Lecture 18-19

Data Types and Types of a Language

prof. Marco Bellia, Dip. Informatica, Universita di Pisa

April 29, 2014

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a Language

Data Types and Types of a Language

Data, Data Types and Types
Type: Generalities
Type Systems and Type Safety

Polimorphism: Ad Hoc, Generic and Subtype

o

o

o

@ Type Equivalence, Coercion and Cast
o

e Data Structures and Expressiveness
o

Memory Allocation and Deallocation

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a Language

Terminology: Data, Data Types, Types

@ Data: The simplest structure for introducing values in a program
@ Distinctive features are the ways in which they can be used:

@ Computable values;
@ Denotable values;
@ Storable values;

@ Expressible values.

@ They depend on the characteristics of the used language

@ Data Types: Collections of values that are homogeneous in respect of the

operations that can be applied on them
@ Distinctive features are the allowed operations
@ that obviously, depend on the used language

@ Types: Categorization Structures that classify uniquely (all) the structures that

occur in a program
@ They highlight the use (from the behavioral viewpoint) of each program
structure
@ They may mark each program structure in a way that is useful to
investigate static properties of the program

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types a

Types: Introduction

@ The program below is considered a correct program in some languages,
including Ansi C

int main (int argc, char x*argv([]){//cosa calcola?
int x = 10;
char a =’ &’;
printf(’Totale da pagare in euro : %2d\n",x + a);
returnO;

}

The program terminates computing :
Totale da pagare in euro: 111

@ It should be evident that the programmer has made mistakes
@ Nevertheless, this is the worst situation that can happen in programming

@ The program is wrong but it appears to be correct
@ The program appears correct because:
- It has passed the compiler checks, and
- Moreover, its computation runs by traversing apparently, legal
computation states
@ What means legal computation state?

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types a

Types: Generalities

@ What means Legal Computation State?

@ A Legal Computation State of a program = is any state in which it is assumed
that the program can traverse during its execution.

@ A legal State may contain exceptions of different nature ("illegal division
by 0", "array outbounds”,...) or

@ Anomalies in the used resources (too many active AR’s, AR that
consumes too much in time or in dynamic memory)

@ All these anomalies are signalled by the executor

@ Any program can be enriched to recover from these anomalies

@ A Non-legal Computation State (or Stuck) = is any state that no correct
execution of the program should reach
@ For instance, the sum of the effective amount, 10, with the integer
representing the tag e of the symbol for euros.
@ No program can recognizes such an unexpected situation.
Hence, no recover code may be written for the program
@ The program is dangerous: The program must be rewritten

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a L

Type System (for Property Investigations

It consists of 3 structures:
@ The Domain of the Types (including the basic language types)

@ The (language of) Type Expressions with which new (derived) types can be
defined

@ The Rules with which the language associates one type to each structure of a
program of the language

The type system F1 the Typed Lambda Calculus is shown below

® Types: AB:=k|A->B|A+B|AxB|Unit - in Haskell Unitis ()
® Expressions: MN = x| bwA=>M | MN | (MN) | first M | second M | unit

¥ Rules: h (env x

Tipo base

[val xl

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a Language

Type System: F1 - NO

@ The system F1 apply to the programs of the Typed Lambda Calculus:

@ |If the program passes the checks then the program never gets stuck

Tipo == val fun {val appl

Tipo Unit [Wal Unit

Ti odotio] Val prodotio) val first

@ A program P is correctly typed if and only if one type T exists such that:
OFP:T
holds in F1 (i.e. can be obtained by using the rules of F1)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a Language

Type Safety or Soundness = Progress + Preservation

@ A language can have a Type System which guarantees that the language
programs are Type Safe (Haskell, Ocaml, Java)

@ Progress. It ensures that the execution of a well typed program, [P : T],

never gets stuck. It reaches: [below, — = 1 program computation step]
@ Either a final states with the expected values, [P € Val];
@ Or a new legal state, [P — P’] and [P’ : T'], for some T'.

@ Preservation or Subject Reduction. A well typed program, [P : T],
leaves unchanged its type and that of tits components during the
execution [if =P — P’ then, F P/ : T/ and T =T'].

@ Checking for Type Safety can be done statically (Haskell, Ocaml, Java)

@ at compile time

@ strong typing: Programs that do not pass the check are rejected

@ types are no more useful during computation: then are removed form the
object code

@ Checking for Type Safety is done only dynamically (C++),
@ Executor checks the operands for the right type
@ Wrong Programs are stopped only when the type check fails
@ Types are maintained in the object code
@ Checking for Type Safety cannot be done (C)
@ Dangerous program run without anyone noticing

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a Language

Type Expressions

Type Expressions allow the definition of new types:

@ using type operators that may include product (record or struct) ["*",in Ocaml],
sum (union) [']", in Ocaml), map ['—",in Ocaml];

@ using type constructor;

State = Env * Store //naming, product

Env = Ide — Den //naming, map

Store = M(Loc * Loc — Mem) //naming, type constructor, product
Enum = A |B | C //naming, sum, type constructors

@ using generic polymorphism, i.e. type expressions with type variables (universally
qualified variables, raging over the domain of the types);

@ using naming and recursively defined types;

Example

('a,’b)Env ='a — 'b //type variables, naming, map
'a list = Cons 'a (‘a list) | Nil //type variable, type constructors, sum,
recursive types

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a L

Relations and Properties on the type structures

@ Equivalence:. Let x:T and y:T': Are x and y of the same type?

@ Nominal: It is equivalent only to itself

@ Structural Same type expression when replacing names by definitions
@ Subtype

@ Explicit (Java) or

@ Implicit (contra-co-variance of functions)

Coercion: Conversion of a value representation and consequent change of type;
Cast: Type constraint that must be satisfied at run time;

Overloading Different types and values for a same (Function) identifier;

Subtype Polymorphism In combination with the subtypes: A method also
applies to values of subtypes of the types expected.

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a

Data: Generalities

@ Structure:
@ Scalar Data are atomic values: Only operations for computing new values
@ Structured Data: Have in addition, components and operations for
visiting (and possibly, modifying) components
@ Mutability
@ Scalar Data are not mutable values, but may be used in mutable values
@ Structured Data may be mutable or not, may have mutable components
@ In functional languages, Structured Data are immutable with immutable
components
@ Expressiveness
@ Scalar Data are in general, expressible values

@ In Imperative Languages, Structured Data are not expressible values
@ In functional languages, all data are alway expressible values
@ Ocaml (in addition to scalar data, functions, tuples, and lists) has
mutable, arrays and records values: All such data are expressible values
@ Allocation
@ Static: At Compile/Loading Time
@ Dynamic

@ (for intermediate values) in the stack RI, locally to the AR'’s

@ Heap: With program controlled allocation/deallocation

@ In a pool memory (Heap): With automatic allocation/deallocation

@ In functional languages, is automatic and made transparent to
computation.

prof. Marco Bellia, Dip. Informatica, Universita di Pisa

Dynamic Allocation and Expressiveness - NO

@ User Controlled Allocation: The constructor implementation is under user
responsibility

@ Automatic Allocation: The constructor implementation is automatically
provided by the language

Example

struct elem {
int hd;
struct elem *tl;
}s
typedef struct elem *list; type list = NULL | Cons of int * list;;
//Automatic in Ocaml
list Coms(int v, list n){
list r = malloc(sizeof (struct elem));

r->hd = v;
r->tl = n;
return r;

}//User Controlled - in Ansi-C

@ Expressiveness: Data Constructors furnish a Data Presentation of the values

int main (int argc, char *argv([]){ # let r = ref (Cons(3,NULL));;
list r = Cons(3,NULL); val r : 1list ref = {contents = Cons (3, NULL)}
r = Cons(2,r); # (r:= Cons(2,!r); 'r);;

- : 1list = Cons (2, Cons (3, NULL))

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19

Controlled and Automatic, Dynamic, Deallocation - NO

Controlled Deallocation. The Tombstone Technique: The access to the dynamically
allocated structure is through a guard, called Tombstone.

@ They are marked when the structure is released (dispose, free): Dangling
References

@ Locks and Keys are used to re-allocate the memory and to recognize accesses
from dangling references

Automatic Deallocation (Garbage Collector). The Counter Technique: A counter,
C(V) is set to 1 when a new structure is created and with reference V (e.g. malloc...)

@ Whenever a "copy” (i.e. assignment, parameter passing by value,...) with
source ps and target pt is made:
@ C(Vp,)++, where Vp_ be the dynamic allocated structure of reference ps;
@ C(Vp,)--, where Vp, be the dynamic allocated structure of reference pe;
@ With each pop of an AR (end/exit of an inline block, or return/exit of a
procedure)

@ We consider all local variables and for each of them, the possibly reference
to a dynamically allocated structure or to a component of it. Let {ps; } be
the set of them.

° C(Vpsi)--, for each i

@ If C(Vp,,) == O, then the structure Vp,, is deallocated.

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types and Types of a L

Excercises

Exercisel.

a What kind of type equivalence is defined in Ocaml?;
b Show an example that confirms it.

Exercise2.

a What kind of type equivalence is defined in Java?;
b Show an example that confirms it.

Exercise3.

a Write in Ocaml, a type for data representing Activation Records in static

languages;

b Write in Java, a type for data representing Activation Records in static
languages;

b Write in C, a type for data representing Activation Records in static
languages;

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 18-19 Data Types a

