L-Attributed Grammars

L-Attributed Grammars is **a class** of Attributed Grammars (or SDD) that has **Depth-First** as a **Topological Sort** of the **Dependency Graph** of the **Parse-Tree attributes** of the grammar.

Let $G^A = \{\sum, V, s, P^A, \{a_i\}\}$ be an attribute grammar. Let $p=B:=B_1...B_n\{\alpha\} \in P^A$. G^A is L-attributed if and only if: $\forall X_i.a_{ij}=e_{ij} \in \{\alpha\}$ for $X_i \in Sym(B_1...B_n)$: if $X_k.a_{ik} \in Var(e_{ij})$ then: - either $X_i=B_{hi}, X_k=B_{hk}$ and $1 \le h_k \le h_i \le n$ - or $X_k=B$ and $a_{ik} \in A-Inh(B)$

S-attributed Grammars are containing only synthesized attributes
S-attributed are L-attributed.

Theorem. If G has Top-Down/Bottom-up Parser and G^A is L-attribued then **G^A has Top-Down/Bottom-up oblivious evaluator**

Bottom-Up Evaluator for S-attributed How do it by extending LR Parsers

Extend the values of the push-down automata, LR control stack:

- Associate to each grammatical symbol B:
 - the syntesized attributes or none (if it has no attribute)
 - the transtion state of LR analysis

- At each reduction with handle A::=B1...Bn $\{\alpha\}$ compute all the actions in $\{\alpha\}$.
- Let $A.a_i = e_i$ be one of them.

If e_i contains occurrences of attributes of the grammatical B_i then:

- access (n-i)-th position, below the top of the stack, and

- select the value $I_i B_i [v_i]$ (where $[v_i] = v_{i1} \dots v_{in}$) and find the correct v_{ij}
- Let $[v] = v_1 \dots v_m$ be the values resulting for the attributes $a_1 \dots a_m$ of A.
- Reduce and insert $I_i A[v]$, where I_i is the transition state of LR analysis.

13

Top-Down Evaluators for L-Attributed From L-Attributed to Translation Schemes

Translation Schemes = Grammars with Productions where actions and grammatical symbols are mixed

```
A::={\beta1}B1...{\betak}Bk{\alpha}
```

in a way that:

A-Inh(Bi) are defined only in actions {βi} that precede Bi (for ach i)
A-Syn(A) are defined in {α}

If G is L-attributed, its TS has actions that can use only, attributes of symbols that precede the actions.

15

Top-Down Evaluator for L-attributed How do it by extending LL Parsers

- Transform L-attributed in Translation Scheme
- Pair the LL control stack, C, with
 - one data stack for synthesized values, S,
 - one data stack for inherited values, I.
- Extend C to contain actions:
 - At each derivation with A::={β1}B1...{βk}Bk{α},
 - { β 1}B1...{ β k}Bk{ α }
 - (Let B0=A and $\beta_{k+1} = \alpha$)

When an action βi ($1 \le i \le k+1$) is selected from the top of C

- Action is evaluated:
 - by using the evaluator of Meta, and
 - by replacing attributes of:
 - Bj (j<i) with the values extracted, from I or S, at the (i-j-1)-th position from top
 - A as above, by letting: B0=A and $\beta_{k+1} = \alpha$
 - by putting its result on:
 - the **top of I**, if action is βi
 - k-th position below top of S, if action is α

How do it: LL Control Stack - 2

L)	AN	~ •	U.	تسل	E	٩A	K	-	×	te.	h	ς	ຟ	tt	0	. 1	ນົາຍ	2p RI	ETE	FR.	٥	t	ery	n	hi	m									
		Fः	;=	N G		1. U F.V	∿√ !=	:= G-	U.U .V ;	10 C	J ^{B.}	7												L	L-Ps X	mi N	י _ר ₹ \$	'alla							
		ና	::=	* F	ł	ፍ.ነ	J∶	= 6	η.i	کىر	*	F.J	l;]	3										۲ ۲	1	U -	- 2								
		ና:	:=		1	ς.	v :	= 6	9 . u	w;	J ^{P4}																								
Ps .	\$					\$ 7	-				\$ 7	-				7	\$ -			7	4	\$ 7			-	\$ 7				\$ 3	21		\$ \$ -	81	
G B	-	7			G (3)	-	7			G ß	-	· 7 -			β4 β1	-	7 -		6	- 0	-	7		β3	3	- 3			β2 45	_	3				
β3	3	-			β3	3	-	•		β ₃ B•	3	- 3	•		β ₃ β9	3	- 3		P	3 3		- 2		\$	-	-			4						
\$	-	-			\$	-	-	•		\$	-	-			\$	-	-		1	•2 5 •	-	-													
																					_												 		
																					_												 		