
Lectures 3-4-5-6
Basics in Procedural Programming: Machinery

prof. Marco Bellia, Dip. Informatica, Università di Pisa

February 25, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Basics in Procedural Programming: Machinery

◦ Naming and Binding

◦ Mutable Values: Denotable, Storable and Expressible Value

◦ Env, Store, AR and Blocks: Motivations

◦ Blocks: Inline blocks and Procedure/function (body) block

Blocks: Static and Dynamic Scope

Activation Records: Structure and Implementation

Programming Unit

Aliasing, Closures, Lambda Lifting

Env: Formalization and Implementation

Store: Formalization and Implementation

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Blocks: Inline vs. Procedures - Exercises

Example

(a) According to the above features, describe the features of the blocks of the compound statements of C.
(b) Moreover, answer to: in what features the inline blocks of Java differ from the ones described in the slide

(a) Answer.
• anonymous;
• contains two parts:

1. Local Definitions: But without procedure/functions
2. Code: Any sequence of statements including jump stms. (break, return, continue, goto)
• may be nested: Execution exits depend on the Code stms.

(b) Answer.
• anonymous;
• contains two parts:

1. Local Definitions (including classes, hence methods)
2. Code: Any sequence of statements including jump stms. (break, return, continue, goto)
• may be nested: Execution exits depend on the Code stms.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Blocks: Scope of Identifier definitions

Scope. Let I be an identifier defined with the value d in a
block A, of a program P, i.e. binding(A,I)=d in P. Then,
Scope(I,A) is the set Z of sections of P that must use the
value d when they refer to the identifier I:

Scope(I,A)={B | binding(B,I)=binding(A,I)}

Definition of Scope depends from the language;

Two kinds of Scope (and correspondingly, two classes of
languages):

Scope is static (Hence, Languages with static Scope)
Scope is dynamic (Hence, Languages with dynamic Scope)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Blocks: Static and Dynamic Scope

Scope(I,A)={B | binding(B,I)=binding(A,I)}

Static Scope: S-Scope
Z includes A;
Z includes also, any block B which is:

(defined) within A and
it is such that its section ’Local Definitions’ does not contain
a new definition for I
in this case, I is also, called a non-local of B.

Dynamic Scope: D-Scope
Z includes A;
Z includes also, any block B which is:

executed during the execution of the ’Code’ of A and
it is such that its section ’Local Definitions’ does not contain
a new definition for I
in this case, I is also called a non-local of B.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Blocks: Static and Dynamic Scope/2

They differ only on the non-locals of procedures and functions

Example

Give names to inline blocks by using capital letters, in alphabetic order, from A that is assigned to the
outermost, topmost, block;

1 List the block in the program;

2 Compute the function Scope of each defined identifiers;

3 Compute the static, S-Scope, and dynamic, D-Scope, scope of each defined identifiers;

4 Show printed values when static, respectively dynamic, scope is used

A:{int x = 0;
void pippo(int n){x=n+x;}
pippo(3);
print(x); printer: 3 3
B:{int x = 0;

pippo(3);
print(x); printer: 0 3
}

print(x); printer: 6 3
}

(1) The program blocks are: {A,pippo, B};
(2) Scope(A,x)={A,pippo}; Scope(B,x)={B,pippo}; Scope(pippo,n)={pippo}
(3) S-Scope(A,x)={A,pippo}; S-Scope(B,x)={B}; S-Scope(pippo,n)={pippo}

D-Scope(A,x)={A,pippo}; D-Scope(B,x)={B,pippo}; D-Scope(pippo,n)={pippo}

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Static vs. Dynamic Scope: Motivations

Two kinds of Scope (and correspondingly, two classes of
languages):

Scope is static (Almost all languages)
Also called, lexical scope (Symbol-Tables of front-ends)
The binding of a non-local is localized near to its use
The binding of a non-local in a block is the same in all block
executions (during each program execution)

Allow a better sectioning of the program;
Allow a better programming approach (programming
methodologies)

Implementation is efficient but a bit heavy.

Scope is dynamic (Lisp-like languages)
Avoid the use of non-locals is recommended in the use of
languages with dynamic scope (lambda-lifting).
Implementation is not efficient but very easy to do.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Blocks: Different Notions

In some languages (including Java) inline blocks cannot re-define a non-local variable (i.e.the shadowing of
local variables is forbidden)

In some languages blocks are not always, enclosed by delimiters (non ANSI C), or declarations may occur
everywhere in a block (JavaScripts)

Example

{int x = 5;
...
{int y = 0;

x+1;
...
int x = 10; This declaration may be considered:
y = x+y; (a) either, the beginning of a new block, ending at the end of its outer block (non ANSI C)
} (b) or, to be moved to the beginning of the block in which it is declared (JavaScript).

...
}

How many blocks here?

Example

{int x = 4; {int x = 4;
while(x > 0){ while(x > 0){

- -x; int x;
int x; - -x;
print(x); print(x);
} }

...} ...}
What is while supposed to compute accor- Provide a re-phrasing in ANSI C of the code and
ding to the two readings, (a) and (b) above? show the first 10 printed rows and comment them.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Activation Record: Implementation for inline blocks

Activation Records:

Support the execution of the code of a block (i.e. program
section)
Support the control transfer among different blocks
Have different structure depending on:

inline block:
Env (called frame)
Program Counter (pc)
Memory Section for Expression Intermediate Results (ri)
Dynamic Chain pointer (cd)

Example

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Activation Record: Implementation for procedure blocks

Activation Records:

inline block: ...
procedure block:

Env (called frame)
Program Counter (pc)
Memory Section for Expression Intermediate Results (ri)
Dynamic Chain pointer (cd)
Static Chain pointer (cs) only for static scope
Return Address (ret)
Result Value Address (val)

Example

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Finding the Right Binding: The Simple Approach

Q: How can we finding the right binding of an identifier (during
program execution)?
A: By using the active AR in a backward visit of the AR frames
along:

(Static Scope) the Static Chain (cs if procedures / cd if inline)

(Dynamic Scope) the Dynamic Chain (cd)

and stopping when a binding for the identifier is found.

the found binding, if any, is the right binding of the identifier.

Example

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Finding the Right Binding: Le Blank - Cook Approach

The simple approach requires O(n*p) accesses and
comparisons (for n-sized frames / p-sized chain lenghts)

Le Blank - Cook (1983) is only for Static Scope

It reduces the finding cost to O(p) (and by using, display
vector to O(1))

It consits in:
To each identifier I that is used in a block B it associates a
pair [l,p]:

l = is called Static Chain Link and is equal to the number of
nestings of B w.r. to the block A containing the binding of I.
l=0 means the 0-nesting(level)s – Noting that, procedure
blocks that are declared in a block are considered as nested in
such a block.
p = is called position and is equal to the position, from the
top, in the frame of A (above), of the binding of I.

It replaces, identifiers, everywhere are used, with their pair
[l,p], above.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Le Blank - Cook (1983): Examples

Le Blank - Cook is only for Static Scope

It reduces the finding cost to O(p) (and by using, display
vector to O(1))

It replaces, identifiers, everywhere are used, with their pair
[l,p], above.

Example

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

Le Blank - Cook (1983): Examples/2

Example

Noting the use of display vectors, in red lines/boxes, in the image on the right side.

Suggested Reading:
Gabrielli M., S. Martini, Programming Languages: Principles and Paradigms, Springer, 2006 - Chapter4 + Exercises

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lectures 3-4-5-6 Basics in Procedural Programming: Machinery

