
Lecture 9-10
Expressions: Formalization, Use, Implementation

prof. Marco Bellia, Dip. Informatica, Università di Pisa

March 14, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Formalization, Use, Implementation

Expressions: Referential Transparency and Side Effects

Divergent Expressions: strict and non-strict operators
(functions)

Structured Values, Lazy Constructors, Eager and Lazy
Evaluation (Evaluators)

Finite, Finitary and Infinite Values

Mutable Values and Assignment (operator)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Referential Transparency and Side Effects/1

Expressions with Referential Transparency.
Expressions can be replaced by the value without affecting
program behaviour

Pure Functional Languages
Semantic Function
E : E→ Env→ State→ Val

Example

Expression e1 + e − e1 can be replaced by e provided that:
1) e1 ∈ Val (i.e. its evaluation terminates and computes a value);
2) Operators + e − stand for addition and subtraction, resp..

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Referential Transparency and Side Effects/1

Expressions with Side Effects

Expressions do not compute only values: In addition they may
modify the computation state
Procedural Languages
Funzione Semantica

E : E→ Env→ State→ (Val× State)

Example

Expression e1 + e − e1 cannot be replaced by e even when (1) and
(2) of previous slide hold.
Show a concrete case.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Use

Use
to Introduce, in the program, values possibly as the result of
more or less complicated compositions of (primitive or user
defined) operators on values or identifiers (e.g. naming).

to Implement algorithms that are based on (mutable and
immutable) value manipulations

In Functional Languages, all the computable functions are
expressed only through programs that implement algorithms
that are based on value manipulations (state modification
sequences are not needed)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Implementation

Compile Time. Decomposition of expressions in a sequence
of elementary applications (for state based machines)

Only one operator is involved in each application of the
sequence
Decomposition may lead to different forms:

Infix Notation. Abstract Tree and Depth-First Visit:
3 ∗ x + 2 becomes tree(tree(3, ∗, x), +, 2).
Prefix Notation. Inner Sequencing:
3 ∗ x + 2 become the sequence [+, ∗, 3, x , 2].
Postfix Notation. Sequencing:
3 ∗ x + 2 become the sequence [3, x , ∗, 2, +] – reversed is
perfect for the stack of the intermediate values
Machine Code: 3 ∗ x + 2 become the sequence [iconst 3,
iload 0,imul,iconst 2,iadd]

RI Stack: A workspace, contained in each AR, for dealing
with operator applications

AR Stack: When user defined operations occur in the
expression

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Divergent E.

Expressions do not compute always values

Example

What does the C expression, below compute?
0 ∗ fact(−3)

when fact is the user defined C procedure:
int fact(int n){return((n == 0) ? 1 : n ∗ fact(n − 1)); }

To deal with divergent expressions, E becomes:

E : E→ Env→ State→ Val⊥
E : E→ Env→ State→ (Val× State)⊥

Divergent Expressions augment the Language Expressivity
with:

the non-strict evaluation form (call by need, ...)
the lazy evaluation form and
the finitary, infinite values.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Strict and non-strict Operators (functions)/1

Example

What do the two C expressions compute?
(x < 0)||(fact(x) > 0)
(x < 0)|(fact(x) > 0)

Can lead to non-terminating computations:

E : E→ Env→ State→ Val⊥
E : E→ Env→ State→ (Val× State)⊥

Some languages have operators

non-strict: ||,&&...
strict: |,&...

Semantics, Implementation, Use

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Strict and non-strict Operators (functions)/2

Semantics of op: Valk → Val
Definition of a strict, op⊥S

, and of a non-strict., op⊥NS
, operator of op.

Val is extended into: Val⊥

Strict op⊥S
. All the arguments are evaluated to a value of the op domain.

op⊥S
(e1, ..., ek) =


op(e1, ..., ek) sse (∀i ∈ [1..k]) ei ∈ Val

⊥Val otherwise

Non-Strict op⊥NS
. Only some arguments are evaluated. The following must

hold: ei ∈ Val (∀i ∈ [1..k])⇒ op⊥NS
(e1, ..., ek) = op(e1, ..., ek)

Example

Let op = ? be integer product. Then
?⊥S

is the only one possible strict extension of op.
?⊥NS

could be any of the following non-strict extensions of op:
?⊥NS

= λ(x, y).if (x == 0) then 0 else ?⊥S
(x , y)

?⊥NS
= λ(x, y).if (x == 0 || y == 0) then 0 else ?⊥S

(x , y)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Strict and non-strict Operators (functions)/3

Implementation

Primitive Operators:

Strict: Apply only to terms of Val
Non-Strict: Apply also to some unevaluated arguments

Functions (i.e. user defined operators):

Strict: call by value
Non-Strict: call by name / call by need

Example

The following Haskell expression, h 3 (f 5), when h e f are:
h = \x y -> if (x\=0) then x else y
f n = f(n+1)

evaluates to 3.
Can You rephrase it in OCaml, C or Java?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Strict and non-strict Operators (functions)/4

Use
Non-Strict Functions are:

Useful in Programming (to cope with certain algorithms)

Not always computable

Example

A non-strict but non-computable function is Halting. The function could be described

in this form:

Naming: halting

Type: Val⊥ → Bool

Behaviour: When it applies to an expression, it results true if the expression
computes a value, i.e. a term of Val. it results false if the evaluation of the
expression, diverges.

Use. it predicts when evaluation is non-terminating.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Eager vs. Lazy Evaluation/1

Structured Values further extend the notion of non-strict
computation

Constructors of values
Operators for the component selection (and modification,
when mutable)

Lazy. Constructors do not evaluate arguments;

Eager. Constructors, as well as any other operation, apply
only to values.

Example

The Haskell expression g [4,(f 5)], when h and f are:
g u = if ((head u)==0) then 3 else 7
f n = f(n+1)

computes 7.
Can You rephrase it in OCaml, C or in Java?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Espressioni: Lazy Evaluation/2

Structured Values further extend the notion of non-strict
computation

Use
Delayed Evaluation of the expressions that are components
of a structured value
Storable Values include expressions that are components of a
structured value
Infinite Values (finitely approximated) may be introduced in
programming
Finitary Infinite Values (i.e. infinite structures that have a
finite representation) may be introduced as full value, i.e.
without using pointers and ciclic structures

Implementation Many, different implementations that extend
call by-need

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Lazy Evaluation/3

Example

Finitely Approximated, Infinite Values:
nat n = n:nat(n+1)

naturali = nat 0

v = take 3 naturali

In Haskell, the 3 expressions above, compute one function, the infinite list of naturals,
the list of the first 3 naturals.
Can You rephrase it in Caml, C or Java?

Example

Finitary Infinite values:
data Tree a = T(a,Tree a) - it defines a polymorphic type of Haskell
treeM = T(3,treeM) - a value of Haskell

treeM computes a infinite tree that can be finitely represented (with pointers !?)
Can You rephrase it in Caml, C or Java?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: Denotable E./1

Expressions E that compute mutable values have 2 different
interpretations.

Storable Value. It is a reference to the associated storable
value: Val(E)

Denotable Value. It is a reference to the full mutable value (it
is used in modification): Den(E)

Abstract Syntax points out such a distinction in programs

Example

In C (and other procedural languages) the following declaration:
int x;

introduces a mutable value named x.
The abstract syntax distinguishes the different interpretations of expression x by using:

Den(x) to express the mutable value (sometime called, l-value), and
Val(x) to express the storable value (sometime called, r-value) associated to Den(x).

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Espressions: Denotable E./2

Example

Consider the following C expression:
z = x = y

The abstract syntax of it, resulting from the compiler or interpreter
front-end, in the notation adopted in the provious slides is:

Val(Den(z) = Val(Den(x) = Val(y)))

Do the same with the following C expression:
A[*v+j] = x = y + A[*v+1]
....

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: with S.E./1

In Procedural Programming, Expressions do not compute only
values: In addition they may modify the computation state.

Table9− Semantics of Espressions with S.E.− 1
Domini Sintattici
D ::= ... | Var I; | Var I = E; | ...
E ::= Val(E) | Den(E) | I | VL | opk(E1...Ek) | E = E | ...

Semantic Domains
Env, ρ, δ ≡ ...
Store ≡ (Loc× (Loc→ Mem⊥)) (store with allocation)
Store⊥, s, r ≡ Store + {⊥S} (finite store)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Finite Store: Operations

Store ≡ (Loc× (Loc→ Mem⊥))
Store⊥, s, r ≡ Store + {⊥S}

upd : Loc× Mem⊥ × Store⊥ → Store⊥
upd(l ,m, (L, u))
≡ if((l ∈ [0, L)), λv.if((v eq l),m, u(l)),⊥S)

look : Loc× Store⊥ → Mem⊥
look(l , (L, u)) ≡ if((l ∈ [0, L)), u(l),⊥M)

allocate : Store⊥ → (Loc× Store⊥)
allocatek ((L, u))
≡ if((L > k),⊥LS , (L, (L + 1, upd(L,⊥M , u))))

⊥S : Store⊥
⊥S ≡ (Yf .λx.f (x))(u), con u ∈ Store

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions with S.E./2 - Declaration - Revisited

Semantic Functions

D[[D]]ρ : Store→ (Env× Store⊥)

D[[Var I;]]ρ(s)
= Let{(l , sl) = allocate(s)} (bind(I, l , ρ), sl)
D[[Var I = E;]]ρ(s) − compile time

= Let{(l , sl) = allocate(s)}
{(ve , se) = E [[E]]ρ(sl)}
{sm = upd(l , ve , sl)} (bind(I, l , ρ), sm)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: with S.E./3 - Values

Semantic Functions

E[[E]]ρ : Store→ (Val⊥ × Store⊥)

E[[Val(E)]]ρ(s) =

8>><>>:
(MV(s(ρ(I))), s) if E ≡ I ∈ Ide & ρ(I) ∈ Loc

(DV(ρ(I)), s) if E ≡ I ∈ Ide & ρ(I) /∈ Loc

(MV(sl(l)), sl) if E[[E]]ρ(s) = (l, sl) & l ∈ Loc

(v, sv) if E[[E]]ρ(s) = (v, sv) & v /∈ Loc

E[[Den(E)]]ρ(s) =

8<:(ρ(I), s) if E ≡ I ∈ Ide & ρ(I) ∈ Loc

(l, sl) if E[[E]]ρ(s) = (l, sl) & l ∈ Loc

(⊥D , s) otherwise

E[[VL]]ρ(s) = (IntoVal(VL), s)

Noting that: E[[I]]ρ is no more defined since both E[[Val(I)]]ρ and E[[Den(I)]]ρ are defined instead.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: with S.E./4 - Operators-1

Operators that propagate S.E. but do not generate it.

Semantic Functions

E [[E]]ρ : Store→ (Val⊥ × Store⊥)

E [[opk(E1...Ek)]]ρ(s) (strict)
= Let{(v1, s1) = E [[E1]]ρ(s)}

...
{(vk , sk) = E [[Ek]]ρ(sk−1)} (op⊥S

(v1...vk), sk)

E [[opk(E1...Ek)]]ρ(s) (non − strict)

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: with S.E./4 - Operators-2

Operators that propagate S.E. but do not generate it.

E [[opk(E1...Ek)]]ρ(s) (non − strict)
= Let{(vi1 , si1) = E [[Ei1]]ρ(s)

...
{(vih , sih) = E [[Eih]]ρ(sih−1

)} (op⊥NS
(v 1...vk), sih)

where : (i1 6= ... 6= ih ∈ [1..k]) and (v ij ≡ vij (∀j ∈ [1..h]))

Example

Consider a non-strict operator with the following behavior:
let op = fun x y z w →

if (w=0) then 0 else if (w>y) then y else if ...
Answering: 1) Which arguments does it evaluate? 2) In what order are they evaluat-
ed? 3) In what state is each argument evaluated?

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

Expressions: with S.E./4 - Operators-3

Operators that generate S.E.

Semantic Functions

E [[E]]ρ : Store→ (Val⊥ × Store⊥)

E [[El = Er]]ρ(s)
= Let{(v1, s1) = E [[Er]]ρ(s)}

{(l2, s2) = E [[El]]ρ(s1)} (v1, upd(l2, VM(v1), s2))

Auxiliary Functions
L : Loc→ Den (injection, i .e.constructor)
DV : Den→ Val
VM : Val→ Mem

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

