Lecture 9-10
 Expressions: Formalization, Use, Implementation

prof. Marco Bellia, Dip. Informatica, Università di Pisa

March 14, 2014

Expressions: Formalization, Use, Implementation

- Expressions: Referential Transparency and Side Effects
- Divergent Expressions: strict and non-strict operators (functions)
- Structured Values, Lazy Constructors, Eager and Lazy Evaluation (Evaluators)
- Finite, Finitary and Infinite Values
- Mutable Values and Assignment (operator)

Expressions: Referential Transparency and Side Effects/1

- Expressions with Referential Transparency.
- Expressions can be replaced by the value without affecting program behaviour
- Pure Functional Languages
- Semantic Function

$$
\mathcal{E}: \mathrm{E} \rightarrow \text { Env } \rightarrow \text { State } \rightarrow \text { Val }
$$

Example

Expression $e_{1}+e-e_{1}$ can be replaced by e provided that:

1) $e_{1} \in \operatorname{Val}$ (i.e. its evaluation terminates and computes a value);
2) Operators $+e-$ stand for addition and subtraction, resp..

Expressions: Referential Transparency and Side Effects/1

- Expressions with Side Effects
- Expressions do not compute only values: In addition they may modify the computation state
- Procedural Languages
- Funzione Semantica

$$
\mathcal{E}: \mathrm{E} \rightarrow \text { Env } \rightarrow \text { State } \rightarrow(\text { Val } \times \text { State })
$$

Example

Expression $e_{1}+e-e_{1}$ cannot be replaced by e even when (1) and (2) of previous slide hold.

Show a concrete case.

Expressions: Use

- Use
- to Introduce, in the program, values possibly as the result of more or less complicated compositions of (primitive or user defined) operators on values or identifiers (e.g. naming).
- to Implement algorithms that are based on (mutable and immutable) value manipulations
- In Functional Languages, all the computable functions are expressed only through programs that implement algorithms that are based on value manipulations (state modification sequences are not needed)

Expressions: Implementation

- Compile Time. Decomposition of expressions in a sequence of elementary applications (for state based machines)
- Only one operator is involved in each application of the sequence
- Decomposition may lead to different forms:
- Infix Notation. Abstract Tree and Depth-First Visit: $3 * x+2$ becomes tree $(\operatorname{tree}(3, *, x),+, 2)$.
- Prefix Notation. Inner Sequencing: $3 * x+2$ become the sequence $[+, *, 3, x, 2]$.
- Postfix Notation. Sequencing: $3 * x+2$ become the sequence $[3, x, *, 2,+]$ - reversed is perfect for the stack of the intermediate values
- Machine Code: $3 * x+2$ become the sequence [iconst_3, iload_0,imul,iconst_2,iadd]
- RI Stack: A workspace, contained in each AR, for dealing with operator applications
- AR Stack: When user defined operations occur in the expression

Expressions: Divergent E.

- Expressions do not compute always values

Example

What does the C expression, below compute?

$$
0 * \text { fact }(-3)
$$

when fact is the user defined C procedure:
int fact (int $n)\{$ return $((n==0) ? 1: n * \operatorname{fact}(n-1)) ;\}$

- To deal with divergent expressions, \mathcal{E} becomes:
- $\mathcal{E}: \mathrm{E} \rightarrow$ Env \rightarrow State $\rightarrow \mathrm{Val}_{\perp}$
- $\mathcal{E}: \mathrm{E} \rightarrow$ Env \rightarrow State $\rightarrow(\text { Val } \times \text { State })_{\perp}$
- Divergent Expressions augment the Language Expressivity with:
- the non-strict evaluation form (call by need, ...)
- the lazy evaluation form and
- the finitary, infinite values.

Expressions: Strict and non-strict Operators (functions)/1

Example

What do the two C expressions compute?

$$
\begin{aligned}
& (x<0)|\mid(\operatorname{fact}(x)>0) \\
& (x<0) \mid(\operatorname{fact}(x)>0)
\end{aligned}
$$

- Can lead to non-terminating computations:
- $\mathcal{E}: \mathrm{E} \rightarrow$ Env \rightarrow State $\rightarrow \mathrm{Val}_{\perp}$
- $\mathcal{E}: \mathrm{E} \rightarrow$ Env \rightarrow State $\rightarrow(\text { Val } \times \text { State })_{\perp}$
- Some languages have operators
- non-strict: ||, \&\&...
- strict: |, \&...
- Semantics, Implementation, Use

Expressions: Strict and non-strict Operators (functions)/2

Semantics of op: $\mathrm{Val}^{k} \rightarrow \mathrm{Val}$

- Definition of a strict, $\mathrm{op}_{\perp_{S}}$, and of a non-strict., $\mathrm{op}_{\perp_{N S}}$, operator of op.
- Val is extended into: Val_{\perp}
- Strict $\mathrm{op}_{\perp_{S}}$. All the arguments are evaluated to a value of the op domain.

$$
\mathrm{op}_{\perp_{s}}\left(e_{1}, \ldots, e_{k}\right)= \begin{cases}\mathrm{op}\left(e_{1}, \ldots, e_{k}\right) & \text { sse }(\forall i \in[1 . . k]) e_{i} \in \operatorname{Val} \\ \perp_{\mathrm{Val}} & \text { otherwise }\end{cases}
$$

- Non-Strict $\mathrm{op}_{\perp_{N S}}$. Only some arguments are evaluated. The following must hold: $e_{i} \in \operatorname{Val}(\forall i \in[1 . . k]) \Rightarrow \mathrm{op}_{\perp_{N S}}\left(e_{1}, \ldots, e_{k}\right)=\mathrm{op}\left(e_{1}, \ldots, e_{k}\right)$

Example

Let $o p=\star$ be integer product. Then
$\star_{\perp_{S}}$ is the only one possible strict extension of op.
${ }_{\perp_{N S}}$ could be any of the following non-strict extensions of op:
$\star_{\perp_{N S}}=\lambda(\mathrm{x}, \mathrm{y})$.if $(\mathrm{x}==0)$ then 0 else $\star_{\perp_{S}}(x, y)$
$\star_{\perp_{N S}}=\lambda(\mathrm{x}, \mathrm{y})$.if $(\mathrm{x}==0 \| \mathrm{y}==0)$ then 0 else $\star_{\perp_{S}}(x, y)$

Expressions: Strict and non-strict Operators (functions)/3

Implementation

- Primitive Operators:
- Strict: Apply only to terms of Val
- Non-Strict: Apply also to some unevaluated arguments
- Functions (i.e. user defined operators):
- Strict: call by value
- Non-Strict: call by name / call by need

Example

The following Haskell expression, h 3 (f 5), when hef are:

$$
\begin{aligned}
& h=\backslash x y->\text { if }(x \backslash=0) \text { then } x \text { else } y \\
& f n=f(n+1)
\end{aligned}
$$

evaluates to 3 .
Can You rephrase it in OCaml, C or Java?

Expressions: Strict and non-strict Operators (functions)/4

Use

Non-Strict Functions are:

- Useful in Programming (to cope with certain algorithms)
- Not always computable

Example

A non-strict but non-computable function is Halting. The function could be described in this form:

- Naming: halting
- Type: $\mathrm{Val}_{\perp} \rightarrow$ Bool
- Behaviour: When it applies to an expression, it results true if the expression computes a value, i.e. a term of Val. it results false if the evaluation of the expression, diverges.
- Use. it predicts when evaluation is non-terminating.

Expressions: Eager vs. Lazy Evaluation/1

- Structured Values further extend the notion of non-strict computation
- Constructors of values
- Operators for the component selection (and modification, when mutable)
- Lazy. Constructors do not evaluate arguments;
- Eager. Constructors, as well as any other operation, apply only to values.

Example

The Haskell expression g [4, (f 5)], when h and f are:

$$
\begin{aligned}
& \mathrm{g} u=\text { if }((\text { head } u)==0) \text { then } 3 \text { else } 7 \\
& \text { f } n=f(n+1)
\end{aligned}
$$

computes 7 .
Can You rephrase it in OCaml, C or in Java?

Espressioni: Lazy Evaluation/2

- Structured Values further extend the notion of non-strict computation
- Use
- Delayed Evaluation of the expressions that are components of a structured value
- Storable Values include expressions that are components of a structured value
- Infinite Values (finitely approximated) may be introduced in programming
- Finitary Infinite Values (i.e. infinite structures that have a finite representation) may be introduced as full value, i.e. without using pointers and ciclic structures
- Implementation Many, different implementations that extend call by-need

Expressions: Lazy Evaluation/3

Example

Finitely Approximated, Infinite Values:

```
nat n = n:nat(n+1)
naturali = nat 0
v = take 3 naturali
```

In Haskell, the 3 expressions above, compute one function, the infinite list of naturals, the list of the first 3 naturals.
Can You rephrase it in Caml, C or Java?

Example

Finitary Infinite values:
data Tree $\mathrm{a}=\mathrm{T}(\mathrm{a}$, Tree a$)$ - it defines a polymorphic type of Haskell treeM $=T(3$, treeM $)-a$ value of Haskell
treeM computes a infinite tree that can be finitely represented (with pointers !?)
Can You rephrase it in Caml, C or Java?

Expressions: Denotable E./1

Expressions E that compute mutable values have 2 different interpretations.

- Storable Value. It is a reference to the associated storable value: Val(E)
- Denotable Value. It is a reference to the full mutable value (it is used in modification): $\operatorname{Den}(\mathrm{E})$
- Abstract Syntax points out such a distinction in programs

Example

In C (and other procedural languages) the following declaration:
int x;
introduces a mutable value named x .
The abstract syntax distinguishes the different interpretations of expression x by using:
Den(x) to express the mutable value (sometime called, I-value), and
$\operatorname{Val}(\mathrm{x})$ to express the storable value (sometime called, r -value) associated to $\operatorname{Den}(\mathrm{x})$.

Espressions: Denotable E./2

Example

Consider the following C expression:

$$
\mathrm{z}=\mathrm{x}=\mathrm{y}
$$

The abstract syntax of it, resulting from the compiler or interpreter front-end, in the notation adopted in the provious slides is:

$$
\operatorname{Val}(\operatorname{Den}(z)=\operatorname{Val}(\operatorname{Den}(x)=\operatorname{Val}(y)))
$$

Do the same with the following C expression:

$$
\mathrm{A}[* \mathrm{v}+\mathrm{j}]=\mathrm{x}=\mathrm{y}+\mathrm{A}[* \mathrm{v}+1]
$$

Expressions: with S.E./1

In Procedural Programming, Expressions do not compute only values: In addition they may modify the computation state.

$$
\begin{aligned}
& \text { Table9 - Semantics of Espressions with S.E. - } 1 \\
& \text { Domini Sintattici } \\
& \text { D }::=\ldots|\operatorname{Var} I ;|\operatorname{Var} I=E ;| \ldots \\
& \mathrm{E}::=\operatorname{Val}(\mathrm{E})|\operatorname{Den}(\mathrm{E})| \mathrm{I}|\mathrm{VL}| o p_{k}\left(\mathrm{E}_{1} \ldots \mathrm{E}_{k}\right)|\mathrm{E}=\mathrm{E}| \ldots \\
& \text { Semantic Domains } \\
& \text { Env, } \rho, \delta \equiv \ldots \\
& \text { Store } \equiv\left(\operatorname{Loc} \times\left(\operatorname{Loc} \rightarrow \mathrm{Mem}_{\perp}\right)\right) \text { (store with allocation) } \\
& \text { Store }_{\perp}, \mathrm{s}, \mathrm{r} \equiv \text { Store }+\left\{\perp_{s}\right\} \quad \text { (finite store) }
\end{aligned}
$$

Finite Store: Operations

$$
\begin{aligned}
& \text { Store } \equiv\left(\operatorname{Loc} \times\left(\operatorname{Loc} \rightarrow \mathrm{Mem}_{\perp}\right)\right) \\
& \text { Store }_{\perp}, \mathbf{s}, \mathrm{r} \equiv \text { Store }+\left\{\perp_{s}\right\} \\
& \text { upd : Loc } \times \text { Mem }_{\perp} \times \text { Store }_{\perp} \rightarrow \text { Store }_{\perp} \\
& \operatorname{upd}(I, m,(L, u)) \\
& \equiv \operatorname{if}\left((I \in[0, L)), \lambda v \cdot \operatorname{if}((v \text { eq } I), m, u(I)), \perp_{S}\right) \\
& \text { look: Loc } \times \text { Store }_{\perp} \rightarrow \text { Mem }_{\perp} \\
& \operatorname{look}(I,(L, u)) \equiv \operatorname{if}\left((I \in[0, L)), u(I), \perp_{M}\right) \\
& \text { allocate: } \text { Store }_{\perp} \rightarrow\left(\text { Loc } \times \text { Store }_{\perp}\right) \\
& \text { allocate }_{k}((L, u)) \\
& \equiv \operatorname{if}\left((L>k), \perp_{L S},\left(L,\left(L+1, \operatorname{upd}\left(L, \perp_{M}, u\right)\right)\right)\right) \\
& \perp_{S}: \text { Store }_{\perp} \\
& \perp_{S} \equiv(\mathrm{Y} f . \lambda \mathrm{x} . f(\mathrm{x}))(u), \quad \text { con } u \in \text { Store }
\end{aligned}
$$

Expressions with S.E./2 - Declaration - Revisited

Semantic Functions

$$
\mathcal{D} \llbracket \mathrm{D} \rrbracket_{\rho}: \text { Store } \rightarrow\left(\text { Env } \times \text { Store }_{\perp}\right)
$$

$$
\mathcal{D} \llbracket \operatorname{Var} \mathrm{I} ; \rrbracket_{\rho}(s)
$$

$$
=\operatorname{Let}\left\{\left(I, s_{l}\right)=\operatorname{allocate}(s)\right\}\left(\operatorname{bind}(\mathrm{I}, I, \rho), s_{l}\right)
$$

$$
\mathcal{D} \llbracket \operatorname{Var} \mathrm{I}=\mathrm{E} ; \rrbracket_{\rho}(s) \quad \text { - compile time }
$$

$$
=\operatorname{Let}\left\{\left(I, s_{l}\right)=\text { allocate }(s)\right\}
$$

$$
\left\{\left(v_{e}, s_{e}\right)=\mathcal{E} \llbracket \mathrm{E} \rrbracket_{\rho}\left(s_{l}\right)\right\}
$$

$$
\left\{s_{m}=\operatorname{upd}\left(I, v_{e}, s_{l}\right)\right\}\left(\operatorname{bind}(I, I, \rho), s_{m}\right)
$$

Expressions: with S.E./3 - Values

Semantic Functions

$$
\begin{aligned}
& \mathcal{E} \llbracket \mathrm{E} \rrbracket_{\rho}: \text { Store } \rightarrow\left(\mathrm{Val}_{\perp} \times \text { Store }_{\perp}\right) \\
& \mathcal{E} \llbracket \operatorname{Val}(\mathrm{E}) \rrbracket_{\rho}(\mathrm{s})= \begin{cases}(\operatorname{MV}(\mathrm{s}(\rho(\mathrm{I}))), \mathrm{s}) & \text { if } \mathrm{E} \equiv \mathrm{I} \in \operatorname{Ide} \& \rho(\mathrm{I}) \in \mathrm{Loc} \\
(\mathrm{DV}(\rho(\mathrm{I})), \mathrm{s}) & \text { if } \mathrm{E} \equiv \mathrm{I} \in \operatorname{Ide} \& \rho(\mathrm{I}) \notin \mathrm{Loc} \\
\left(\operatorname{MV}\left(\mathrm{~s}_{1}(1)\right), \mathrm{s}_{1}\right) & \text { if } \mathcal{E} \llbracket \mathrm{E} \rrbracket_{\rho}(\mathrm{s})=\left(\mathrm{l}, \mathrm{~s}_{1}\right) \& \mathrm{l} \in \operatorname{Loc} \\
\left(\mathrm{v}, \mathrm{~s}_{\mathrm{v}}\right) & \text { if } \mathcal{E} \llbracket \mathrm{E} \rrbracket_{\rho}(\mathrm{s})=\left(\mathrm{v}, \mathrm{~s}_{\mathrm{v}}\right) \& \mathrm{v} \notin \operatorname{Loc}\end{cases} \\
& \mathcal{E} \llbracket \operatorname{Den}(\mathrm{E}) \rrbracket_{\rho}(\mathrm{s})= \begin{cases}(\rho(\mathrm{I}), \mathrm{s}) & \text { if } \mathrm{E} \equiv \mathrm{I} \in \text { Ide } \& \rho(\mathrm{I}) \in \operatorname{Loc} \\
\left(1, \mathrm{~s}_{1}\right) & \text { if } \mathcal{E} \llbracket E \rrbracket_{\rho}(\mathrm{s})=\left(1, \mathrm{~s}_{1}\right) \& \mathrm{l} \in \operatorname{Loc} \\
\left(\perp_{D}, \mathrm{~s}\right) & \text { otherwise }\end{cases} \\
& \mathcal{E} \llbracket \mathrm{VL} \rrbracket_{\rho}(\mathbf{s})=(\operatorname{IntoVal}(\mathrm{VL}), \mathbf{s})
\end{aligned}
$$

Noting that: $\mathcal{E} \llbracket \mathrm{I} \rrbracket_{\rho}$ is no more defined since both $\mathcal{E}[\operatorname{Val}(\mathrm{I})]_{\rho}$ and $\mathcal{E}[\operatorname{Den}(\mathrm{I})]_{\rho}$ are defined instead.

Expressions: with S.E./4 - Operators-1

Operators that propagate S.E. but do not generate it.

Semantic Functions

$$
\mathcal{E} \llbracket \mathrm{E} \rrbracket_{\rho}: \text { Store } \rightarrow\left(\text { Val }_{\perp} \times \text { Store }_{\perp}\right)
$$

$$
\mathcal{E} \llbracket o p_{k}\left(\mathrm{E}_{1} \ldots \mathrm{E}_{k}\right) \rrbracket_{\rho}(s)
$$

$$
=\operatorname{Let}\left\{\left(v_{1}, s_{1}\right)=\mathcal{E} \llbracket \mathrm{E}_{1} \rrbracket_{\rho}(s)\right\}
$$

$$
\left\{\left(v_{k}, s_{k}\right)=\mathcal{E} \llbracket \mathrm{E}_{k} \rrbracket_{\rho}\left(s_{k-1}\right)\right\}\left(o p_{\perp_{S}}\left(v_{1} \ldots v_{k}\right), s_{k}\right)
$$

$$
\mathcal{E} \llbracket o p_{k}\left(\mathrm{E}_{1} \ldots \mathrm{E}_{k}\right) \rrbracket_{\rho}(s) \quad(\text { non }- \text { strict })
$$

Expressions: with S.E./4 - Operators-2

Operators that propagate S.E. but do not generate it.

$$
\begin{aligned}
& \left.\mathcal{E} \llbracket o p_{k}\left(\mathrm{E}_{1} \ldots \mathrm{E}_{k}\right) \rrbracket_{\rho}(s) \quad \text { (non }- \text { strict }\right) \\
& =\operatorname{Let}\left\{\left(v_{i_{1}}, s_{i_{1}}\right)=\mathcal{E} \llbracket \mathrm{E}_{i_{1}} \rrbracket_{\rho}(s)\right. \\
& \quad \ldots \\
& \left\{\left(v_{i_{h}}, s_{i_{h}}\right)=\mathcal{E} \llbracket \mathrm{E}_{i_{h}} \rrbracket_{\rho}\left(s_{i_{h-1}}\right)\right\}\left(o p_{\perp_{N S}}\left(\bar{v}_{1} \ldots \bar{v}_{k}\right), s_{i_{h}}\right)
\end{aligned}
$$

where: $\left(i_{1} \neq \ldots \neq i_{h} \in[1 . . k]\right)$ and $\left(\bar{v}_{i_{j}} \equiv v_{i_{j}}(\forall j \in[1 . . h])\right)$

Example

Consider a non-strict operator with the following behavior:
let op $=$ fun $\times \mathrm{y} z \mathrm{w} \rightarrow$
if $(w=0)$ then 0 else if $(w>y)$ then y else if ...
Answering: 1) Which arguments does it evaluate? 2) In what order are they evaluated? 3) In what state is each argument evaluated?

Expressions: with S.E./4 - Operators-3

Operators that generate S.E.

Semantic Functions

$$
\begin{aligned}
& \mathcal{E} \llbracket \mathrm{E} \rrbracket_{\rho}: \text { Store } \rightarrow\left(\text { Val }_{\perp} \times \text { Store }_{\perp}\right) \\
& \begin{array}{l}
\mathcal{E} \llbracket \mathrm{E}_{/}=\mathrm{E}_{r} \rrbracket_{\rho}(s) \\
\quad=\operatorname{Let}\left\{\left(v_{1}, s_{1}\right)=\mathcal{E} \llbracket \mathrm{E}_{r} \rrbracket_{\rho}(s)\right\} \\
\quad\left\{\left(l_{2}, s_{2}\right)=\mathcal{E} \llbracket \mathrm{E}_{l} \rrbracket_{\rho}\left(s_{1}\right)\right\}\left(v_{1}, \operatorname{upd}\left(l_{2}, \operatorname{VM}\left(v_{1}\right), s_{2}\right)\right)
\end{array}
\end{aligned}
$$

Auxiliary Functions

L: Loc \rightarrow Den
(injection, i.e.constructor)
DV : Den \rightarrow Val
VM : Val \rightarrow Mem

