Lecture 9-10 Expressions: Formalization, Use, Implementation

prof. Marco Bellia, Dip. Informatica, Università di Pisa

March 14, 2014

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

- Expressions: Referential Transparency and Side Effects
- Divergent Expressions: strict and non-strict operators (functions)
- Structured Values, Lazy Constructors, Eager and Lazy Evaluation (Evaluators)
- Finite, Finitary and Infinite Values
- Mutable Values and Assignment (operator)

- Expressions with Referential Transparency.
 - Expressions can be replaced by the value without affecting program behaviour
 - Pure Functional Languages
 - Semantic Function

 $\mathcal{E}: \ \mathtt{E}
ightarrow \mathtt{Env}
ightarrow \mathtt{State}
ightarrow \mathtt{Val}$

Example

Expression $e_1 + e - e_1$ can be replaced by e provided that: 1) $e_1 \in Val$ (i.e. its evaluation terminates and computes a value); 2) Operators + e - stand for addition and subtraction, resp..

- Expressions with Side Effects
 - Expressions do not compute only values: In addition they may modify the computation state
 - Procedural Languages
 - Funzione Semantica
 - $\mathcal{E}: \ \mathtt{E}
 ightarrow \mathtt{Env}
 ightarrow \mathtt{State}
 ightarrow (\mathtt{Val} imes \mathtt{State})$

Example

Expression $e_1 + e - e_1$ cannot be replaced by e even when (1) and (2) of previous slide hold. Show a concrete case.

• Use

- to Introduce, in the program, values possibly as the result of more or less complicated compositions of (primitive or user defined) operators on values or identifiers (e.g. naming).
- to Implement algorithms that are based on (mutable and immutable) value manipulations
- In Functional Languages, all the computable functions are expressed only through programs that implement algorithms that are based on value manipulations (state modification sequences are not needed)

Expressions: Implementation

- **Compile Time.** Decomposition of expressions in a sequence of elementary applications (for state based machines)
 - **Only one operator** is involved in each application of the sequence
 - Decomposition may lead to different forms:
 - Infix Notation. Abstract Tree and Depth-First Visit: 3 * x + 2 becomes *tree*(*tree*(3, *, x), +, 2).
 - Prefix Notation. Inner Sequencing:
 - 3 * x + 2 become the sequence [+, *, 3, x, 2].
 - Postfix Notation. Sequencing:
 - $3\ast x+2$ become the sequence $[3,x,\ast,2,+]$ reversed is perfect for the stack of the intermediate values
 - Machine Code: 3 * x + 2 become the sequence [iconst_3, iload_0,imul,iconst_2,iadd]
- **RI Stack**: A workspace, contained in each AR, for dealing with operator applications
- AR Stack: When user defined operations occur in the expression

Expressions: Divergent E.

• Expressions do not compute always values

Example

What does the C expression, below compute? 0 * fact(-3)

when fact is the user defined C procedure: int fact(int n){return((n == 0) ? 1 : n * fact(n - 1)); }

- \bullet To deal with divergent expressions, ${\cal E}$ becomes:
 - \mathcal{E} : $\mathtt{E} \rightarrow \mathtt{Env} \rightarrow \mathtt{State} \rightarrow \mathtt{Val}_{\perp}$
 - \mathcal{E} : $\mathtt{E} \to \mathtt{Env} \to \mathtt{State} \to (\mathtt{Val} \times \mathtt{State})_{\perp}$
- Divergent Expressions augment the Language Expressivity with:
 - the non-strict evaluation form (call by need, ...)
 - the lazy evaluation form and
 - the finitary, infinite values.

(4月) (4日) (4日)

Example

What do the two C expressions compute? (x < 0)||(fact(x) > 0)(x < 0)|(fact(x) > 0)

- Can lead to non-terminating computations:
 - \mathcal{E} : $\mathtt{E} \rightarrow \mathtt{Env} \rightarrow \mathtt{State} \rightarrow \mathtt{Val}_{\perp}$
 - $\mathcal{E}: \ \mathtt{E}
 ightarrow \mathtt{Env}
 ightarrow \mathtt{State}
 ightarrow (\mathtt{Val} imes \mathtt{State})_{\perp}$
- Some languages have operators
 - non-strict: ||,&&...
 - strict: |, &...
- Semantics, Implementation, Use

Expressions: Strict and non-strict Operators (functions)/2

Semantics of op: $Val^k \rightarrow Val$

- Definition of a strict, op_{\perp_S} , and of a non-strict., $op_{\perp_{NS}}$, operator of op.
- Val is extended into: Val_
- Strict op_{\perp_S} . All the arguments are evaluated to a value of the op domain.

$$\operatorname{op}_{\perp_{S}}(e_{1},...,e_{k}) = \left\{ egin{array}{ll} \operatorname{op}(e_{1},...,e_{k}) & ext{sse} \left(orall i \in [1..k]
ight) e_{i} \in ext{Val} \ egin{array}{ll} \operatorname{val} & ext{otherwise} \end{array}
ight.$$

Non-Strict op_{⊥NS}. Only some arguments are evaluated. The following must hold: e_i ∈ Val (∀i ∈ [1..k]) ⇒ op_{⊥NS}(e₁,..., e_k) = op(e₁,..., e_k)

Example

Let op = * be integer product. Then * \perp_{S} is the only one possible strict extension of op. * \perp_{NS} could be any of the following non-strict extensions of op: * $\perp_{NS} = \lambda(\mathbf{x}, \mathbf{y})$.if (x == 0) then 0 else * \perp_{S} (x, y) * $\perp_{NS} = \lambda(\mathbf{x}, \mathbf{y})$.if (x == 0 || y == 0) then 0 else * \perp_{S} (x, y)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Implementation

- Primitive Operators:
 - Strict: Apply only to terms of Val
 - Non-Strict: Apply also to some unevaluated arguments
- Functions (i.e. user defined operators):
 - Strict: call by value
 - Non-Strict: call by name / call by need

Example

```
The following Haskell expression, h 3 (f 5), when h e f are:

h = x y \rightarrow if (x=0) then x else y

f n = f(n+1)

evaluates to 3.

Can You rephrase it in OCaml, C or Java?
```

Use

Non-Strict Functions are:

- Useful in Programming (to cope with certain algorithms)
- Not always computable

Example

A non-strict but non-computable function is *Halting*. The function could be described in this form:

- Naming: halting
- Type: $Val_{\perp} \rightarrow Bool$
- Behaviour: When it applies to an expression, it results true if the expression computes a value, i.e. a term of Val. it results false if the evaluation of the expression, diverges.
- Use. it predicts when evaluation is non-terminating.

・ 同 ト ・ ヨ ト ・ ヨ ト

Expressions: Eager vs. Lazy Evaluation/1

- Structured Values further extend the notion of *non-strict computation*
 - Constructors of values
 - Operators for the component selection (and modification, when mutable)
- Lazy. Constructors do not evaluate arguments;
- **Eager**. Constructors, as well as any other operation, apply only to values.

Example

```
The Haskell expression g [4,(f 5)], when h and f are:
    g u = if ((head u)==0) then 3 else 7
    f n = f(n+1)
computes 7.
Can You rephrase it in OCaml, C or in Java?
```

・ロト ・同ト ・ヨト ・ヨト

- Structured Values further extend the notion of *non-strict computation*
- Use
 - **Delayed Evaluation** of the expressions that are components of a structured value
 - **Storable Values** include expressions that are components of a structured value
 - Infinite Values (finitely approximated) may be introduced in programming
 - **Finitary Infinite Values** (i.e. infinite structures that have a finite representation) may be introduced as full value, i.e. without using pointers and *ciclic structures*
- Implementation Many, different implementations that extend call by-need

伺 ト イ ヨ ト イ ヨ ト

Example

```
Finitely Approximated, Infinite Values:
    nat n = n:nat(n+1)
    naturali = nat 0
    v = take 3 naturali
In Haskell, the 3 expressions above, compute one function, the infinite list of naturals,
the list of the first 3 naturals.
Can You rephrase it in Caml, C or Java?
```

Example

Finitary Infinite values: data Tree a = T(a,Tree a) - it defines a polymorphic type of Haskell treeM = T(3,treeM) - a value of Haskell treeM computes a infinite tree that can be finitely represented (with pointers !?) Can You rephrase it in Caml, C or Java?

・ロト ・回ト ・ヨト ・ヨト

Expressions E that compute mutable values have 2 different interpretations.

- Storable Value. It is a reference to the associated storable value: Val(E)
- Denotable Value. It is a reference to the full mutable value (it is used in modification): Den(E)
- Abstract Syntax points out such a distinction in programs

Example

In C (and other procedural languages) the following declaration:

int x;

introduces a mutable value named x.

The abstract syntax distinguishes the different interpretations of expression x by using: Den(x) to express the mutable value (sometime called, I-value), and

Val(x) to express the storable value (sometime called, r-value) associated to Den(x).

- 4 同 6 4 日 6 4 日 6

Example

Consider the following C expression:

z = x = y

. . . .

The abstract syntax of it, resulting from the compiler or interpreter front-end, in the notation adopted in the provious slides is:

Val(Den(z) = Val(Den(x) = Val(y)))

Do the same with the following C expression:

A[*v+j] = x = y + A[*v+1]

In Procedural Programming, Expressions do not compute only values: In addition they may modify the computation state.

Table9 – Semantics of Espressions with S.E. – 1Domini Sintattici $D ::= ... | Var I; | Var I = E; | ...<math>E ::= Val(E) | Den(E) | I | VL | op_k(E_1...E_k) | E = E | ...Semantic DomainsEnv, <math>\rho, \delta \equiv ...$ Store $\equiv (Loc \times (Loc \rightarrow Mem_{\perp}))$ (store with allocation)Store $\downarrow, s, r \equiv Store + \{ \perp s \}$ (finite store)

```
\texttt{Store} \equiv (\texttt{Loc} \times (\texttt{Loc} \rightarrow \texttt{Mem}_{\perp}))
      Store \downarrow, s, r \equiv Store + \{ \perp_S \}
\texttt{upd}: \texttt{Loc} \times \texttt{Mem}_{\perp} \times \texttt{Store}_{\perp} \rightarrow \texttt{Store}_{\perp}
upd(I, m, (L, u))
      \equiv if((l \in [0, L)), \lambda v.if((v eq l), m, u(l)), \bot_{S})
\texttt{look}: \texttt{Loc} \times \texttt{Store}_{||} \rightarrow \texttt{Mem}_{||}
     look(I, (L, u)) \equiv if((I \in [0, L)), u(I), \bot_M)
allocate : Store \downarrow \rightarrow (Loc \times Store \downarrow )
allocate_k((L, u))
      \equiv if((L > k), \perp_{LS}, (L, (L+1, upd(L, \perp_M, u))))
 \begin{array}{ll} \bot_{\mathcal{S}}: \texttt{Store}_{\bot} \\ \bot_{\mathcal{S}} \equiv (\texttt{Y}f \, . \, \lambda\texttt{x} \, . \, f(\texttt{x}))(u), & \textit{ con } u \in \texttt{Store} \end{array}
```

Semantic Functions $\mathcal{D}\llbracket D \rrbracket_{a} : \texttt{Store} \to (\texttt{Env} \times \texttt{Store}_{\perp})$ $\mathcal{D}[Var I;]_{\rho}(s)$ = Let{ (I, s_I) = allocate(s)} (bind $(I, I, \rho), s_I$) \mathcal{D} [Var I = E;]₀(s) – compile time = Let $\{(I, s_I) = allocate(s)\}$ $\{(v_e, s_e) = \mathcal{E}\llbracket E \rrbracket_o(s_l)\}$ $\{s_m = upd(I, v_e, s_I)\}$ (bind(I, I, ρ), s_m)

Semantic Functions

$$\begin{split} \mathcal{E}[\![\mathbb{E}]\!]_{\rho} &: \texttt{Store} \to (\texttt{Val}_{\perp} \times \texttt{Store}_{\perp}) \\ \mathcal{E}[\![\mathbb{Val}(\texttt{E})]\!]_{\rho}(\texttt{s}) &= \begin{cases} (\texttt{MV}(\texttt{s}(\rho(\texttt{I}))),\texttt{s}) & \text{if } \texttt{E} \equiv \texttt{I} \in \texttt{Ide } \& \ \rho(\texttt{I}) \in \texttt{Loc} \\ (\texttt{DV}(\rho(\texttt{I})),\texttt{s}) & \text{if } \texttt{E} \equiv \texttt{I} \in \texttt{Ide } \& \ \rho(\texttt{I}) \notin \texttt{Loc} \\ (\texttt{MV}(\texttt{s}_1(\texttt{1})),\texttt{s}_1) & \text{if } \mathcal{E}[\![\mathbb{E}]\!]_{\rho}(\texttt{s}) = (\texttt{1},\texttt{s}_1) \& \texttt{1} \in \texttt{Loc} \\ (\texttt{v},\texttt{s}_{\texttt{v}}) & \text{if } \mathcal{E}[\![\mathbb{E}]\!]_{\rho}(\texttt{s}) = (\texttt{v},\texttt{s}_{\texttt{v}}) \& \texttt{v} \notin \texttt{Loc} \end{cases} \\ \mathcal{E}[\![\texttt{Den}(\texttt{E})]\!]_{\rho}(\texttt{s}) &= \begin{cases} (\rho(\texttt{I}),\texttt{s}) & \text{if } \texttt{E} \equiv \texttt{I} \in \texttt{Ide } \& \ \rho(\texttt{I}) \in \texttt{Loc} \\ (\texttt{1},\texttt{s}_1) & \text{if } \mathcal{E}[\![\mathbb{E}]\!]_{\rho}(\texttt{s}) = (\texttt{1},\texttt{s}_1) \& \texttt{1} \in \texttt{Loc} \\ (\perp_{\mathcal{D}},\texttt{s}) & \text{otherwise} \end{cases} \\ \mathcal{E}[\![\texttt{VL}]\!]_{\rho}(\texttt{s}) &= (\texttt{IntoVal}(\texttt{VL}),\texttt{s}) \end{cases} \end{split}$$

Noting that: $\mathcal{E}[I]_{\rho}$ is no more defined since both $\mathcal{E}[Val(I)]_{\rho}$ and $\mathcal{E}[Den(I)]_{\rho}$ are defined instead.

prof. Marco Bellia, Dip. Informatica, Università di Pisa Lecture 9-10 Expressions: Formalization, Use, Implementation

伺 ト く ヨ ト く ヨ ト

Operators that propagate S.E. but do not generate it.

$$\begin{split} & \textbf{Semantic Functions} \\ & \mathcal{E}\llbracket \textbf{E} \rrbracket_{\rho} : \texttt{Store} \rightarrow (\texttt{Val}_{\perp} \times \texttt{Store}_{\perp}) \\ & \mathcal{E}\llbracket op_k(\texttt{E}_1 \dots \texttt{E}_k) \rrbracket_{\rho}(s) \qquad (strict) \\ & = \texttt{Let}\{(v_1, s_1) = \mathcal{E}\llbracket \texttt{E}_1 \rrbracket_{\rho}(s)\} \\ & \dots \\ & \{(v_k, s_k) = \mathcal{E}\llbracket \texttt{E}_k \rrbracket_{\rho}(s_{k-1})\} \ (op_{\perp s}(v_1 \dots v_k), s_k) \\ & \mathcal{E}\llbracket op_k(\texttt{E}_1 \dots \texttt{E}_k) \rrbracket_{\rho}(s) \qquad (non - strict) \end{split}$$

Expressions: with S.E./4 - Operators-2

Operators that propagate S.E. but do not generate it.

$$\begin{split} & \mathcal{E}\llbracket op_k(\mathsf{E}_1...\mathsf{E}_k) \rrbracket_{\rho}(s) & (non-strict) \\ & = \mathsf{Let}\{(v_{i_1},s_{i_1}) = \mathcal{E}\llbracket\mathsf{E}_{i_1} \rrbracket_{\rho}(s) \\ & \cdots \\ \{(v_{i_h},s_{i_h}) = \mathcal{E}\llbracket\mathsf{E}_{i_h} \rrbracket_{\rho}(s_{i_{h-1}})\} & (op_{\perp_{NS}}(\overline{v}_1...\overline{v}_k),s_{i_h}) \\ & \text{where:} & (i_1 \neq ... \neq i_h \in [1..k]) \text{ and } (\overline{v}_{i_j} \equiv v_{i_j}(\forall j \in [1..h])) \end{split}$$

Example

Consider a non-strict operator with the following behavior: let op = fun x y z w \rightarrow if (w=0) then 0 else if (w>y) then y else if ... Answering: 1) Which arguments does it evaluate? 2) In what order are they evaluated? a) In what state is each argument evaluated?

Expressions: with S.E./4 - Operators-3

Operators that generate S.E.

