
Lecture 15-17
Advances in Control and Functional Abstractions

prof. Marco Bellia, Dip. Informatica, Università di Pisa

Apr. 15, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Control and Functional Abstractions: Advanced Features

Decomposition based Programming and Fully Abstract
Abstractions

Problems in Binding and in Scope of Identifiers: An example

Deep and Shallow bindings in Functions Passed as Parameters

Lambda Abstractions

Shallow binding: FUI

Inductive Programming and Recursively Defined Abstractions

Memoization e Tail Recursion: Two Programming Techniques

Divide and Conquer Programming Methodology

Functions as First Class Values: Higher Order Programming
Methodology

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Decomposition based Programming and Fully Abstract
Abstractions

Decomposition based Programming consists in:

Breaking a problem in distinct, autonomous, independent, subproblems.
The solution of the problem is then, obtained from a suitable composition
of the solutions of the sub-problems
Each subproblem may in turn, to be solved by using the same
methodology.

Hence, in order to support the latter point, a Procedural Language must be
equipped with Fully Abstract abstractions.

Fully Abstract abstraction requires that Procedures/Functions are Programming

Units of the language, i.e. they have the same structure of the program:

Local entity identifiers;
Such entities must Include Nested Abstractions;
Hence, Non-local entity identifiers;
Control and Data structures as in the main program structure;
In addition: Parameter Passing for the caller/callee connection
In addition: Return/Exit for giving back the control

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Problems in the binding and in the Scope of Identifiers: An
Example

By using Decomposition Based Programming, we can produce the program
structure below:

Example

{...
type T =int× int→ bool;
int u...
function bool F1(int x, int y){...u...};
procedure P(T g){int u....}
function T Q(){

int u ...
function bool F2(int x, int y){...u...};
...
P(F1); ...P(F2); return F2
} ...

F1(...); ... P(Q()); ...}

The function that is bound to identifier F2 survives to the binding of F2: What
are its nonlocal bindings?
What is the binding of u? In the invocations, within Q, it could be always, the
binding of Q (shallow binding) or otherwise, the binding of the main block, in
P(F1), and the one of Q, in P(F2) (deep binding).

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Nonlocal Bindings in Functions Passed as Parameters/1

In principle, four different choices:

1) Deep Binding in Static Scope: Nonlocal Bindings are those active when
Function has been defined

2) Shallow Binding in Static Scope: Nonlocal Bindings are those active when
Function applies

3) Deep Binding in Dynamic Scope: Nonlocal Bindings are those active
when Function has been defined

4) Shallow Binding in Dynamic Scope: Nonlocal Bindings are those active
when Function applies

Each choice leads to a different way of programming with functions and a
different way of using Decomposition Based Programming

However, solution 2 is unused, in practice, whilst solution 3 is known as Funarg
in Lisp

We will consider 1 in detail.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Lambda Abstractions: Nameless Functions

The choice on how select the nonlocal bindings, is also in parameter passing by
procedure

But first, we consider a new construct for defining functions in a program

This construct is named Lambda Abstraction: For instance, fun x→ x = 5 is a
lambda abstraction in Ocaml, and similarly, (x)→ x == 5 will be in Java 8.

Table12bis− Passing Functions as Values
Syntactic Domains
D ::= ... | Function I(P1 I1 ... Pn In) E | ...
E ::= ... | A | Lambda(P1 I1 ... Pn In) E | ...

Lambda Abstraction is an expression;

Lambda Abstraction, when evaluated, results a nameless function

It is used as a denotable value, in parameter passing (Functional Languages)

It is used as a storable value in some today languages (JavaScript, C#,...)

The mechanism could be enriched in order to express recursively defined,
nameless functions

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Lambda Abstraction: The Computed Function

The example below, involves three distinct lambda abstractions, all used in
parameter passing

Table12bis− Passing Functions as Values
Domini Sintattici
D ::= ... | Function I(P1 I1 ... Pn In) E | ...
E ::= ... | A | Lambda(P1 I1 ... Pn In) E | ...

When nonlocals occur, the function defined by the lambda abstraction, depends
from the binding mechanism, used in the language, for function passing.

Example

{...type C(t) =...//a collection; Tf(t) = t→bool; To(t) = t×t→t;...
function C(t) Filter(C(t) c, Tf(t) r){....};
...{...C(int)v = ...;

....Filter(v, fun x→ x>5)...//greater than 5

....Filter(v, fun x→ x<=5)...//lesser or equal to 5
...{...type T(t) = C(t)×Tf(t)→C(t);

function C(t) QuickSort(C(t) c, T(t) f, To(t)o){....};
....QuickSort(v, Filter, fun(x, y)→ (x>y)?y : x)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Deep Binding in Static Scope/1

Table12.1−Deep Binding in Static Scope
Semantic Functions
DE [[D]] : Env→ Env⊥
DE [[Function I(P1...Pn)E]]ρ = bind(I, F(g), ρ)
where{g = λ(v1...vn).λs.(vr, sr)

where{(ρn, ,sn)=B[[(P1...Pn)]](ρ, (v1...vn), s)}
{(vr, sc)=[[E]]ρn(sn)}
{sr =R[[(P1...Pn)]]ρn((v1...vn), sc)}

Auxiliary Functions
F : VFun→ Den
∈VFun : Val→ TruthV
VFun ::= (Val ∪ Den)n → State→ (Val× State)⊥
Den ::= Loc + ProcFun + VL + Code + VFun

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Deep Binding in Static Scope/2

Table12.1−Deep Binding in Static Scope
Semantic Functions
E[[E]]ρ : State→ (Val× State)⊥

Function Invocation
E[[Call I(A1...An)]]ρ(s) = f(v1...vn)(sn)

where{((v1...vn), sn)=T [[(A1...An)]]ρ(s), F(f)=ρ(I)}
Lambda Abstraction introduction

E[[Lambda(P1...Pn)E]]ρ(sd) =
λ(v1...vn).λs.(vr, sr)

where{(ρn, ,sn)=B[[(P1...Pn)]](ρ, (v1...vn), s)}
{(vr, sc)=[[E]]ρn (sn)}
{sr =R[[(P1...Pn)]]ρn((v1...vn), sc)}

Parameter Passing : By Function
T1[[(Fun(E))]]ρ((v1...vm), sm) =

Let{(vm+1, sm+1)=⊥S
E[[E]]ρ(sm)}((v1...vmvm+1), sm+1)

B1[[Fun Ik]](ρk−1, (vk...vn), sk−1) =
Let{ρk =bind(Ik, vk, ρk−1)} (ρk, (vk+1...vn), sk)

R1[[Fun Ik]]ρ((vk...vn), sk−1) =
Let{sk = sk−1}((vk+1...vn), sk)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Other Uses of Function/Procedure in Parameter Passing

Example

How the definitions in the two previous slides, have to be modified
in order to deal with:
• Shallow Binding in Static Scope?
• Deep Binding in Dynamic Scope?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Recursively Defined Abstractions: FUI

Control and Functional Abstractions are needed for Inductive Programming
Methodology (IPM)

IPM requires Recursive Functions and Procedures

Recursive Functions and Procedures are usually introduced by combining:
Naming (of the function) + Scope (including the function definition)

Table12.ter − Recursive Functions
Semantic Functions
DE [[D]] : Env→ Env⊥
DE [[Function I(P1...Pn)E]]ρ = Yδ.bind(I, F(g), ρ)

where{g = λ(v1...vn).λs.(vr, sr)
where{(ρn, ,sn)=B[[(P1...Pn)]](δ, (v1...vn), s)}

{(vr, sc)=[[E]]ρn (sn)}
{sr =R[[(P1...Pn)]]ρn((v1...vn), sc)}

It can be easily reformulated for functions with Shallow Binding.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Inductive Programming Methodology: Use and
Implementation

Use: Inductive Programming Methodology, IPM

IPM: The problem solution uses an inductive algorithm

It requires a well founded ordering, "<", on the data of the definition
domain: Each value must have, only finite, descending, chains of
predecessors w.r.t "<"

The calculated value at each point of the definition domain, depends on
the calculated values on the (finitely many) predecessors of the point.
Recursively Defined Abstractions behave perfectly, in rephrasing this kind
of programming

Implementation of Recursively Defined Abstractions

Stack of AR’s: The active AR’s are as many as the predecessors on which
the computation runs
Memoization reduces the number of the required AR’s
Tail Recursion removes the need for all them but one

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Memoization

Memoization reduces the number of the required AR’s in recursive functions

A memoized function remembers all the values that it has computed in the

previous invocations: Then it does not re-computes them.

Efficiency
Complexity: Memoized factorial may run with constant complexity whilst
memoized fibonacci with linear complexity.

Haskell has a mechanism for declaring a function to be built memoized

All such mechanisms are based on a (local to function or global) hash table

The table stores all the computed invocations, from the function, in a way
similar to the example, below

Example

let rec fact = fun n→ match (hash fact n) with

(true, u)→ u

| otherwise→ match (hash fact (n− 1)) with

(true, u)→ let ret = n ∗ u in ((set fact n ret); ret)
| otherwise→ let ret = n ∗ (fact(n− 1))

in ((set fact n ret); ret)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Tail Recursion

Tail Recursion removes the need for the use of a chain of AR’s of size equals to
the number of predecessors on which function has to be invoked

A function g is said to be tail recursive iff the value that it computes, at each
invocation of g, in the function body, is the value that the function returns;

A very few of the inductive algorithms are phrased using tail recursive function
definitions

Example

function int fact(int n){
(n = 0) ? 1 : n ∗ fact(n− 1); }

But many inductive algorithms are trivially rephrased in that way

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Tail Recursion: Rephrasing of Inductive Definitions and
Implementation

A very few of the inductive algorithms are phrased using tail recursive function
definitions

Example

function int fact(int n){
(n = 0) ? 1 : n ∗ fact(n− 1); }

But many inductive algorithms are trivially rephrased in that way

Example

function int factT(int n, int r){
(n = 0) ? r : factT(n− 1, n ∗ r); }

Implementation:

Each inner invocation, of a tail recursive function, uses the same AR of
the first invocation;
By copying in it, the new values of the parameters
Any other component of AR stays unchanged (cd, cs, ret, val) or is reset
(pc, ri)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Divide and Conquer Programming Methodology/1

It extends Inductive Programming and Decomposition based Programming

1 The problem is broken into sub-problems, but, of correlated kind

correlation is due to the use, in the sub-problems, of the same
functionalities that we are inductively defining and using in giving
the solution of the initial problem

2 In considering, each sub-problem, we distinguish two cases:

2.a The problem has immediate solution: Then problem stops by giving
the solution

2.b Otherwise: Otherwise: step (1) is iterated on the sub-problem

Example

{.... type Toint = int×int→bool;
...{...Cintv = ...;
{...
function Cint QuickS(Cintc, Tointo){

if (Size(c)<2) return c;
{int u = Sel(c); Cint gt = Filter(c, fun x→o(u, x));
Cint lt = Filter(c, fun x→o(x, u));
return Append(QuickS(lt, o), AddE(c, QuickS(gt, o)));
};

....QuickS(v, fun(x,y)→(x>y)?y:x)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Divide and Conquer Programming Methodology/2

A Very Powerful Definition of the Quicksort Algorithm that applies to whatever data structure and, to
whatever ordering relation for such data. It uses:

polymorphisms and
by function passing parameters.

Example

{... type C(t) = ...; Tf(t) = t→bool; To(t) = t×t→bool; ...
function int Size(C(t) c){....}; function t Sel(C(t) c){....};
function C(t) AddE(t u, C(t) c){....};
function C(t) Append(C(t) c1, C(t) c2){....};
function C(t) Filter(C(t) c, Tf(t) r){....};
...
{...C(int)v = ...;
{...type Tz(t) = C(t)→int; Ta(t) = C(t)×C(t)→C(t);

Te(t) = t×C(t)→C(t); Ts(t) = C(t)→ t;
function C(t)QuickS(C(t)c,Ts(t)s,Tz(t)z,Ta(t)a,Te(t)e,Tf(t)f,To(t)o){

if(z(c)<2) return c;
{t u = s(c); C(t) gt = f(c, fun(x)→o(u, x));
C(t) lt = f(c, fun(x)→o(x, u));
return a(QuickS(lt, s, z, a, e, f, o), e(u, QuickS(gt, s, z, a, e, f, o)));
};

....QuickS(v, Sel, Size, Append, AddE, Filter, fun(x,y)→(x>y)?y:x)

But there is a bit of confusion in the use of the data to be manipulated, and of the operations to be used
for that goal: Its Reading is difficult

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Divide and Conquer Programming Methodology: Use of
Interfaces/3

But there is a bit of confusion in the use of the data to be manipulated, and of the operations to be used
for that goal: Its Reading is difficult

should always be passed the operations of the data C(t)

not at all, if the language has Abstract Data Type, or otherwise, Objects, Classes containing the local
definitions for: Sel, Size, Append, AddE and Filter.

Even better, (Haskell, Java) Interfaces that constrain data to a set of classes that satisfy some
requirements:

Class Ord(t) => C(t) where //Definitions of the Class operations

Sel...; Size...; Append...; AddE...; Filter....
out of the class, operations are referred by prefixing the name with the Class name and a dot (similarly to
the field selector of the record)

Example

{.... type To(t) = t×t→bool;
...{...C(int)v = ...;
{...
function C(t) QuickS(C(t)c, To(t)o){

if (C(t).Size(c)<2) return c;
{t u = C(t).Sel(c); C(t) gt = C(t).Filter(c, fun x→o(u, x));
C(t) lt = C(t).Filter(c, fun x→o(x, u));
return C(t).Append(QuickS(lt, o), C(t).AddE(c, QuickS(gt, o)));
};

....QuickS(v, fun(x,y)→(x>y)?y:x)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Functions as First Class Values: HOP

Full Higher Order Programming Language
Functions are First Class Values: It means that functions are the basic data of
the programming language;

Functions may be used as arguments in the invocation of functions;

Functions may be used as the computed (returned) value of function
invocations;

Advantages: We are at the top of the Procedural Expressivity of a Language:

The program computes (during its execution) the functions with which to
continue the computation;
Moreover, the behavior of the constructs of a language, may be
completely, defined by semantic functions: These functions are
computable functions, of course;

Hence, Programs may, if needed, introduce some of such functions:

as new data types
as new kinds of constructs for the control of new forms of function
composition.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Functions as First Class Values: HOP/2

Including functions in the domain of the computable values of the language, is not
difficult at any level (semantic, methodological)

We had already extended the domain of the the computable values by including

functions:
when functions are used as arguments of function (or procedure)
invocations;
when functions are introduced by Lambda Abstractions

Now we extend the domain of storable values to include functions that can be
assigned to variables, once returned from an invocation (as in the example in
the next slide)

Table12.quater − Functions as Storable Values
Semantic Functions
E[[Call I(A1...An)]]ρ(s) = g(v1...vn)(sn)

where{((v1...vn), sn)=T [[(A1...An)]]ρ(s)
g=Q(I)(ρ)(s),

where{Q(I)(ρ)(s) =
match ρ(i) with (F(h)→ h)

(FM(l)→ look(l, s))}}
Auxiliary Functions
FM : VFun→ Mem

Auxiliary Domains
Mem ::= VL + VFun

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Higher Order Programming: Implementation

Including functions in the domain of the computable values of the language, is not
difficult at any level (semantic, methodological)

At a first look, nothing to add to the ”AR’s” based implementation

But when invocation H(6) runs, in the last line:

Example

{ int→ int H;
int z = 3;
int→ int P(){

int x = 5;
int F(int y){

x = x + 4;
return y + x;
}

return F;
};

H = P();
z = H(6);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Higher Order Programming: Implementation/2

Where can H, i.e. F, find its nonlocal binding when invocation H(6) runs?:

Two solutions:

Currying + Lambda Lifting (for static scope)

Stack with AR Retention

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

Excercises

Exercise1.

Complete in Ocaml, the definition of the memoized factorial, discussed in the

slides on the memoization. The definition must use a local hash table. The hash

table can be reduced to a simple list of pairs or to a suitable function. Then

a Discuss the structure of the defined function, in particular the language
constructs that have been used in the implementation of the memoization
part;

b Apply it to the computation of 5! and comment the resulting
performance compared with that of the non-memoized version;

Exercise2.
Give, in Ocaml, a tail recursive definition of a function that computes the n-th
of the Fibonacci series

Exercise3.

Write, in Ocaml, the QuickSort definition, given in the previous slides. Then:

a List the functions involved in the definition and say what are operations of
C(t) and what are of t. Then, say the number of the different data types
that are involved in QuickSort;

b Apply the definition to the case of a list of strings that must be ordered
by size and must remove strings that do not contain the character ”a”;

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 15-17 Advances in Control and Functional Abstractions

