Lecture 7-8

The In-depth knowledge Of The Language that
We Must Use

prof. Marco Bellia, Dip. Informatica, Universita di Pisa

March 11, 2014

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

In-depth Knowledge of a Programming Language

The In-depth Knowledge of the structure of a language (manly its
constructs) occurs through the use of various tools whose
availability depends on the specific language.

e Formal Definition Syntax, Semantics and Abstract Machine;

o Execution Tools Compilers, Interpreters with which to
experience and testing programs of language;

o Language Textbooks: They are of help in the construction
of language programs for algorithms that are both in
widespread use, in programming, and in a relevant use, in the
specific applications for which the language has been designed

@ Use and Reference Manuals They contain the Description
of: Single constructs, Behavior of an hypothetical Executor,
Typical combinations of constructs to build programs.

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

In-depth Knowledge of a Programming Language/2

@ Where to find the exact behavior of the following program?

int main (int argc, char *argv[]){
intz=4;
inty=z;
/* int iterationCounter = 0; */
while((z=y)>0)}{
int z;
—-z;
printf("valore di z=%2d\n", z);
Y=z
= iterationCounter++; */

/* printf("Number of iteration of the inner block %2d\n", iterationCounter); */
return O;

@ Is it a terminating program?

@ Is termination to be affected by the removal of the comment mark in red
colored, statements?

@ s its use of control and data resources adequate for the language expressivity?

prof. Marco Bellia, Dip. Informatica, Universita di Pisa 8 The In-depth knowledge Of The Language that We

Programming Paradigms

@ The study of paradigms requires the ability to answer such kind of questions

@ in order to compare the exact behavior of programs that are written in different
languages

@ Hence, to obtaining the right in-depth knowledge of languages, we use:

o Denotational Semantics which is expressed in a way that is
abstract enough to do not influence the effective
implementation of the construct;

e Models or Implementation Schema (e.g. data model,
model of memory organization,...) instead of effective
implementation of the abstract machine;

e Programming Methodologies in which we study the use and
the role of the constructs that the different paradigms offer;

o Compilers e/o Interpreters with which we experience and we
will do all the testing of interesting program structures.

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Denotational Semantics

Basic Structures are:

e Syntactic Domains
e Semantic Domains

@ Semantic Functions

These three entities characterize the language and allow a

analytical comparison of the different solutions that the different
paradigms may offer

prof. Marco Bellia, Dip. Informatica, Universita di Pisa

Lecture 7-8 The In-depth knowledge Of The Language that We

Denotational Semantics- Notational Remarks

@ Function:)\x.e defines a function of one argument that computes like e
@ FixPont: Y F where F is a functional on f: Example
Y F = Y Fact where Fact is the functional:
Af.An.if(n = O)then 1 else n* f(n — 1).
Noting that: Y F is a contraction for: Yf.Af.H
@ To compute with FixPoint:
intensional use: Vx : Y F(x) = F(Y F)(x)
extensional use: Y F = Limpenat (Y F)® where:
(YF)° = F(L)
(Y Fye = F((Y Fyot)

intensional use:
Y Fact(2) = if(2 =0)then 1 else 2 Y Fact(1)
= 2% (if(1 = O)then 1 else 1 %Y Fact(0))
=21+ (if(0 = 0)then 1 else 1 *Y Fact(0))
=2x*x1x1
extensional use:
Y Fact® = An.if(n = O)then 1 else L
Y Fact! = An.if(n = 0)then 1 else n * (An.if(n = O)then 1 elsel)(n — 1)
= An.if(n = O)then 1 else (if(n = 1)thenn*1 else nx L)
= An.if(n = O)then 1 else (if(n = 1)then 1 elsel)
Y Fact? = ...

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Syntactic Domains

Table 1
Syntactic Domains
D == ProcI()C;|DD].. (Declaration)
C == {DC}|I:=E|CallI()]... (Command)
E == I|VL]|.. (Expressions)
VL = (Literal)

Example

Complete the list below, of the syntax constructors, used in the
table, and show the signature of each one:
{-}:DxC—C

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Semantic Domains/1

Table 2

Semantic Domains

Env,p,6 = I — Den (Environment)
Operations di Env :
bind : I X Den X Env — Env
bind(I,d, p) = Ax. if((x eq I),d, p(x))
find: I X Env — Den
find(I, p) = p(I)
empty : Env
empty = Ax. x

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Semantic Domains/2

Table 2.continued

Store,s = . (Memory)
Operations of Store :
upd : Loc X Mem X Store — Store
look: Loc X Store — Mem

State = (State)

Auxiliary Semantic Domains

Val,v = (Language Values)
Den, d = (Language Den)
Mem, d = (Language Mem)
Loc,1 = (Locations)

Input = (1/0 : Input)
Output = (1/0 : Output)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Semantic Functions/1

Table 3

Semantic Function

D :D — Env — Env (Declarations)

M : C — Env — State — State (Commands)
€ :E — Env — State — Val (Espressions)
Auxiliary Domains

VL ::= Int + Char (Literals : Disjoint Union)

Int = ... (Literals for integers)
Char ::= ... (Literals for characters)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Semantic Functions/2

Auxiliary Functions (for Disjoint Union)
(injections, i.e. are constructors [surjective??))
N: VLt — Int
C : VLcpar — Char
V:Int UChar — VL

NtoVL : Int — VL CtoVL : Char — VL
NtoVL = Ax.V(x) CtoVL = Ax.V(x)

VLtoN : VL. — Int | VLtoC : VL. — Char |
VLtoN = Ax.if((x €Int),N(x), L1nt)

€Int : VL — TruthV €Char : VL. — TruthV

€Int = Ax.x eq V(N(x))
MV : Mem — Val
IntoVal : VL — Val

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block Structures Languages: Inline and Procedure/1

Table5 — Imperative Languages : Static Scope
Semantic Functions

D[p], : Env (Meaning of the Declarations)
D[Proc I() C], = bind(I, M[C],,p)
M([C], : State — State (Invocation)

M(call 1()], = £ind(I, p)

Auxiliary Domains

Den ::= Loc + ProcFun (Disjoint Union)
ProcFun ::= State — State (Value Procedure)
Auxiliary Functions

Q: (State — State) — ProcFun (injective, costructor)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Procedure with Static Scope: Implementation

Mlc], vs. (C,p) = (pc,Pp)

@ AR Stack. An AR template, ARy, is created for each defined
procedure, with the features described in lecture3-6. Then,
the 'find" operation is implemented by a:

e backward visit, or
e LeBlank-Cook's pair access
to the frames of static chain of the Activation Records

@ What is the relation between Static Chain and the p, above?

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block Structures Languages: Inline and Procedure/2

Tableb — Imperative Languages : Dynamic Scope
Semantic Functions

D[D], : Env (Declarations)
D[Proc I() C], = bind(I, Ao.M[C]s, p)

M([C], : State — State (Invocation)
M[call 1()], = tind(L, p)(p)

Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Procedure with Dynamic Scope: Implementation

A M[Cls wvs. (C,?)=(pc,?)

@ AR Stack. An AR template is created for each defined
procedure, with the features described in lecture3-6. Then,
the 'find’ operation is implemented by a:

e backward visit
to the frames of the dynamic chain of the Activation Records

@ is Dynamic Chain of a procedure known at the time of the proc. declaration
(i.e. compile time)?

@ is Dynamic Chain of a procedure known before the proc. invocation?

@ is Dynamic Chain of a procedure the same for all the proc. invocation?

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block: Sequential, Parallel, Mixed, Declarations/1

Table7 — Languages : Sequential Declaration
Syntactic Domain
D ::=Proc I() C; | Const I =VL | DD...

Semantic Functions
D[Const I = VL], = bind(I, IntoVal(VL),p)

Let Fe{M,&} in
Let D[D1] = Ao.bind(I1, F[di]s,0) and
D[D2] = Ao.bind(I2, F[d2]s, o)
in D[Dy D], = P[D2](P[P:1](p)) = PD2]ppp,j,

Auxiliary Domains
Den ::= Loc + ProcFun + VL (Disjoint Union)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block: Sequential, Parallel, Mixed, Declarations/2

Table8 — Languages : Mutually Recursive Definitions
Syntactic Domain
D:=..|DD|Mut D; Dy Ally | ...

Semantic Functions
Let Fe{M,E} in
Let D[D:1] = Ao.bind(I1, F[di]s,0) and
DIIDQ]] =)\U.bind(Iz,]:[dz]]U, 0’)
in DD Dz, = D[D2N(DID11(6)) = P2y,

Let D[D1] = Ao.A\p.bind(I1, Fd1],,0) and
D[D2] = Ao Ap.bind(I2, Fd2],, o)
in D[Mut D1 Dy Ally], = Yu.D[D2](P[D1](p) (1))

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block: Sequential, Parallel, Mixed, Declarations/3

@ Apply the definitions to the declaration below, in the example:

Let A and B two identifiers. Show the bindings of A and B that the following fragment
defines:

Mut
Proc A() {Call BO);}
Proc B() {Call AQ);}
Ally

g = Yu. Ao Ap.bind(B, M[{Call A();}]u, o) (Ao Auind(A, ...)(p) (1))
Compute the first 3 approximations to the solution of the functional:
H = Ap.bind(B, M[{Call A();}].,bind(A, M[{Call B();}]u,p))
At the starting step: Y HO = H(L)
= b1nd(B M[{call A();}] ., bind(A, M[{Call B();}]u, r))
YH —-H(Y)

Y H?

H(Y H!)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block: Sequential, Parallel, Mixed, Declarations: Use and

Implementation

@ Use: Declarations (of any of the 3 forms) is the elective,
transparent mechanism that Programming Languages use to
allow Naming

o Sequential. Total ordering of the dependencies (references)
among declarations

o Parallel. Mutually Recursive Definitions (of procedure,
functions, ..., types, classes)

o Mixed. It Combines the two above: Explicitly (construct
mutually) or implicitly (it is sequential except for procedures,
functions,...)

e Implementation: It needs Env (in dynamic semantic) and
requires Static Analyzers (in static semantics).

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

Block: Sequential, Parallel, Mixed, Declarations: Static

Semantics

@ Static Semantics = Rules that restrict the structures of
syntactically correct (program) terms

@ Static Analysis checks declarations against the use of circular
definitions

Show the environment Env when the semantics of mutually applies to the fragment

{..
Mut
int x= vy;
int y= 3;
Ally

Comment (also in view of the slide about mutually, undefined procedure calls)

prof. Marco Bellia, Dip. Informatica, Universita di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We

