
Lectures 3-4-5-6
Basics in Procedural Programming: Machinery

prof. Marco Bellia, Dip. Informatica, Università di Pisa

February 21, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Basics in Procedural Programming: Machinery

Naming and Binding

Mutable Values: Denotable, Storable and Expressible Value

Env, Store, AR and Blocks: Motivations

Blocks: Inline blocks and Procedure/function (body) block

Blocks: Static and Dynamic Scope

Activation Records: Structure and Implementation

Programming Unit

Aliasing, Closures, Lambda Lifting

Env: Formalization and Implementation

Store: Formalization and Implementation

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Naming and Binding

Naming = Use of identifiers to refer to definitions of
programming entities
Definition of the entity = Definition results a Denotable
Value of the language semantic domain Den

Example

final double pigreco = 3.15; /*an example of constant*/
int y = 5; /*an example of variable*/
See next slide, for other examples of definitions.

Binding = Association between the name and its definition

Bindings of a program are all collected in the semantic
structure Env

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Mutable and Immutable values

Names for Constants and Variables are in common use in the
introduction (i.e. declaration) of values

Variable = It is synonym of Mutable Value
Mutable values are basics in Imperative Languages but they are non
incompatible with Descriptive Languages, in principle
However, problems arise from the different ways in which such values can
be used in the program: Haskell preserves Transparency Property, instead
Ocaml does not.

Constant = It is an example of Immutable Value

Example

Var x: int /*Pascal Declaration of a mutable value*/
Const y:int /*Pascal Declaration of a immutable value*/
int z[] /*C Declaration of an immutable, structured, value with mutable components of type int */
*int y /*C Declaration of an mutable value that it is, in turn, a mutable value yet, namely a pointer*/
label u /*Pascal Declaration of a immutable value, namely a position in program */
void p(...){...} /*Declaration of an immutable value, namely a procedure*/
public class A{...} /*Declaration of an immutable value, namely a class (of Java)*/
struct S{...} /* Declaration of an immutable value, namely a type record (of C) */
type B = ... /*Again, declaration, in OCaml, of an immutable value, namely a (concrete) type*/

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Mutable and Immutable values: The Equality Property

The two classes of values definitely, differ in some form of state that is underlying of
mutable values. This is clearly, reflected from the behavior of (almost all) operations
of the two classes, and then, from their use in programming.

However, what about comparing two values?
The Equality Property = Two values are equals only if they
can be exchanged with one another, in the program.

Each mutable value is equal only to itself

Example

Comment the equality predications in the following C++ text:

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Mutable and Immutable values: Implementation Skills

The two classes of values definitely, differ in some form of state that is underlying of
mutable values. This is clearly, reflected from the behavior of (almost all) operations
of the two classes, and then, from their use in programming.

However, what can we say about the internal representation of
such values?
Implementation Skills

Example

One immuable and one immutable value in two different memory organizations:
Memory on the right has a constant pool memory.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Den, Mem, Val: The Value Domains of a Language

The Value (semantic) Domains are a fundamental
characteristic of a language
They highly constrain the way in which algorithms may be
written, in the language

Val = Domain of the Values that can be involved in the
language programs
Den = D. of the Values that can be expressed in definitions
Mem = D. of the Mutable Values of the language

The following hold: (1) Den ⊆ Val ; (2) Mem ⊆ Val
But: Den ∪Mem = Val ; Mem ⊆ Val ; and so on ... hold or
not depending on the language

Example

int A[3] = {3,5,17}; /* define, in C, a mutable value in a binding for A */
A = {3,5,12}; /* is not permitted */

Then: Is {3,5,17} defining a mutable or immutable value?
In providing for an answer, compare it with:
int B = 3; /* define, in C, a mutable value in a binding for B */
B = 15; /* a common statement in C */

Then: 3 and 15 are immutable integers.
What can you say about the other languages that you know?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Expressible Values

Expressible Values = Have an explicit, syntactic, presentation
in the language;

These values are useful for introducing constant values in
expressions;

Hence, values of common use in the expressions of the
language are also expressible value;

Example

Integers are expressible values of C
Are arrays expressible values of C?
Are lists expressible values of Ocaml (Haskell)?
Are vectors expressible values of Java?
Are functions expressible values of Ocaml (Haskell)?
Are methods expressible values of Java?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Env, Store, AR

Env = Semantic Structure for collecting the bindings of the
program

It is quite related to the symbol tables of the front-end of
language executors and Compilers
Machine Languages do not use naming and do not require Env

Store = Semantic Structure for Mutable Values, i.e. Mem

Additional Memory components are always present in the
implementation machinery, to handle immutable values and
the program representation of all languages (including pure
Functional ones)

AR = Implementation Machinery Component for the
computation control

It is used to support the program sectioning into parts that:

can be executed separately,
and, include inline blocks, procedures/functions, modules,
monitors, threads,..

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Program Sectioning: Blocks

Block = It is used for creating sections of program that are:

(partially) autonomous in the definitions that may be used, and
may exhibit specific functionalities, and
may be valid supports in program verification and modification

Two main kinds in Procedural Programming:

inline blocks
procedures and functions

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery



Blocks: Inline vs. Procedures

Inline Blocks

anonymous
contain two parts: Local Definitions and End/Exit Code;
may be nested: Execution exits nested blocks in reverse order
to the entering

Procedures and Functions

named
contain three parts: Parameter Transmission, Local Definitions
and Return/Exit Code;

Example

(a) According to the above features, describe the features of the blocks of the compound statements of the
language C.
(b) Moreover, answer to: in what features the inline blocks of Java differ from the ones described in the slide

Suggested Reading:
Gabrielli M., S. Martini, Programming Languages: Principles and Paradigms, Springer, 2006 - Chapter 4-4.2

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery


