
Lecture20
Foundation of Functional Languages:
Higher Order Functional Programming

prof. Marco Bellia, Dip. Informatica, Università di Pisa

May 6-9, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Foundation of Functional Languages:
Higher Order Functional Programming

Functional Languages: The main Features

Syntax Essentials

Programming Methodologies in Functional Languages

Higher Order Programming, Iterative and Combinatory
Programming

Foundations: Term Reduction, Reduction Strategies,
Combinators and Graph Reduction

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Functional Languages: The Main Features

Referential Transparency in Pure Functional (see Lecture9-10)

List Types and Operators (see Lecture11)

Structured Values are Fully Expressible Values (see Lecture11)

Garbage Collection for Heap re-allocation (see Lecture18-19)

First-Class Function Values and Higher Order Functions

Extensive Polymorphism (see Lecture11 and Lecture18-19)

Functions may return Structured Values

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Functional Languages: Syntax Essentials

Table20− Functional Languages : Syntax
Program Structures
D ::= F | T | ...
F ::= I= A

A ::= fun I→ E

E ::= A | E E | I | D E | ...
T ::= ... (scalar , tuple,map, ...)
| ... (list : fund . meth.)
| ... (Concrete : fund . meth.)
| ... (Abstract : fund . meth.)

It is impressive how compact is the syntax of functional language (only
Functions and Types definitions and Expressions), and

How few are the mechanisms that are needed in functional programming, and

The amount of different programming methodologies that are well supported by
functional programming

All these facts are a trivial consequence of only one fact:

Functions are First-Class Values

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Programming Methodologies in Functional Programming

Decomposition Based Programming (see Lecture15-17)

Example

Decomposition Programming is used in getting the program of the memoized factorial below. The

solution consists of 4 components: A shared memory (hashTab), 2 distinct, autonomous,

independent, functions (hash and set), and a code that combines all them and realizes the

memoized factorial

Inductive Programming (see Lecture15-17)
Tail Recursion Programming
Memoization Based Programming

Example

let rec fact = fun n → if (n=0) then 1 else n*(fact (n-1))

-- Recursive definition of an inductive algorithm for fact

let fact = fun n → let rec factT = fun n r → if (n=0) then r else (fact (n-1) (n*r)) in

factT n 1

-- Tail Recursive definition of inductive factorial

let fact = let hashTab = ref [] in

let hash = fun n → if (mem assoc n (!hashTab)) then (true,(assoc n(!hashTab)))

else (false,raise IntUndef) in

let set = fun n v → hashTab:=(n,v)::(!hashTab) in

-- Memoized Part, to be completed with the code of lecture 15-17, of inducti-

ve factorial

Divide and Conquer (see Lecture15-17)

Example

We apply the methodology to define QuickS on lists of a generic type

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Programming Methodologies in Functional Programming/2

Divide and Conquer (see Lecture15-17)

Example

We apply the methodology to define QuickS on lists of a generic type

let rec quickS =

fun c o → if (length c) < 2 then c

else let sel = hd in

let u = (sel c) in

let gt = filter (fun x → (o u x)) c in – use of Higher Order
let lt = filter (fun x → (o x u)) c in – use of H.O.: Lambda Abstraction
(quickS lt o)@(u::(quickS gt o));

– It uses the module ”List.ml” but it is not enough to guarantee the full generalization of the algorithm. The mo-
dule has only ”hd” that behaves as a selection function
– Apply to the computation of: quickS [3;5;1;5;0;8;9] (>)

Polymorphism. quickS has Ocaml type:
’a list -> (’a -> ’a -> bool) -> ’a list

Example

– Apply quickS to sorting [(”aba”,78),(”a”,13),(”ab”,0)] according to two different pair orderings at your choice.

Higher Order Programming

Iterative and Combinators based Programming

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Programming Methodologies in Functional Programming/3

Divide and Conquer (see Lecture15-17)

Example

We apply the methodology to define QuickS on lists of a generic type

let rec quickS =

fun c o → if (length c) < 2 then c

else let sel = hd in

let u = (sel c) in

let gt = filter (fun x → (o u x)) c in – use of Higher Order
let lt = filter (fun x → (o x u)) c in – use of H.O.: Lambda Abstraction
(quickS lt o)@(u::(quickS gt o));

– It uses the module ”List.ml” but it is not enough to guarantee the full generalization of the algorithm. The mo-
dule has only ”hd” that behaves as a selection function
– Apply to the computation of: quickS [3;5;1;5;0;8;9] (>)

Higher Order Programming, HOP

It is pervasive of Programming in Functional Languages
Hence, it appear also, in combination with all other programming
methodologies used in functional Programming
For instance, in quickS, HOP furnishes the values to make quickS
parametric w.r.t. the ordering relation.

Iterative and Combinators Programming

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: Higher Order Programming - Values

Higher Order Programming, HOP
It is pervasive of Programming in Functional Languages
Hence, it appear also, in combination with all other programming
methodologies used in functional Programming

But what are the ingredients of the methodology HOP

Data Extensions through Functional Abstractions
New Domains of values are introduced through New Sets of
functions
The new functions behave according to the way in which the new
values have to be used in the program to be developed
Implementation details of the new values have not to be provided
from programmer
This is much more than of abstract data types of programming
languages, since ADT require the definition of an implementation
module in order to be used in computation

Example

We apply HOP to the definition of ENV in Lecture 11

let bindP = fun i d e -> fun j -> if (j=i) then d else e j;;

val bindP : ’a -> ’b -> (’a -> ’b) -> ’a -> ’b = <fun>

let findP = fun i e -> e i and emptyP = fun i -> i;;

let anEnv = bindP 3 5 emptyP;;

val anEnv : int -> int = <fun>

Control Extensions through Functional Abstractions

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: Higher Order Programming - Values/2

But what are the ingredients of the methodology HOP

Data Extensions through Functional Abstractions
This is much more than of abstract data types of programming
languages, since ADT require the definition of an implementation
module in order to be used in computation

Example

We apply HOP to the definition of ENV in Lecture 11

let bindP = fun i d e -> fun j -> if (j=i) then d else e j;;

val bindP : ’a -> ’b -> (’a -> ’b) -> ’a -> ’b = <fun>

let findP = fun i e -> e i and emptyP = fun i -> i;;

let anEnv = bindP 3 5 emptyP;;

val anEnv : int -> int = <fun>

findP 3 anEnv;;

- : int = 5

Ocaml can define it better, by using types that highlight the
different set of values and forbid illegal uses of the values

Example

We apply HOP to the definition of ENV in Lecture 11

type ide = I of string;;

type den = L of int | C of int;;

type env = ide -> den;;

let bind = fun (i:ide) (d:den) (e:env) -> fun (j:ide) -> if (j=i) then d else e j;;

val bind : ide -> den -> env -> ide -> den = <fun>

... -- complete and run

Control Extensions through Functional Abstractions

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: Higher Order Programming - Control

But what are the ingredients of the methodology HOP
Data Extensions through Functional Abstractions

Control Extensions through Functional Abstractions
New Control Structures are introduced through New Sets of
functions
The new functions combines in new ways the data and the
functions to be used in the program to be developed
Implementation details of the new control structures (namely, the
structure of the Activation Records, etc) have not to be provided
from programmer
This is the why, in giving denotational semantics, we can use a
functional language as the defining metalanguage: All the control
mechanisms of all languages are easily formalized without adding
useless, implementation details

Example

We apply HOP to a combinatory, recursive, definition of factorial

let cITE = fun p f g -> fun n -> if (p n) then (f n) else (g n);;

let cmp = fun f g n -> g(f n) and cC = fun f g n -> g n (f n) and cK = fun f g -> f ;;

let im = (+)(-1) and ip = fun n m -> n*m;;

let rec fact = fun n -> (cITE ((=)0) (cK 1) (cC (cmp im fact) ip) n);;a

Comment the use of the argument n, (apply denotational semantic) and run: fact 3

a
by η-conversion it is equivalent to combinatory cITE ((=)0) (cK 1) (cC (cmp im fact) ip)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: HOP - Control/2 - NO

But what are the ingredients of the methodology HOP
Data Extensions through Functional Abstractions

Control Extensions through Functional Abstractions
We revisit step by step, the program development

Example

(1) We introduce "cITE" that applies to 3 functions and a value "n" and returns the application

of "if-then-else" to the 3 expressions resulting from distributing "n" to each function:

let cITE = fun p f g n -> if (p n) then (f n) else (g n);;

Example

(2) We introduce "cmp" that computes ordinary function composition:

(3) cC that compute a different way of doing function composition

(4) cK that ignores second argument and returns the first one

let cmp = fun f g n -> g(f n) and cC = fun f g n -> g n (f n) and cK = fun f g -> f ;;

Example

(5) We introduce im and ip to use subtraction and multiplication as values in Ocaml (that has

various syntactic idiosyncracies)

let im = (+)(-1) and ip = fun n m -> n*m;;

let rec fact = fun n -> cITE ((=)0) (cK 1) (cC (cmp im fact) ip) n;;

Example

let rec fact = fun n -> cITE ((=)0) (cK 1) (cC (cmp im fact) ip) n;;

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: HOP - Control/3 - NO

But which are the ingredients of the methodology HOP

Data Extensions through Functional Abstractions

Control Extensions through Functional Abstractions

The previous slide showed the way to use HOP in Control Extensions

Programmer defines the HOP control functions of which the program

needs:

In order to implement a specific algorithm or way of computing,
Or to satisfy any other requirement of the program development or
of its use

However, 40 years of Functional Programming produced a great quantity
of HOP control functions
Functional Languages are equipped with several Libraries of Functionals
with this purpose
These Libraries of Functionals differ one another for the kind of
applications in which such Functionals are of general use

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: HOP - Control/4

But which are the ingredients of the methodology HOP

Data Extensions through Functional Abstractions

Control Extensions through Functional Abstractions

The previous slide showed the way to use HOP in Control Extensions
Programmer defines the HOP control functions ...
However, 40 years of FP produced a great quantity of HOP control ...
Functional map is one of them: It applies one function to each element of
one list

Example

map behaves in this way: map g [e1;...;en] returns [(g e1);...;(g en)]

Some applications:

map (fun x -> x+1);; computes...

map fact;; computes...

map (fun x -> x > 10);; computes...

An Ocaml, sequential definition of Map follows (but in parallel computing it has an obvious,

different definition):

let rec map = fun f l -> match l with

|[] -> []

|x::lR -> (f x)::(map f lR)

;;

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Methodologies: HOP - Iterative Programming

But which are the ingredients of the methodology HOP

Data Extensions through Functional Abstractions

Control Extensions through Functional Abstractions

However, 40 years of FP produced a great quantity of HOP control ...
Iteration in FP: Functionals may be used to iterate functions on index
ranges that are collected into lists
Iteration in FP: Fold’s are collectively called the functionals having this use

Example

fold left behaves in this way: fold left g a [e1;...;en] returns g(...(g (g a e1) e2)...)en

fold right behaves in this way: fold right g [e1;...;en] b returns g e1 (g e2 (...(g en b)...))

Some applications:

fold left (-) 100;; computes...

fold right (+);; computes...

and again, by introducing intervals:

let rec nTom = fun n m -> if n>m then [] else (if n=m then [m] else n::(nTom (n+1) m));;

We give an iterative, combinatory, factorial:

let fact = cmp (ntom 1) (fold left (ip) 1);;

where cmp and ip are the function composition and the integer product of the previous slides

Comment and run fact for computing the 3!

Example

Use iterative HOP in getting a program for defining the size of lists

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Foundations: Term Reduction Semantics - NO

Table20− Functional Languages : Syntax
Program Structures
D ::= F | T | ...
F ::= I= A

A ::= fun I→ E

E ::= A | E E | I | D E | ...
T ::= ... (scalar , tuple,map, ...)
| ... (list : fund . meth.)
| ... (Concrete : fund . meth.)
| ... (Abstract : fund . meth.)

α− reduction
fun I1 → E =⇒fun I2 → [I2/I1]E (when I2 /∈ Free(E))

β − reduction
(fun I→ E)E0 =⇒[E0/I]E (when Free(E0) ∩ Bound(E) = {})

The above rules are for function application.

Additional reduction rules are needed for the constructs introducing special class
of data and associated operations, and concrete and abstract data.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Foundations: Term Reduction Semantics/2 - NO

α− reduction
fun I1 → E =⇒fun I2 → [I2/I1]E (when I2 /∈ Free(E))

β − reduction
(fun I→ E)E0 =⇒[E0/I]E (when Free(E0) ∩ Bound(E) = {})

Example

let f = fun n m -> if n=0 then 1 else m and g = fun n -> g(n+1);;

f 0 (g 3) =⇒ f 0 (g 4) =⇒ ...

f 0 (g 3) =⇒ if [0/n,(g 3)/m]n=0 then [0/n,(g 3)/m]1 else [0/n,(g 3)/m]m) =⇒ 1

Different Reduction Strategies are used in Functional Languages, in determining the sub-term to be
reduced:
External or Normal evaluation results in defining Most Defined functions (Haskell, Miranda)
Internal or Eager Evaluation results in defining Less Defined functions (ML, Ocaml)

Example

let add = fun x y -> x+y;;

add y =⇒ [z/y](fun x y -> x+y)y =⇒ ...

it requires that add be α-reduced before ...

Combinatory programs do not need α-reduction and limit β-reduction only to the replacement of function
names with their definition

Example

let add = (+);; -- this is the combinatory definition of add

add y =⇒ (+)y

add y 3 =⇒ y+3

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Combinators and Reduction - NO

The use of combinators avoid the use of bindings for parameters

Thus ruling out the need of α-reduction and limiting the use of β-reduction

Thus simplifying the reduction semantics and allowing graph reduction instead
of term reduction

We apply it to the iterative, combinatory, factorial:
fact = cmp (nTom 1) (fold (prod) 1) 1

in the computation of:
fact 2

The images in next slide show the reduction graph produced by the reduction of:
fold (prod) 1 (nTom 1 2)

1where fold stands for fold left and prod for integer product
prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Combinators and Reduction: A reduction graph - NO

Reduction of the expression fold(prod)1(nTom 1 2) that results from the
invocation (fact 2)2

2symbol @ stands for the application symbol, i.e. (E1 E2) is (E1@E2) and is drawn
as a tree rooted at @ and having E1 and E2 as left and right sub-graphs.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

Excercises

Exercise1.

a Apply HOP methodology to the definition, in Ocaml, of the Homogeneous Heap in Lecture
3-4-5-6: In particular, define operation for allocation, deallocation, and for computing the number
of blocks that are free. You cannot use the imperative features of Ocaml;

b Show the behaviour of the new data by running the given definitions in the case of an heap of 4
blocks, all initially free. Then, run for the allocation of 4 blocks, followed from the deallocation of
the first and then, of the third of them. Finally, run for asking the number of free blocks

c Comment the use of types to get the definitions of point (a). Rewrite the definitions of (a) by using
types, if such definitions do not use types in a way to forbid illegal uses of data and of operations.

Exercise2.

a Give, in Ocaml, a memoized definition of the binomial coefficient Cn
k

3;
b Discuss adequately, the choice of the hashTab;
c Run it repeatedly for the computation of the coefficients of (1 + x)3 and of (1 + x)2 and discuss

the execution statistics

Exercise3.

a Give a combinatory, iterative, definition of map in Ocaml;
b Discuss adequately, the choice of the combinators that You have used in the development;
c Run map (prod 5) [2;3] in an interactive session of Ocaml and check execution for the expected

answer;
d Show the computation of map (prod 5) [2;3] when map is the combinatory definition, given in (a);

Exercise4.

Give points (a,b,c,d) of exercise3, in the case of a combinatory, but inductive, definition of
fold left: Use fold left (prod) 1 [2;3] for the expression to be run in (c) and (d)

3
It is the coefficient of the term xk in the polynomial development of (1 + x)n . Hence, it is such that: Cn

0 = 1

(for n≥0), C0
k = 0 (for k>0), Cn

k = Cn−1
k−1

+ Cn−1
k

(for n,k>0)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture20 Foundation of Functional Languages: Higher Order Functional Programming

