
Lecture26-27
From Data Abstractions to Abstract Data Types

prof. Marco Bellia, Dip. Informatica, Università di Pisa

April 9, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

From Data Abstractions to Abstract Data Types

Records: Definition, Allocation e Access

Introduction and Dynamic Allocation of Records

ADT: Orthogonality, Locality, Data Integrity

Abstract Data Types: API and ADT

ADT: Syntax, Semantics, Functions Up and Down

ADT: Use and Applications in Ocaml

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

Record: Definition, Allocation e Access

Remind the general structure of a language with Types and Concrete Types (and
apply it to the case of the type record)

Table15− Types and Concrete Data
Syntactic Domains
D ::= ... | T I (naming : Static Allocation)

| type I = T (Type definition and Concrete Types)
| ...

E ::= ... | Talloc (T) (Dynamic Allocation)
| Den(E.Ik) | E.Ik | Val(I) (Access)
| ...

Auxiliary Syntactic Domains
T ::= TA | ... | TF | I | ... (included Polymorphics)
TA ::= int | ... | bool (Atomics)
TD ::= VLinf..VLsup | ... | ∗T (Derived)
TS ::= Rec I1:T1...In:Tn End | ... (Structured)
TF ::= T1 × ...× Tn → T | ... (Functions)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

Declaration and (Static) Allocation of Values: Record/1

The type Record is the second Type that requires a notion of environment to express its data.

The other Type, we encountered, is the type Function

Semantics of the Declaration of a binding I: The identifier is bound to the denotation of a mutable value
Record that is statically allocated (at the loading time of the program, for instance)

Table15.1− Declaration of a Variable Record
Semantic Functions
D[[D]]ρ : Store→ (Env× Store)⊥
D[[Rec I1:T1...In:Tn End I]]ρ(s) =

Let{s0 = s, ∀Ti.(li, si) = allocate(Ti, si−1)}
{∀Ii.γ(Ii) = li}

(bind(I, ED(γ), ρ), sn)
E[[E]]ρ : Store→ (Env× Store)⊥
E[[Den(E.Ik)]]ρ(s) = Let{ED(γ) = E[[E]]ρ(s)}(γ(Ik), s)
E[[E.Ik]]ρ = ...

Auxiliary Functions and Domains
ED : EnvL→ Den

Den ::= ... + EnvL

EnvL ::= I→ Den

Legenda
{∀Ii.γ(Ii) = li}is a shortening for :

let bind2 = λ(I, D).λE.bind(I, D, E)
in γ = (bind2(I1, l1) ◦ ... ◦ bind2(In, ln)) empty

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

Declaration and (Static) Allocation of Values: Record/2

Implementation:

ED(γ) is implemented through a pair that contains the environment γ (i.e. a
selection function) and the first location of a block of store into which the value
of the record has been allocated.

A graphic picture of: Rec int x, int y End u.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

Introduction and Dynamic Allocation of a Record

Creation of a mutable value of type Record (when the Language allows it)

Reference Type: The access to Records is through pointers

Table15.1.1− Record Pointers or by Reference Types
Semantic Functions
E[[E]]ρ : Store→ (Val× Store)⊥
E[[Talloc(Rec I1 :T1...In :Tn End)]]ρ(s) =

Let{s0 = s, ∀Ti.(li, si) = allocate(Ti, si−1)}
{∀Ii.γ(Ii) = li}

(EV(γ), sn)
Auxiliary Functions and Domains
EV : EnvL→ Val EM : EnvL→ Mem

Val ::= ...+ EnvL Mem ::= ...+ EnvL

EnvL ::= I→ Den

Implementation: Allocation is in the component Heap of Store: allocate puts
on Heap both the components and the access structure (i.e. selection function)
that implemented γ, in the static allocation.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

Introduction and Dynamic Allocation of a Record/2

ED(γ) is implemented through a pair containing γ and the first location of a block of store into which the
value of the record has been allocated.

A graphic picture of type Coppia = Rec int x, int y End; Coppia ∗ c;.

and again: c = Talloc(Coppia);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

Abstract Data Types: API-ADT

Orthogonality between use and implementation: User does not need to know its implementation in order to
use it (different implementations of a same API may co-exist in a Ocaml program)

Program Locality in collecting in the API everything is needed to use it whilst everything that is needed to
run it is collected in the ADT.

Protection of the data integrity against accesses and modifications that are due to an improper use of the
data

API (specification part) and ADT (implementation part) together in a language construct.

Table15.2− Types and ADT(including API)
Syntactic Domain
D ::= ... | T I (naming : Static Allocation)

| type I = T (Type Definition)
| ADT N : Z; {U; V; O;}
| ...

Auxiliary Syntactic Domains
T ::= ... (Types, included Polymorphics)
N ::= I | ... (Type Names, included Polymorphic Names)
Z ::= T I (Type and Name of Visible Operators)
U ::= type I = T (Types, included Auxiliaries)
V ::= I = E (Auxiliary Variables)
O ::= I (P) C (Operations)
Notational Remark
For each domain A, A stands for a sequence A1...An
of arbitrary lenght n, of elements of A.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Syntax

Table15.2− Tipi e ADT
Syntactic Domains
D ::= ... | ADT N : Z; {U; V; O;} | ...

Example

ADT Q:
int×int→Q mk; Q→int fst; Q→int snd;
{type P = Rec int x, int y End;

mk(int x, int y){P u = Talloc(P); u.x=x; u.y=y; up(u)};
fst(Q x){down(x).x};
snd(Q x){down(x).y};}

What does prevent us from executing Q w = mk(2,5); and then to change w.x

by executing w.x=10?

The answer is: (Semantic) Operations up, down that transform from concrete to
abstract values and vice-versa (resp.)

The concrete syntax does not show the presence of operators up and down

(similarly to what happens with Den and Val with expressions)

up e down may be added, in analogy to Val and Den, during static analysis.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Semantics/1

Operations up, down transform from concrete to abstract values and vice-versa

The definitions of up, down is basic for the meaning of an abstract data type. Consider the ADT Q:

The functions that are defined within the ADT, when are dealing with (i.e. for access, or
modification) a value v of type Q, in effect are working with the concrete representation of v.
Whenever these functions compute a value v’ of type Q that has to be returned outside the ADT,
then the returned value is up(v’)

All the code outside the ADT can only deal with the abstract values (i.e. up(v’)) of the ADT and
only through the functions of the ADT that are declared be ”public” (i.e. visible) operations

Semantic operations up e down correspond to morphisms on algebras (i.e. the one of the signature and the
one of an implementation)

Example

ADT Q:
int×int→Q mk; Q→int fst; Q→int snd; Q×int→ () m1;
{type P = Rec int x, int y End;

mk(int x, int y){P u = Talloc(P); u.x=x; u.y=y; up(u)};
fst(Q x){down(x).x};
snd(Q x){down(x).y};
m1(Q x, int v){down(x).x=v};
}

mk(3, 5) → down → {3, 5}
↓ ↓

m1(,0) m1(,0)

↓ ↓
v → down → {0, 5}

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Semantics/2

Semantic operations up e down correspond to morphisms on algebras (i.e. the one of the signature e and
the one of an implementation)

The Denotational Semantics, we define, is oriented to give insights toward the ADT implementation

In this semantics, up and down are two functions that differ one another in the way they access the values.

Always, the access is based on a notion of key

Each ADT has a specific key: In the denotational semantics, the key is the environment, γ, that the
semantics associates to the ADT (similarly to what the semantics associates to records, see previous slides.)

Hence, a value of the ADT is a pair (γ, loc), where γ is the semantics of the ADT and loc is the location
of the store (namely, the Heap) where is the structure, that has been allocated, for the value of the ADT.

The Concrete Value: c ≡ (γ, loc),
The Abstract Value: v ≡ up(c)

up(c) = λkey. if(key = γ, c,⊥Mem)
The Concrete Value, given an abstract value (with key) γ:

down(v) = v(γ)

In no way the Abstract Value can access loc.

Operation up makes pair (γ, loc) accessible only by using the expected key

Operation down applies the key: The key is known only to the code within the ADT.

To increase readability, later on, we will use the following notation: ρ = bind(i, d, δ) is written as
(ρ(i) = d)⊕ δ(possibly, without parentheses)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Semantics/3

Declaration of a binding for a variable of type ADT and definition of up and down

Table15.3− ADT
Funzioni Semantiche
D[[D]]ρ : Store→ (Env× Store)⊥
D[[ADT N : T1 f1; ...; Tn fn; {U; V; O;} I]]ρ(s) =

Let{Key = λ(γ, loc).λkey.if(key = γ, (γ, loc),⊥Mem))}
{σ1 = Yσ.DE [[U;]]σ ◦ DE [[V;]]σ ◦ DE [[O;]]σ◦

(σ(up) = Key)⊕ (σ(down) = λv.v(σ))⊕ ρ}
{ρ1 : ρ1(f1) = σ1(f1)⊕ ...⊕ ρn(fn) = σ1(fn)⊕ ρ}
{(l1, s1) = allocate(ADT, s)}
{s2 = upd(l1, up(σ1,⊥Mem), s1), ρ2 = bind(I, l1, ρ1)}

(ρ2, s2)

allocate(ADT, s) allocates, regardless of the specific ADT, a location suitable to contain an generic
abstract value

The Abstract Values, of any types, occupy a same amount of space for allocating the value returned by up.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Semantics/4

Example

Apply it to the ADT Q, we introduced for cartesian points,
ADT Q:

int×int→Q mk; Q→int fst; Q→int snd; Q×int→ () m1;
{type P = Rec int x, int y End;

mk(int x, int y){P u = Talloc(P); u.x=x; u.y=y; up(u)};
fst(Q x){down(x).x};
snd(Q x){down(x).y};
m1(Q x, int v){down(x).x=v;}
}

and to the code below:
Q x;

x = mk(3,5); ... fst(x)...

D[[Q x]]ρ(s) = (ρ2, s2)
where :
ρ2(x) = lx ⊕ ρ2(mk, fst, snd, m1) = σ1(mk, fst, snd, m1)⊕ ρ
s2 = upd(lx, λkey.if(...), s1)

where : s1 = allocate(ADT, s)
E[[Call mk(byValue 3, byValue 5)]]ρ2

(s2) = (v, s3)
where :
(v, s3) = g(3, 5)(s2), where F(g) = ρ2(mk)
v = up(u) = λkey.if(key = σ1, (σ1, EM(γ)),⊥Mem)

for γ : γ(x) = lx ⊕ γ(y) = ly ⊕ empty

s3 : s3(lx) = 3 ∧ s3(ly) = 5 ∧ (∀l, s2(l) 6= ⊥Mem ⊃ s3(l) = s2(l))
...
to be completed...

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Semantics/5

A graphical view of the solution:

Q x;

x = mk(3,5);

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Semantics/6

A graphical view of the solution:

x = mk(3,5); A complete view:

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: API in Ocaml

An API in Ocaml for an ADT of RELAZIONE (Binary, Polymorphic)

Example

module type RELAZIONE =

sig type (’a,’b) relazione

val relazioneC: unit -> (’a,’b) relazione

val isUno: (’a,’b) relazione -> ’a -> bool

val isDue: (’a,’b) relazione -> ’b -> bool

val getUno: (’a,’b) relazione -> ’b -> ’a list

val getDue: (’a,’b) relazione -> ’a -> ’b list

end;;

It introduces a module API of name RELAZIONE for an ADT with
name (′a,′ b) relazione: It is a polymorphic type in the type
variables a and b.

The module contains, in the order, the signature of the defined type
and that of each of the operations that are ”public” and can be
used outside of the ADT.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Module ADT in Ocaml/1

An ADT in Ocaml for the API RELAZIONE of the type (’a,’b) relazione

Example

It furnishes an implementation, ADT, of the abstract type of name (’a,’b)

relazione.

It uses a module with name RELAZIONE which contains the struct...end

construct.

The module contains, in the order, the implementation of the type (and the
definition of the possibly auxiliary, required types), and of the operations that are
visibles outside of the ADT, and of the possibly auxiliary. required operations.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

ADT: Module ADT in Ocaml/2

Example

The module contains, in the order, the implementation of the type (and the
definition of the possibly auxiliary, required types), and of the operations that
are visible outside of the ADT, and of the possibly auxiliary, required operations.

All the auxiliary definitions are not visible outside of the module.

struct...end:A qualifies ADT as relative to the module API of name A

An API may have more than one ADT: Each ADT furnishes a distinct
implementation

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

API and ADT: Implementation

A repository contains all the definitions of the ADT that are
accessible through a key that is unique for each ADT

The repository, the keys and the functions up and down, for each
key, and their insertions in the abstract syntax may be generated by
the compiler.

Example

The ADT showed in the previous slides for (’a,’b)relazione contains
an error. The two modules, in fact, API and ADT, are espressed in
Ocaml but the analyzer of Ocaml does not recognize such an ADT as an
implementation of the API.
(1) Say what error is contained in the ADT;
(2) Say how the API could be modified in a way that the ADT, given in
the slides, be an implementation of it.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture26-27 From Data Abstractions to Abstract Data Types

