
Lecture 7-8
The In-depth knowledge Of The Language that

We Must Use

prof. Marco Bellia, Dip. Informatica, Università di Pisa

March 11, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

In-depth Knowledge of a Programming Language

The In-depth Knowledge of the structure of a language (manly its
constructs) occurs through the use of various tools whose
availability depends on the specific language.

Formal Definition Syntax, Semantics and Abstract Machine;

Execution Tools Compilers, Interpreters with which to
experience and testing programs of language;

Language Textbooks: They are of help in the construction
of language programs for algorithms that are both in
widespread use, in programming, and in a relevant use, in the
specific applications for which the language has been designed

Use and Reference Manuals They contain the Description
of: Single constructs, Behavior of an hypothetical Executor,
Typical combinations of constructs to build programs.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

In-depth Knowledge of a Programming Language/2

Where to find the exact behavior of the following program?

Example

Is it a terminating program?

Is termination to be affected by the removal of the comment mark in red
colored, statements?

Is its use of control and data resources adequate for the language expressivity?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Programming Paradigms

The study of paradigms requires the ability to answer such kind of questions

in order to compare the exact behavior of programs that are written in different
languages

Hence, to obtaining the right in-depth knowledge of languages, we use:

Denotational Semantics which is expressed in a way that is
abstract enough to do not influence the effective
implementation of the construct;
Models or Implementation Schema (e.g. data model,
model of memory organization,...) instead of effective
implementation of the abstract machine;
Programming Methodologies in which we study the use and
the role of the constructs that the different paradigms offer;
Compilers e/o Interpreters with which we experience and we
will do all the testing of interesting program structures.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Denotational Semantics

Basic Structures are:

Syntactic Domains

Semantic Domains

Semantic Functions

These three entities characterize the language and allow a
analytical comparison of the different solutions that the different
paradigms may offer

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Denotational Semantics- Notational Remarks

Function: λx.e defines a function of one argument that computes like e

FixPont: Y F where F is a functional on f: Example
Y F ≡ Y Fact where Fact is the functional:
λf.λn.if(n = 0)then 1 else n ∗ f(n− 1).

Noting that: Y F is a contraction for: Yf.λf.H
To compute with FixPoint:

intensional use: ∀x : Y F(x) = F(Y F)(x)
extensional use: Y F = Limn∈Nat(Y F)n where:

(Y F)0 = F(⊥)
(Y F)n = F((Y F)n−1)

Example

intensional use:
Y Fact(2) = if(2 = 0)then 1 else 2 ∗ Y Fact(1)

= 2 ∗ (if(1 = 0)then 1 else 1 ∗ Y Fact(0))
= 2 ∗ 1 ∗ (if(0 = 0)then 1 else 1 ∗ Y Fact(0))
= 2 ∗ 1 ∗ 1

extensional use:
Y Fact0 = λn.if(n = 0)then 1 else ⊥
Y Fact1 = λn.if(n = 0)then 1 else n ∗ (λn.if(n = 0)then 1 else⊥)(n− 1)

= λn.if(n = 0)then 1 else (if(n = 1)then n ∗ 1 else n ∗ ⊥)
= λn.if(n = 0)then 1 else (if(n = 1)then 1 else⊥)

Y Fact2 = ...

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Syntactic Domains

Table 1
Syntactic Domains

D ::= Proc I() C; | D D | ... (Declaration)
C ::= {D C} | I := E | Call I () | ... (Command)
E ::= I | VL | ... (Expressions)
VL ::= ... (Literal)

Example

Complete the list below, of the syntax constructors, used in the
table, and show the signature of each one:
{ } : D× C→ C

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Semantic Domains/1

Table 2
Semantic Domains

Env, ρ, δ ≡ I→ Den (Environment)
Operations di Env :
bind : I× Den× Env→ Env
bind(I, d, ρ) ≡ λx. if((x eq I), d, ρ(x))

find : I× Env→ Den
find(I, ρ) ≡ ρ(I)

empty : Env
empty ≡ λx. x

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Semantic Domains/2

Table 2.continued
Store, s ≡ ... (Memory)

Operations of Store :
upd : Loc× Mem× Store→ Store
look : Loc× Store→ Mem

State ::= ... (State)

Auxiliary Semantic Domains
Val, v ::= ... (Language Values)
Den, d ::= ... (Language Den)
Mem, d ::= ... (Language Mem)
Loc, l ::= ... (Locations)
Input ::= ... (I/O : Input)
Output ::= ... (I/O : Output)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Semantic Functions/1

Table 3
Semantic Function

D : D→ Env→ Env (Declarations)

M : C→ Env→ State→ State (Commands)

E : E→ Env→ State→ Val (Espressions)

Auxiliary Domains
VL ::= Int + Char (Literals : Disjoint Union)
Int ::= ... (Literals for integers)
Char ::= ... (Literals for characters)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Semantic Functions/2

Auxiliary Functions (for Disjoint Union)
(injections, i .e. are constructors [surjective??])

N : VLInt → Int
C : VLChar → Char
V : Int ∪ Char→ VL
NtoVL : Int→ VL CtoVL : Char→ VL

NtoVL = λx.V(x) CtoVL = λx.V(x)
VLtoN : VL→ Int⊥ VLtoC : VL→ Char⊥

VLtoN = λx.if((x ∈Int), N(x),⊥Int)
∈Int : VL→ TruthV ∈Char : VL→ TruthV
∈Int = λx.x eq V(N(x))

MV : Mem→ Val
IntoVal : VL→ Val

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block Structures Languages: Inline and Procedure/1

Table5− Imperative Languages : Static Scope
Semantic Functions

D[[D]]ρ : Env (Meaning of the Declarations)
D[[Proc I() C]]ρ = bind(I,M[[C]]ρ, ρ)

M[[C]]ρ : State→ State (Invocation)
M[[Call I()]]ρ = find(I, ρ)

Auxiliary Domains
Den ::= Loc + ProcFun (Disjoint Union)
ProcFun ::= State→ State (Value Procedure)

Auxiliary Functions
Q : (State→ State)→ ProcFun (injective, costructor)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Procedure with Static Scope: Implementation

M[[C]]ρ vs. (C, ρ) = (pC , pρ)

AR Stack. An AR template, ARI , is created for each defined
procedure, with the features described in lecture3-6. Then,
the ’find’ operation is implemented by a:
• backward visit, or
• LeBlank-Cook’s pair access

to the frames of static chain of the Activation Records

What is the relation between Static Chain and the ρ, above?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block Structures Languages: Inline and Procedure/2

Table6− Imperative Languages : Dynamic Scope
Semantic Functions

D[[D]]ρ : Env (Declarations)
D[[Proc I() C]]ρ = bind(I, λδ.M[[C]]δ, ρ)

M[[C]]ρ : State→ State (Invocation)
M[[Call I()]]ρ = find(I, ρ)(ρ)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Procedure with Dynamic Scope: Implementation

λδ.M[[C]]δ vs. (C, ?) = (pC , ?)

AR Stack. An AR template is created for each defined
procedure, with the features described in lecture3-6. Then,
the ’find’ operation is implemented by a:

• backward visit
to the frames of the dynamic chain of the Activation Records

is Dynamic Chain of a procedure known at the time of the proc. declaration
(i.e. compile time)?

is Dynamic Chain of a procedure known before the proc. invocation?

is Dynamic Chain of a procedure the same for all the proc. invocation?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block: Sequential, Parallel, Mixed, Declarations/1

Table7− Languages : Sequential Declaration
Syntactic Domain
D ::= Proc I() C; | Const I = VL | D D...

Semantic Functions
D[[Const I = VL]]ρ = bind(I, IntoVal(VL), ρ)

Let F ∈ {M, E} in
Let D[[D1]] = λσ.bind(I1,F [[d1]]σ, σ) and
D[[D2]] = λσ.bind(I2,F [[d2]]σ, σ)

in D[[D1 D2]]ρ = D[[D2]](D[[D1]](ρ)) = D[[D2]]D[[D1]]ρ

Auxiliary Domains
Den ::= Loc + ProcFun + VL (Disjoint Union)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block: Sequential, Parallel, Mixed, Declarations/2

Table8− Languages : Mutually Recursive Definitions
Syntactic Domain
D ::= ... | D D | Mut D1 D2 Ally | ...

Semantic Functions
Let F ∈ {M, E} in
Let D[[D1]] = λσ.bind(I1,F [[d1]]σ, σ) and

D[[D2]] = λσ.bind(I2,F [[d2]]σ, σ)
in D[[D1 D2]]ρ = D[[D2]](D[[D1]](ρ)) = D[[D2]]D[[D1]]ρ

Let D[[D1]] = λσ.λµ.bind(I1,F [[d1]]µ, σ) and
D[[D2]] = λσ.λµ.bind(I2,F [[d2]]µ, σ)

in D[[Mut D1 D2 Ally]]ρ = Yµ.D[[D2]](D[[D1]](ρ)(µ))

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block: Sequential, Parallel, Mixed, Declarations/3

Apply the definitions to the declaration below, in the example:

Example

Let A and B two identifiers. Show the bindings of A and B that the following fragment
defines: ...

{...
Mut

Proc A() {Call B();}
Proc B() {Call A();}

Ally

...

g ≡ Yµ.λσ.λµ.bind(B,M[[{Call A();}]]µ, σ)(λσ.λµ.bind(A, ...)(ρ)(µ))
Compute the first 3 approximations to the solution of the functional:

H ≡ λµ.bind(B,M[[{Call A();}]]µ, bind(A,M[[{Call B();}]]µ, ρ))
At the starting step: Y H0 = H(⊥)

= bind(B,M[[{Call A();}]]µ, bind(A,M[[{Call B();}]]µ, ρ))
Y H1 = H(Y H0)

= ...
Y H2 = H(Y H1)

= ...

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block: Sequential, Parallel, Mixed, Declarations: Use and
Implementation

Use: Declarations (of any of the 3 forms) is the elective,
transparent mechanism that Programming Languages use to
allow Naming

Sequential. Total ordering of the dependencies (references)
among declarations
Parallel. Mutually Recursive Definitions (of procedure,
functions, ..., types, classes)
Mixed. It Combines the two above: Explicitly (construct
mutually) or implicitly (it is sequential except for procedures,
functions,...)

Implementation: It needs Env (in dynamic semantic) and
requires Static Analyzers (in static semantics).

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

Block: Sequential, Parallel, Mixed, Declarations: Static
Semantics

Static Semantics = Rules that restrict the structures of
syntactically correct (program) terms

Static Analysis checks declarations against the use of circular
definitions

Example

Show the environment Env when the semantics of mutually applies to the fragment
...
{...
Mut

int x= y;
int y= 3;

Ally

...
Comment (also in view of the slide about mutually, undefined procedure calls)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 7-8 The In-depth knowledge Of The Language that We Must Use

