : T ,B,R
Auxiliaries Semantic Functions
T [[(A1...An)]]ρ(s) = T1[[A1]]ρ ◦ ... ◦ T1[[An]]ρ ((), s)
T1[[byName ACodeC(C)]]ρ((v1...vm), sm) = ((v1...vmZ(M[[C]]ρ)), sm+1)
T1[[byName ACodeE(E)]]ρ((v1...vm), sm) = ((v1...vmZ(E[[E]]ρ)), sm+1)

B[[(P1...Pn)]]ρ((v1...vn), s) = (B1[[P1]] ◦ ... ◦ B1[[Pn]]◦↓3
1−3)(ρ,(v1...vn),s)

B1[[byName Ik]](ρk−1, (vk...vn), sk−1) =
Let{ρk =bind(Ik, vk, ρk−1), sk =sk−1}

(ρk, (vk+1...vn), sk)

R[[(P1...Pn)]]ρ((v1...vn), s) = (R1[[P1]]ρ ◦ ... ◦ R1[[Pn]]ρ◦↓2
2)((v1...vn), s)

R1[[byName Ik]]ρ((vk...vn), sk−1) =
Let{sk = sk−1}((vk+1...vn), sk)

Auxiliaries Semantic Functions
Z : Code→ Den (injection)

The actual parameter must be a Code: This is stressed by ACodeC(C) and
ACodeE(E)

Binding creates a binding between name of the formal parameter and the Code

Return does nothing

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Name Parameter Passing: FUI /2

The code, passed to the callee, is closed with the bindings (i.e. environment) of
the caller;
The code may be an expression (possibly, an anonymous function, lambda
astrazione) in the scope of the environment of the caller;
The code may be a denotable expression that is used from caller/callee for
sharing a mutable value
Hence, E[[]] must be extended on the expressions Z(v) that are bound to formals

Semantic Functions

E[[Val(I)]]ρ(s)=

 ...v(s) if ρ(I) ≡ Z(v),
for v ∈ Store→(Val×Store)⊥

E[[Den(I)]]ρ(s) =

{
...

(l, s) if (ρ(I) ≡ Z(l)), l ∈ Loc

Example

By using by name passing, in Algol 60, a code for the computation of expressions with
summation like the one below:

z = y + 5
∑

n≤x≤m

(3x2 − 5x + 2)

introduces a specific function for
∑

and invokes it, as an operator, in the expression.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Name Parameter Passing: FUI /3

The code may be an expression for repeated, delayed evaluation

The code may be a denotable expression for caller/callee value sharing

Example

In Algol 60, a code for the computation of expressions with summation, may introduce
a specific function for

∑
and invokes it, as an operator

z := y + 5
∑

n≤x≤m

(3x2 − 5x + 2)

real procedure sum(expr, i, low, high);
value low, high;
real expr;
integer i, low, high;

begin

real rtn;
rtn := 0;
for i := low step 1 until high do

rtn := rtn + expr;
sum := rtn;

end

z := y + 5 ∗ sum(3 ∗ x ∗ x− 5 ∗ x + 2, x, n, m);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Name Parameter Passing: FUI /4

The code may be a simple, or structured, command (possibly, a procedure or a
procedural abstraction) in the scope of the environment of the caller;
Hence, C and M[[]] must be extended on the commands Z(v) that are bound to
formals

Domini Sintattici
C ::= ... Exec I | ... (To execute the code bound)

(to the parameter)
Funzioni Semantiche
M[[Exec I]]ρ(s) = Let{Z(v) = ρ(I)}v(s)

Example

The structured commands of the language, like while-do, can be user defined in the
following way: while x ≥ y + z do begin x := x− y; z := z + y end

void procedure while-do(expr, com);

bool expr;
void com;

begin

if expr then begin

exec com; while-do(expr, com)

end;
end

while-do(x ≥ y + z, begin x := x− y; z := z + y end);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Name Parameter Passing: FUI /4bis

Example

while-do(x ≥ y + z, begin x := x− y; z := z + y end);

In Algol 60, commands must be embodied into a (possibly, parameterless) procedure
in order to be passed by name. Hence:

procedure while-do(expr, com);

bool expr; procedure com;
begin

if expr then begin

com(); while-do(expr, com)

end;
end

procedure B() begin x := x− y; z := z + y end;

...
while-do(x ≥ y + z, B);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Name Parameter Passing: FUI /5

Use.

Originally in Algol 60 as default and in Simula, as an alternative to by
value
But, no today language, of widespread use, has the by name parameter
passing: heavy to implement, inefficient computations, easy to use but
insidious (sharing, aliasing)
It has been abandoned in favour of by reference (Algol 68, Pascal) by
procedure, by function (Pascal), by need (Miranda, Haskell), by
value-result and by result (ADA)

The most powerful kind of parameter passing: The callee receives a code

from the caller (through which it can share the context of the caller)

Side effects (on the store, through the environment of the caller)
Aliasing (on the environment)
Control Abstractions can generalize also code instead of only data.
Call Back. Invoke by passing different code depending on the state
in which invocation runs (event programming)
It supports Normal/External Evaluation in Functional Languages:
Computation does not diverge where the function is defined

Implementation.

It introduces a new class of values (Z).
Thunk is used to implement Z: It is a parameterless closure similar to the
procedure B in the example on while-do.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Need Parameter Passing/1

Methodological-Implementative Variant of by Name (Miranda, Haskell)

It is restricted to expressions only (in non-denotable intepretation)

The passed expression is bound to the corresponding formal parameter

But the expression is evaluated only once:

The first time that the formal parameter is required for a value, the
expression is evaluated in the bindings of the caller
The value resulting from such a first evaluation, is used for all the next
evaluations of the parameter

Use

It perfectly, copes with Delay Computation in Functional Programming,
where side effects are forbidden;
It supports Normal/External Evaluation in Functional Languages in a not
expensive way
It supports lazy evaluation (when constructors use by need)

Implementation

the expression bound to the parameter is replaced by the value resulting
from the evaluation
It has a simple implementation, in Functional Languages, by using graph
reductions
Alternatively, by using memoization techniques

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Need Parameter Passing: FUI /2

Example

What about the program, in particular about the value computed by sum, when: 1)
parameter expr is by-need; 2) parameter i is by-need?

real procedure sum(expr, i, low, high);
value low, high;
real expr;
integer i, low, high;

begin

real rtn;
rtn := 0;
for i := low step 1 until high do

rtn := rtn + expr;
sum := rtn;

end

z := y + 5 ∗ sum(3 ∗ x ∗ x− 5 ∗ x + 2, x, n, m);

It is a methodological Variant of by-name: What about Side-effect and Aliasing?

When they happen, it is due to other mechanisms of the language (consider
expressions that have the assignment operator, or pointer operator, &, for
mutable values)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Procedure/Function Parameter Passing: FUI/1

Methodological-Implementative Variant of by Name (Algol 60, Pascal, delegates
in C#, method references in Java 8)
code to be passed, must be always encapsulated into an (possibly,
parameterless) abstraction
it is as powerful as by name

Use
Call-Back: Very well expressed

Higher-Order: Well expressed. However, it is not Functions as First Class

values, since:

currying: Hence, non partially evaluated applications
Functions as computed values

But denotable expressions, like second argument "x" in
sum(3 ∗ x ∗ x− 5 ∗ x + 2, x, n, m), must be used only through non-locals
of procedures or functions;

Implementazione.
It implements the closure: It is a procedure, or function, together with the
bindings of all its non-local identifiers, called the non-local frame;
Closures may be nameless functions as in the Lambda-Abstraction
constructor.

The non-local frame is chosen in different way, depending on the language

shallow binding: in the caller;
deep binding: in the introducer, or declarator.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Procedure/Function Parameter Passing: FUI/2

Example

In this case, procedure sum has first and second argument by function and by
procedure, respectively. To express it, we use keywords function and procedure.

real procedure sum(expr, p, low, high);
value low, high;
function expr;
procedure p;
real expr;
integer i, low, high;

begin

real rtn;
rtn := 0;
for i := low step 1 until high do

begin p(i); rtn := rtn + expr() end

sum := rtn;
end

Moreover, we modify the caller in order to include in it, the following declarations:
function myexpr(); begin myexpr:=3*x*x-5*x+2 end;

procedure myx(u); begin value u; integer u; x:=u end;

Hence, the statement is:
z:=y+5*sum(myexp, myx, n, m);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Procedure/Function Parameter Passing: FUI/3

In Caml parameter passing is by-value
However, since Caml is a Functional Language, it has functions as value.
Then, it implicitly, has, like all the other Functional Language, by Function
Parameter Passing
However, unlike Haskell, it has neither by-need nor lazy evaluation
But, both can be emulated by using suitable functions (Apply the same to

∑
)

Example

A way to deal with by-need and lazy evaluation in Caml.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Procedure/Function Parameter Passing: FUI/4

In Caml parameter passing is by-value

However, since Caml is a Functional Language, it has functions as value.

Then, it implicitly, has, like all the other Functional Language, by Function
Parameter Passing

However, unlike Haskell, it has neither by-need nor lazy evaluation

Apply the transformation delay and force to the rephrasing of
∑

in Ocaml

Example

Definition of the operator sum in Caml: Note the use of force in the use of argument
fExpr

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Procedure/Function Parameter Passing: FUI/4

In Caml parameter passing is by-value

However, since Caml is a Functional Language, it has functions as value.

Then, it implicitly, has, like all the other Functional Language, by Function
Parameter Passing

However, unlike Haskell, it has neither by-need nor lazy evaluation

Apply the transformation delay and force to the rephrasing of
∑

in Ocaml

Example

Definition of the operator sum in Caml: Note the use of delay in the definition of
argument Exp

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Reference Parameter Passing: FUI/1

By Reference Parameter Passing : T ,B,R
Auxiliaries Semantic Functions
T1[[byReference Den(E)]]ρ((v1...vm), sm) =

Let{(l, sm+1)=⊥S
E[[Den(E)]]ρ(sm)}((v1...vml), sm+1)

B1[[byReference Ik]](ρk−1, (vk...vn), sk−1) =
Let{ρk =bind(Ik, vk, ρk−1), sk =sk−1}

(ρk, (vk+1...vn), sk)

R1[[byReference Ik]]ρ((vk...vn), sk−1) =
Let{sk = sk−1}((vk+1...vn), sk)

The actual parameter must be a denotable expression whose evaluation must
result in a mutable value: This should be already checked by the analyzers in
the compiler/interpreter front-end

Binding creates an alias for such a mutable value. This alias results into:

Aliasing, if the actual parameter is a non-local variable of the callee: The
mutable value has two different name, in the callee, the parameter and
the non-local variable;
Sharing, if the actual parameter is not a non-local variable: The caller and
the callee have two private accesses.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Reference Parameter Passing: FUI/2

It is in all today Procedural Languages, of widespread use:

explicitly: Pascal, ADA, C]
implicitly, by pointer operator &: C, C++
implicitly, by sharing: Java(Objects are reference types with possibly
mutable, components)

Use

Two-way Transmission. The Caller and the Callee share the access to a
mutable value
It is used to pass values from the caller and to obtain back the computed
values from the callee.

But the two-way connection stays active for the entire execution of the

callee: Hence

Side Effects
Aliasing

may affect the execution of the callee

Implementazione.

A trivial copy in the environment, of the denotation of the mutable value.
This simplicity is the secret of its spread use

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Reference Parameter Passing: FUI/3

It is simple to implement but insidious to use

Example

It is simple to implement but is not prowerful

Example

Try do re-phrase in C the program for computing
∑

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Constant Parameter Passing: FUI/1

By Constant Parameter Passing : T ,B,R
Auxiliaries Semantic Functions
T1[[byConst AConst(E)]]ρ((v1...vm), sm) =

Let{(vm+1, sm+1)=⊥S
E[[E]]ρ(sm)}((v1...vmVD(vm+1)), sm+1)

B1[[byConst Ik]](ρk−1, (vk...vn), sk−1) =
Let{ρk =bind(Ik, vk, ρk−1), sk =sk−1}

(ρk, (vk+1...vn), sk)

R1[[byConst Ik]]ρ((vk...vn), sk−1) =
Let{sk = sk−1}((vk+1...vn), sk)

Auxiliaries Functions
VD : Val→ Den

The actual parameter must be a denotable immutable value: This should be
already checked by the analyzers in the compiler/interpreter front-end

Binding creates a binding between formal and value

Return does nothing

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Trasmissione by Constant/2

Use

It is used in ADA and in a few other Programming Languages
One-Way connection Caller-to-Callee. The callee has a copy of
the values of the caller
Used to pass read-only values
Guaranteeing the complete separation between the working
spaces of the caller and of the callee
Correctness: Value Integrity
No side effects

Implementazione.

Simple and quite Similar to that of by-reference except for the
kind of value that are passed

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Result Parameter Passing: FUI/1

By Result Parameter Passing : T ,B,R
Auxiliaries Semantic Functions
T1[[byResult Den(E)]]ρ((v1...vm), sm) =

Let{(l, sm+1)=⊥S
E[[Den(E)]]ρ(sm)}((v1...vml), sm+1)

B1[[byResult Ik]](ρk−1, (vk...vn), sk−1) =
Let{(lk, s′k)=allocate(sk−1)}
{sk =upd(lk,⊥Mem, s′k), ρk =bind(Ik, lk, ρk−1)}

(ρk, (vk+1...vn), sk)

R1[[byResult Ik]]ρ((vk...vn), sk−1) =
Let{w=look(ρ(Ik), sk−1)}{sk =upd(vk, w, sk−1)}((vk+1...vn), sk)

The actual parameter must be a denotable mutable value: This should be
already checked by the analyzers in the compiler/interpreter front-end

Binding creates a binding between formal and a mutable undefined value

Return copies the value associated to the mutable of the formal, into the value
associated to the mutable of the actual parameter.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Result Parameter Passing: FUI/2

Use.

It is used in ADA and in a few other Programming Languages
One-Way connection Calle-to-Calleer. The callee receives an
address where putting the computed value, and when it ends,
it puts the value in that address.
Used to pass write-only values
Guaranteeing the complete separation between the working
spaces of the caller and of the callee
Correctness: Value Integrity
No side effects

Implementation.

A plain implementation of what the denotational semantics
does in terms of modifications of environment and store

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Value-Result Parameter Passing: FUI/1

By Value− Result Parameter Passing : T ,B,R
Auxiliaries Semantic Functions
T1[[byValueResult Den(E)]]ρ((v1...vm), sm) =

Let{(l, sm+1)=⊥S
E[[Den(E)]]ρ(sm)}((v1...vml), sm+1)

B1[[byValueResult Ik]](ρk−1, (vk...vn), sk−1) =
Let{(lk, s′k)=allocate(sk−1), w=look(vk, sk−1)}
{sk =upd(lk, w, s′k), ρk =bind(Ik, lk, ρk−1)}

(ρk, (vk+1...vn), sk)

R1[[byValueResult Ik]]ρ((vk...vn), sk−1) =
Let{w=look(ρ(Ik), sk−1)}{sk =upd(vk, w, sk−1)}((vk+1...vn), sk)

The actual parameter must be a denotable, mutable value: This should be
already checked by the analyzers in the compiler/interpreter front-end

Binding creates a binding between formal and a mutable value whose associated
value is initialized with a copy of the value associated to the mutable value that
has been passed as argument

Return copies the value associated to the mutable of the formal, into the value
associated to the mutable of the actual parameter.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

By Value-Result Parameter Passing: FUI/2

Use.

It is used in ADA and in a few other Programming Languages
Two-Way connection. it receives an address where taking an
initial value for computation, and where putting the computed
value. When the callee ends, it puts the value in such an
address.
Guaranteeing the complete separation between the working
spaces of the caller and of the callee
Correctness: Value Integrity
No side effects

Implementation.

A plain combination of the implementation of by-value and of
by-result

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

Excercise

We decide to add an iterator for, to the language Ocaml. Ocaml already has an
iterator for but we want to add an iterator having the same structure and behaviour of
for of Ansi-C :

(a) Explain:

1. What is the difference of the two for and
2. How the structure and the behaviour of the new one should be;

(b) Give an abstract syntax and a denotational semantics of the new construct;

(c) Show the implementation, in Ocaml, of the new construct ;

(d) Discuss the mechanisms that have been used to do previous point;

(e) Apply the new construct in rephrasing the code below and comment about its
running:

int x=0;
int y=0;
for(x=y=10; x+y>x*y;x++){x=10; y=10}

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture13-14 Procedural, Functional Abstractions and Parameter Passing

