L-Attributed Grammars

L-Attributed Grammars is a class of Attributed Grammars (or SDD) that has Depth-First as a Topological Sort of the Dependency Graph of the Parse-Tree attributes of the grammar.

```
Let GA}\equiv{\Sigma,\textrm{V},\textrm{s},\textrm{PA},{\mp@subsup{\textrm{a}}{\textrm{i}}{}}}}\mathrm{ be an attribute grammar.
Let p\equivB:=\mp@subsup{B}{1}{}\ldots,\mp@subsup{B}{n}{}{\alpha}\in\mp@subsup{P}{}{A}}\mathrm{ .
G}\mp@subsup{\textrm{G}}{}{\textrm{A}}\mathrm{ is L-attributed if and only if:
\forall\mp@subsup{X}{\textrm{i}}{}.\mp@subsup{\textrm{a}}{\textrm{if}}{}\textrm{e}=\mp@subsup{\textrm{e}}{\textrm{ij}}{}\in{\alpha}\mathrm{ for }\mp@subsup{\textrm{X}}{\textrm{i}}{}\in\operatorname{Sym}(\mp@subsup{\textrm{B}}{1}{}\ldots\mp@subsup{\textrm{B}}{\textrm{n}}{})\mathrm{ :}
    if }\mp@subsup{X}{k}{}\cdot\mp@subsup{\textrm{a}}{\textrm{ik}}{}\in\operatorname{Var}(\mp@subsup{\textrm{e}}{\textrm{ij}}{})\mathrm{ then:
        - either }\mp@subsup{X}{i}{}=\mp@subsup{B}{hi}{},\mp@subsup{X}{k}{}=\mp@subsup{B}{hk}{}\mathrm{ and 1 <h
    - or }\mp@subsup{X}{k}{}=\textrm{B}\mathrm{ and }\mp@subsup{\textrm{a}}{\textrm{ik}}{}\in\textrm{A}-\operatorname{Inh(B)
```

- S-attributed Grammars are containing only synthesized attributes - S-attributed are L-attributed.

Theorem. If G has Top-Down/Bottom-up Parser and G^{A} is L-attribued then $\mathbf{G}^{\text {A }}$ has Top-Down/Bottom-up oblivious evaluator

Bottom-Up Evaluator for S-attributed How do it by extending LR Parsers

Extend the values of the push-down automata, LR control stack:

- Associate to each grammatical symbol B:
- the syntesized attributes or none (if it has no attribute)
- the transtion state of LR analysis

- At each reduction with handle $\mathrm{A}::=\mathrm{B} 1 \ldots \mathrm{Bn}\{\alpha\}$ compute all the actions in $\{\alpha\}$.
- Let A. $\mathrm{a}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}}$ be one of them.

If e_{i} contains occurrences of attributes of the grammatical B_{i} then:

- access ($\mathrm{n}-\mathrm{i}$)-th position, below the top of the stack, and
- select the value $\mathrm{I}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}\left[\mathrm{v}_{\mathrm{i}}\right]$ (where $\left[\mathrm{v}_{\mathrm{i}}\right] \equiv \mathrm{v}_{\mathrm{i} 1} \ldots \mathrm{v}_{\mathrm{in}}$) and find the correct v_{ij}
- Let $[\mathrm{v}] \equiv \mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{m}}$ be the values resulting for the attributes $\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}}$ of A .
- Reduce and insert $I_{j} A[v]$, where I_{j} is the transition state of LR analysis.

How do it: LR Control Stack

EXAMfle. We aefly the doligisus ophooch in uphenentiup an evolunotion for ous-atintured (owly eywitesiger atinlures)
a) A(louproce of exprevious our its)parumni 9

$$
\begin{aligned}
& G: E=E+N \\
& 0: E::=N
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Cole}_{G}(1): \\
& I_{0}=\left\{E^{\prime} \rightarrow . E, E \rightarrow . E+N, E \rightarrow . N\right\} \\
& \text { GoTo }_{0}(0, E)=\{E \rightarrow E, E \rightarrow E .+N\} \\
& =I_{1} \\
& \text { GoTo }(0, N)=\{E \rightarrow N .\} \\
& =I_{2} \\
& C_{0 T_{0}}(1,+)=\{E \rightarrow E+. N\} \\
& =I 3 \\
& C_{0 \text { aro }}(3, N)=\{E \rightarrow E+N .\} \\
& =I 4
\end{aligned}
$$

SLR-Psiniup Talle

$$
+N \$ E
$$

$$
0-5 / 2-1
$$

$$
15 / 3-\operatorname{Acc} \text { - }
$$

$$
2 R_{1} R_{1}
$$

$$
3-5 / 4-\quad-
$$

$$
4 R / 6-R / O-
$$

b) Am otruhite q $^{\text {A }}$ Kat extenhs G witt om INTERPRETER of the expenions 9:

$$
\begin{aligned}
& E_{1}::=E_{2}+N\left\{E_{1} \cdot V:=E_{2} \cdot V+N \cdot V A L_{i}\right\} \\
& E_{i} \because=N_{\{E, V:=N \cdot V A L ;\}}
\end{aligned}
$$

- wlere, N.VAL is the untern thot is anocioted to tolew N in the Spuloc telle (lexies may povite lo the conversion of the lexeme in a modive reprenentation of int.
c) Th PARSER of G dunce the oundyris of: $3+7+5$ i. $N_{1}+N_{2}+N_{3}$
b) An soruhite q^{A} that extenh G witt am INTERPRETER of the explenions

9:

$$
\begin{aligned}
& E_{1}::=E_{2}+N\left\{E_{1} \cdot V:=E_{2} \cdot V+N . V A L_{i}\right\} \\
& E: \because=N_{\left\{E . V:=N . V A L L_{i}\right\}}
\end{aligned}
$$

c) Th Pareer of G duncy the oundyris of: $3+7+5$... $N_{1}+N_{2}+N_{3}$

d) Th EVALDATOR duncy the oundyris of: $3+7+5$..e $N_{1}+N_{2}+N_{3}$

$$
\begin{aligned}
& \text { b) An otrhite } 9^{A} \text { Kot extenh } 4 \text { witt am |NTERPRETER of the explnions }+N \$ \text { E }
\end{aligned}
$$

Top-Down Evaluators for L-Attributed Firom L-Attributed to Translation Schemes

Translation Schemes = Grammars with Productions where actions and grammatical symbols are mixed

$$
\mathrm{A}::=\{\beta 1\} \mathrm{B} 1 \ldots\{\beta \mathrm{k}\} \operatorname{Bk}\{\alpha\}
$$

in a way that:

- $\mathrm{A}-\operatorname{Inh}(\mathrm{Bi})$ are defined only in actions $\{\beta \mathrm{i}\}$ that precede Bi (for ach i)
- A-Syn(A) are defined in $\{\alpha\}$

If G is L-attributed, its TS has actions that can use only, attributes of symbols that precede the actions.

Top-Down Evaluator for L-attributed How do it by extending LL Parsers

- Transform L-attributed in Translation Scheme
- Pair the LL control stack, C, with
- one data stack for synthesized values, \mathbf{S},
- one data stack for inherited values, I.
- Extend C to contain actions:
- At each derivation with $A::=\{\beta 1\} B 1 . . .\{\beta \mathbf{k}\} B k\{\alpha\}$,
- $\{\beta 1\}$ B1... $\{\beta \mathrm{k}\} \mathrm{Bk}\{\alpha\}$

- $\left(\right.$ Let $\mathrm{B} 0 \equiv \mathrm{~A}$ and $\left.\beta_{\mathrm{k}+1} \equiv \alpha\right)$

When an action $\boldsymbol{\beta i}(1 \leq i \leq k+1)$ is selected from the top of C

- Action is evaluated:
- by using the evaluator of Meta, and
- by replacing attributes of:
- $\mathbf{B j}$ ($\mathrm{j}<\mathrm{i}$) with the values extracted, from I or S , at the ($\mathrm{i}-\mathrm{j}-1$)-th position from top
- A - as above, by letting: $\mathrm{B} 0 \equiv \mathrm{~A}$ and $\beta_{\mathrm{k}+1} \equiv \alpha$
- by putting its result on:
- the top of I , if action is $\beta \mathrm{i}$
- k-th position below top of S, if action is α

How do it: LL Control Stack - 1

How do it: LL Control Stack - 2

All the attributes that α can use

Top of Data Stacks just after the derivation from A completes

Example. We afly the dolidious oppooch in uplenentiup a Top-Todn

a) A(louprofe of exprevious our its)pahmins 9 4:

$$
\begin{aligned}
& F::=N * F \\
& F::=N
\end{aligned}
$$

LL(I) Granme
o $F::=N G$
$1 G::=x F$
2 $G: i=\varepsilon$

L L-Psuniut Talle

$$
\begin{aligned}
& * N \$ \\
& F-0- \\
& G 1-2
\end{aligned}
$$

b) Am otowhioe 9^{A} that extewh \bar{G} witt am INTERPRETER of the expenions

$$
\begin{aligned}
F::= & N\left\{G \cdot i v r:=N . v_{0} e ;\right\} \\
& G\{F \cdot v:=G \cdot v ;\} \\
G::= & * \\
& F\left\{G \cdot v:=G \cdot i w^{\prime} * F \cdot v ;\right\} \\
G::= & \mathcal{E}\left\{G \cdot v:=G \cdot u v_{i}\right\}
\end{aligned}
$$

c) Th Parcer of G dumuy the oundyris op: $3+7+5$, i.e: $N_{1}+N_{2}+N_{3}$
b) Am otruhite q^{A} that extenh G witt am INTERPRETER of the expunions

$$
\begin{aligned}
& F::=N\left\{G . \operatorname{ino}:=N . v_{0} e_{i}\right\} \\
& G\{F . \cup:=G . v ;\} \\
& G::=\text { * } \\
& \stackrel{*}{F}\{G . V:=G . i \omega l * F \cdot V ;\} \\
& G::=\left\{G \cdot v:=G \cdot u N_{i}\right\} \\
& L \text { LPsoniuf } T \text { due }
\end{aligned}
$$

c) Th PAREER of G duncy the oundyris of: $3+7+5$ n.e. $N_{1}+N_{2}+N_{3}$

ACCEP
d) Th EVALDATOR duncy the omolyris of: $3+7+5$ i.e $N_{1}+N_{2}+N_{3}$ [in ti, inta stock, ouby atrulutes for N, E, G]
b) Am otruhite q^{A} that extenh G witt am INTERPRETER of the expunions

$$
\begin{aligned}
& F::=N\left\{G . \operatorname{ino}:=N . v_{0} e_{i} ;\right\}^{\beta_{1}} \\
& G\{F . U:=G . V ;\}^{\beta_{2}} \\
& G::=\frac{*}{F}\{G . v:=G . \operatorname{wiv} * F . v ;\}^{\beta_{3}} \\
& G: \because=\left\{G \cdot v:=G \cdot u w_{i}\right\}^{\beta_{4}}
\end{aligned}
$$

$L L$ Psoniuf T de

$$
\begin{aligned}
& * N \$ \\
& F-0- \\
& C 1-2
\end{aligned}
$$

- continued -

