
Lecture 18-19
Data Types and Types of a Language

prof. Marco Bellia, Dip. Informatica, Università di Pisa

April 29, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Data Types and Types of a Language

Data, Data Types and Types

Type: Generalities

Type Systems and Type Safety

Type Equivalence, Coercion and Cast

Polimorphism: Ad Hoc, Generic and Subtype

Data Structures and Expressiveness

Memory Allocation and Deallocation

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Terminology: Data, Data Types, Types

Data: The simplest structure for introducing values in a program

Distinctive features are the ways in which they can be used:

Computable values;
Denotable values;
Storable values;
Expressible values.

They depend on the characteristics of the used language

Data Types: Collections of values that are homogeneous in respect of the

operations that can be applied on them

Distinctive features are the allowed operations
that obviously, depend on the used language

Types: Categorization Structures that classify uniquely (all) the structures that

occur in a program

They highlight the use (from the behavioral viewpoint) of each program
structure
They may mark each program structure in a way that is useful to
investigate static properties of the program

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Types: Introduction

The program below is considered a correct program in some languages,
including Ansi C

Example

int main (int argc, char ∗ argv[]){//cosa calcola?
int x = 10;
char a =′ e′;
printf(”Totale da pagare in euro : %2d\n”, x + a);
return0;
}

The program terminates computing :
Totale da pagare in euro : 111

It should be evident that the programmer has made mistakes

Nevertheless, this is the worst situation that can happen in programming

The program is wrong but it appears to be correct

The program appears correct because:
- It has passed the compiler checks, and
- Moreover, its computation runs by traversing apparently, legal
computation states

What means legal computation state?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Types: Generalities

What means Legal Computation State?

A Legal Computation State of a program = is any state in which it is assumed

that the program can traverse during its execution.

A legal State may contain exceptions of different nature (”illegal division
by 0”, ”array outbounds”,...) or
Anomalies in the used resources (too many active AR’s, AR that
consumes too much in time or in dynamic memory)
All these anomalies are signalled by the executor
Any program can be enriched to recover from these anomalies

A Non-legal Computation State (or Stuck) = is any state that no correct

execution of the program should reach

For instance, the sum of the effective amount, 10, with the integer
representing the tag e of the symbol for euros.
No program can recognizes such an unexpected situation.
Hence, no recover code may be written for the program
The program is dangerous: The program must be rewritten

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Type System (for Property Investigations

It consists of 3 structures:

The Domain of the Types (including the basic language types)

The (language of) Type Expressions with which new (derived) types can be
defined

The Rules with which the language associates one type to each structure of a
program of the language

The type system F1 the Typed Lambda Calculus is shown below

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Type System: F1 - NO

The system F1 apply to the programs of the Typed Lambda Calculus:

If the program passes the checks then the program never gets stuck

A program P is correctly typed if and only if one type T exists such that:
∅ ` P : T

holds in F1 (i.e. can be obtained by using the rules of F1)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Type Safety or Soundness = Progress + Preservation

A language can have a Type System which guarantees that the language

programs are Type Safe (Haskell, Ocaml, Java)

Progress. It ensures that the execution of a well typed program, [` P : T],

never gets stuck. It reaches: [below, → = 1 program computation step]

Either a final states with the expected values, [P ∈ Val];
Or a new legal state, [` P→ P′] and [` P′ : T′], for some T′.

Preservation or Subject Reduction. A well typed program, [` P : T],
leaves unchanged its type and that of tits components during the
execution [if ` P→ P′ then, ` P′ : T′ and T = T′].

Checking for Type Safety can be done statically (Haskell, Ocaml, Java)

at compile time
strong typing: Programs that do not pass the check are rejected
types are no more useful during computation: then are removed form the
object code

Checking for Type Safety is done only dynamically (C++),

Executor checks the operands for the right type
Wrong Programs are stopped only when the type check fails
Types are maintained in the object code

Checking for Type Safety cannot be done (C)

Dangerous program run without anyone noticing

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Type Expressions

Type Expressions allow the definition of new types:

using type operators that may include product (record or struct) [”*”,in Ocaml],
sum (union) [”|”, in Ocaml), map [”→”,in Ocaml];

using type constructor;

Example

State = Env * Store //naming, product

Env = Ide → Den //naming, map

Store = M(Loc * Loc → Mem) //naming, type constructor, product

Enum = A | B | C //naming, sum, type constructors

using generic polymorphism, i.e. type expressions with type variables (universally
qualified variables, raging over the domain of the types);

using naming and recursively defined types;

Example

(’a,’b)Env = ’a → ’b //type variables, naming, map

’a list = Cons ’a (’a list) | Nil //type variable, type constructors, sum,

recursive types

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Relations and Properties on the type structures

Equivalence:. Let x:T and y:T’: Are x and y of the same type?

Nominal: It is equivalent only to itself
Structural Same type expression when replacing names by definitions

Subtype

Explicit (Java) or
Implicit (contra-co-variance of functions)

Coercion: Conversion of a value representation and consequent change of type;

Cast: Type constraint that must be satisfied at run time;

Overloading Different types and values for a same (Function) identifier;

Subtype Polymorphism In combination with the subtypes: A method also
applies to values of subtypes of the types expected.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Data: Generalities

Structure:
Scalar Data are atomic values: Only operations for computing new values
Structured Data: Have in addition, components and operations for
visiting (and possibly, modifying) components

Mutability
Scalar Data are not mutable values, but may be used in mutable values
Structured Data may be mutable or not, may have mutable components
In functional languages, Structured Data are immutable with immutable
components

Expressiveness
Scalar Data are in general, expressible values
In Imperative Languages, Structured Data are not expressible values
In functional languages, all data are alway expressible values
Ocaml (in addition to scalar data, functions, tuples, and lists) has
mutable, arrays and records values: All such data are expressible values

Allocation
Static: At Compile/Loading Time

Dynamic
(for intermediate values) in the stack RI, locally to the AR’s
Heap: With program controlled allocation/deallocation
In a pool memory (Heap): With automatic allocation/deallocation
In functional languages, is automatic and made transparent to
computation.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Dynamic Allocation and Expressiveness - NO

User Controlled Allocation: The constructor implementation is under user
responsibility

Automatic Allocation: The constructor implementation is automatically
provided by the language

Example

struct elem {
int hd;

struct elem *tl;

};
typedef struct elem *list; type list = NULL | Cons of int * list;;

//Automatic in Ocaml

list Cons(int v, list n){
list r = malloc(sizeof(struct elem));

r->hd = v;

r->tl = n;

return r;

}//User Controlled - in Ansi-C

Expressiveness: Data Constructors furnish a Data Presentation of the values

Example

int main (int argc, char *argv[]){ # let r = ref (Cons(3,NULL));;

list r = Cons(3,NULL); val r : list ref = {contents = Cons (3, NULL)}
r = Cons(2,r); # (r:= Cons(2,!r); !r);;

} - : list = Cons (2, Cons (3, NULL))

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Controlled and Automatic, Dynamic, Deallocation - NO

Controlled Deallocation. The Tombstone Technique: The access to the dynamically
allocated structure is through a guard, called Tombstone.

They are marked when the structure is released (dispose, free): Dangling
References

Locks and Keys are used to re-allocate the memory and to recognize accesses
from dangling references

Automatic Deallocation (Garbage Collector). The Counter Technique: A counter,
C(V) is set to 1 when a new structure is created and with reference V (e.g. malloc...)

Whenever a ”copy” (i.e. assignment, parameter passing by value,...) with

source ps and target pt is made:

C(Vps)++, where Vps be the dynamic allocated structure of reference ps;
C(Vpt)--, where Vpt be the dynamic allocated structure of reference pt;

With each pop of an AR (end/exit of an inline block, or return/exit of a

procedure)

We consider all local variables and for each of them, the possibly reference
to a dynamically allocated structure or to a component of it. Let {psi} be
the set of them.
C(Vpsi)--, for each i

If C(Vpsi) == 0, then the structure Vpsi is deallocated.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

Excercises

Exercise1.

a What kind of type equivalence is defined in Ocaml?;
b Show an example that confirms it.

Exercise2.

a What kind of type equivalence is defined in Java?;
b Show an example that confirms it.

Exercise3.

a Write in Ocaml, a type for data representing Activation Records in static
languages;

b Write in Java, a type for data representing Activation Records in static
languages;

b Write in C, a type for data representing Activation Records in static
languages;

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 18-19 Data Types and Types of a Language

