
1	
1	


•  How to define Syntax;	

•  How to do Analysis;	

•  At what extent Analysis can be done in 	

  Linear Time;	

•  How to build (Linear) Parser Generators;	

•  Relationship between Analysis and Inter-	

  nal Representation (Tree Representation)	


SYNTACTIC ANALYSIS 	




2	
2	


Scanner	
 Parser	

get	


token	
Source is a	

Sequence of	

characters	


Symbol	

Table	


Entries:	

Lessemi	


Entries:	

Simboli	


                 Syntactic Analysis (Parser) is driven from	

Semantics Analysis which is asking for visiting a subtree not built yet 	


Rest of	

Front end	


tree	


get	


One Pass Structure (Two phase pipeline)	




3	


How to define Syntax	


•  Syntactic Analysis and Syntactic Languages	

•  Syntactic Languages and Grammars	

•  Classification of Grammars	

•  Classification of Languages	

•  Foundations: Derivation, Sentential Form, Ambiguity, 

Tarski’s Fixpoint Iteration	




4	


•  It scans sequences of tokens to check for phrase structures	

  that belong to the Syntax of the Language	

	


•  Syntax, just like Lexics, is expressed by a Language: The 	

  Syntactic Language 	

	


•  Syntactic Langs are much more complicated than Lexical      	

  ones	


{unvn | n ≥ 0}     has been proved not be regular	


∈ {(αu)n (αv)n | n ≥ 0, α∈ L, u=“(”, v=“)”}	

but   	

num+(3-((id*id)+num)/id)	


Syntactic Analysis	


4	




5	
5	


Non-monotone C	


Kinds of Grammar	

[Defined Language Features]	


G=General [Recursive Enumerable but Non-Recursive -{unvakermann(n)}]	

A=Ambiguous	

M=Monotone [Recursive Languages - {unvn!}]	

C=Contextual [{unvnzn}]	

LR(k)=Context-Free [{unvn}]	

LALR(k)=Context-Free [{unvn}]	

SLR(k)=Simple Left-to-right rightmost reversed [Viable-Prefix; Bottom-Up/k symbols{unvn}]	

LL(K)=Leftmost-Left Left-to-right [Predictive; Top-Down/k symbols{unvn}]	

OP=Operator-Precedence [{unvn}]	

L=Linear [Recursive Grammars; Regular Languages]	

DFA= -- [Regular Grammars/Expressions; Regular Languages]	

NFS= -- [Regular Grammars/Expressions; Regular Languages]	


Grammars	

Inclusion	


Grammar Classification (Chomsky)	




6	
6	


L	
anguag	
e	

I	
n	
c	
l	
u	
s	
i	
on	


 	

n	
 n	
n	
 	


 	
 n	
m	
k	
 	
  	
  	

 	
 m	
n	
 	


 	
  	

 	
  	


 	
 n	
 n	
 	

 	
  	
 n	
m	
 	


Language Classification	




7	
7	


Let G = <V,Σ,s∈V,P>	

Derivation is a binary relation =>G su (∑∪V)* x (∑∪V)*	


	
	


	
 	
αAβ => αγβ   sse   A::=γ ∈P	

Subscript, G, is omitted, in =>G, when the grammar G is clearly stated from the context	


Definitions: Derivation, SF	


=>*: Transitive and Reflexive Closure of =>	

•  α =>* α 	
 	
	

•  if α1=> ... => αn 	
	
 	
then 	
 α1 =>* αn 	


=>+: Transitive Closure of =>	

if α1=> α2 =>...=> αn and α1≠ α2 ≠…≠ αn  	


	
 	
allora 	
 α1 =>+ αn	


Sentential form of G	

    SF={γ | s =>* γ}	




8	
8	


	

	

	
 	
 	
L(G)={w ∈Σ* | s =>+ w}	

(where  =>  is  =>G )	


L(G): Language Generated ���
by a Grammar	


Let G = <V,Σ,s∈V,P>	


p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	


Example: Let G below	

id+id∈L(E)	

	

A proof (Lefmost Derivation):	

E =>(p1) E+E =>(p3) id+E =>(p3) id+id 	

	

A different proof (Rightmost Derivation):	

E =>(p1) E+E =>(p3) E+id =>(p3) id+id	


Then	




9	
9	


Ambiguous Grammars are ���
Bad Definitions for Lang. Syntax	


p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	


Example: Let G below	


id+id*id∈L(E)	

	

A proof (Lefmost Derivation):	

E =>(p1) E+E =>(p3) id+E =>(p2) id+E*E =>(p3) id+id*E =>(p3) id+id*id	

A different proof (another Leftmost Derivation):	

E =>(p2) E*E =>(p1) E+E*E =>(p1) id+E*E =>(p1) id+id*E =>(p1) id+id*id	


Then	


Different Leftmost (Rightmost) Derivations lead to different Parse Trees	




10	


Derivations (on the P-tree domain)	

Let G = <V,Σ,s∈V,P>	


Smallest set such that, ∀a∈ Σ∪V: 	

•  leaf: <[a,-]> ∈ (Σ∪V)T

*	


•  ∀<t1,…,tn> ∈ (Σ∪V)T
*	


•  Tree: <[a,<t1,…,tn>]> ∈ (Σ∪V)T
*	


•  Forest: <t1,…,tn,u1,…,um> ∈ (Σ∪V)T
*, ∀ <u1,…,um> ∈ (Σ∪V)T

*	


(Σ∪V)T
*	


Productions on (Σ∪V)T
*	


A::=X1…Xn ∈ P    sse 	
<[A,-]>::= <[A,<<[X1,-]>,…,<[Xn,-]>>]> ∈ PT	


A	

::=	
 A	


X1	
 Xn	


A  graphical view	


Relation => on (Σ∪V)T
* x (Σ∪V)T

*	


αΑβ  => αγβ      sse    Α::=γ ∈ PT	




11	
11	


E

E E+

id E E+

id id

E

E E+

idE E+

id id

A different proof of ambiguity that uses: The last trees 	

of two different Tree-derivations	
 p1: E::= E+E 	


p2: E::= E*E 	

p3: E::= id	


Ambiguous Grammars ���
A Graphical View	


Exercise: Show the same 
but using leftmost 
(rightmost) derivations 	




12	
12	


A0::= e0	

A1::= e1	

…	

An::= en	


1) Partial ordering ≥G on non-Terminals	

∀i≥0,   ei ≡ f(Ai1,…,Aini

)   then: Ai1,…,Aini 
≥G Ai 	


Removal of Mutual Recursion, when possible	


Aj ::= g(Aj1,…,Ai,…,Ajnj
)	


Ai ::= f(Ai1,…, g(Aj1,…,Ai,…,Ajnj
),…,Aini

)	


Aj ::= g(Aj1,…,Ai,…,Ajnj
)   con Aj1,…,Ajnj 

≥G Ai ≥G Aj	

Ai ::= f(Ai1,…,Aj,…,Aini

)    con Ai1,…,Aini 
≥G Ai  	


From Grammars to Languages ���
A methodology for finding L(G), given G	




13	
13	


S::= u A B v | B u	

A::= v u v | B	

B::= u S v | u v u	


B ≥G A ≥G S	


S::= u A B v | B u	

B::= u S v | u v u	


S::= u A B v | B u	

B::= u (u A B v | B u) v | u v u	


S::= u A B v | B u	

A::= v u v | B	

B::= uu A B vv | u B uv | u v u	


A::= v u v | B	

B::= uu A B vv | u B uv | u v u	


A::= v u v | B	

B::= uu (v u v | B) B vv | u B uv | u v u	


S::= u A B v | B u	

A::= v u v | B	

B::= uu vuv B vv | uu B B vv | u B uv | u v u	


Example	




14	
14	


∀i≥0,   L(Ai) = L(ei)	


•   L(e) is an expression on 2Σ*containing only:	

	
X (finite products)	

	
∪ (possibly, denumerable unions)	


•   L(e) is continuos on 2Σ* 	


Whenever  L(Ai) = L(ei) is recursive: L(ei) ≡ E(L(Ai)) 	

Recursive equations X=E(X), have to be solved in the variable 
X≡L(Ai) on 2Σ*using the Tarski’s (Fixpoint) Iteration below: 	


X=∪i∈ℵ E(⊥)i	


	
 E(⊥)0 = E(X← ⊥)	

	
 E(⊥)k+1 = E(X← E(⊥)k)	


2) Productions as equations on languages  L(Ai)	




15	


What about a system of equations	


A system of Recursive equations: 	

	
{X1=E1(X1,… Xn),…, Xn=En(X1,… Xn)}	


Xi≡L(Ai) on 2Σ*using the Tarski’s (Fixpoint) Iteration below: 	


Xj=∪i∈ℵ Ej(⊥,…,⊥)i	


	
 Ej(⊥,…,⊥)0 = Ej(X1← ⊥ ,…,Xn← ⊥)	

	
 Ej(⊥ ,…,⊥)k+1 = Ej(X1← E1(⊥)k ,…,Xn← En(⊥)k )	




16	


S::=u S | ε	
 X=	
{u}×X∪{λ}	


E(X)	


E(X← ⊥)0 = {u}×⊥∪{λ} = ⊥∪{λ} = {λ} 	

E(X← ⊥)1 = {u}×{λ}∪{λ} = {u, λ}	

E(X← ⊥)2 = {u}×{u,λ}∪{λ} = {uu, u, λ}	


E(X← ⊥)3 = {u}× {uu, u, λ} ∪{λ} = {u3,u2,u, λ}	


E(X← ⊥)n = {un,un-1,…,u, λ}	


L(S)={un | n∈ℵ}	
 = u*	


Example1: Tarski’s Fixpoint Iteration	




17	
17	


S::=u S v | z	

E(X)	


X=	
{u}×X × {v} ∪{z}	


E(X← ⊥)0 = {u}×⊥×{v} ∪ {z} = ⊥∪{z} = {z} 	

E(X← ⊥)1 = {u}×{z}×{v} ∪ {z} = {uzv, z}	

E(X← ⊥)2 = {u}×{uzv, z}×{v} ∪{z} = {u2zv2, uzv, z}	


E(X← ⊥)n = {unzvn,un-1zvn-1,…,z}	


L(S)={unzvn | n≥0}	


Example2: Tarski’s Fixpoint Iteration	




18	


A::= A+A 	

A::= A*A 	

A::= id	


X=	
{x+y | x,y∈X}∪{x*y | x,y∈X}∪{id}	


E(X)	

E(X← ⊥)0 = {x+y | x,y∈⊥}∪{x*y | x,y∈⊥}∪{id}	

                  = ⊥∪⊥∪{id} = {id} 	

E(X← ⊥)1 = {x+y | x,y∈ {id}}∪{x*y | x,y∈ {id}}∪{id}	

                  = {id+id}∪{id*id}∪{id} = {id, id+id, id*id}	

E(X← ⊥)2 = {x+y | x,y∈E(X← ⊥)1}∪{x*y | x,y∈E(X← ⊥)1}∪{id}	

         = {id, id+id, id*id,id+id+id, id+id*id, id*id+id, id*id*id,…, id*id*id*id}	


E(X← ⊥)n = {id, id tk | t∈{+id, *id}, k ∈[1..2n-1]}	


L(A)={id tn | t∈{+id, *id}, n∈ℵ}	


Example3: Tarski’s Fixpoint Iteration	




19	


How to do Syntactic Analysis	


•  Top-Down and leftmost derivation	

•  Bottom-Up and reversed roghtmost dervation	




20	
20	


Let G=<V,Σ,s∈V,P> be a (context free) grammar. Let w be a	

sequence of words in Σ. 	

	

•  Analysis has to answer to the following question:	


	
     is w ∈L(G) or not ?	

•  or, equivalently:	


           is s =>*w or not ?	

•  Membership: is this Decision Problem, computable?	


-- Yes. It is decidable for all classes of Monotone Grammars. 	

	


•  The solution consists in defining a procedure (The Parser Core) 	

    able to construct a derivation s=>γ1=>…=>γk≡w, if one exists.	


TOP-DOWN and BOTTOM-UP  Parsers	




21	


Construction of a Derivation	

•  The solution consists in defining a procedure (The Parser Core) 	

    able to construct a derivation s=>γ1=>…=>γk≡w, if one exists.	


•  The construction of a derivation could be done in a non-efficient	

   way, and even worse, at a non-linear, up to exponential, complexity 	

  time (/space) cost.	


Trying p optional productions at each γi leads to:	


construction of (exponential) (O(pn)) derivations to find the one right 	

or to answer “no-accept”.	


p choices	


p choices	


p choices	


γi	

γ1

i+1	


γp
i+1	


p choices	


p choices	




22	
22	


E => E+E => id +E => id+id!l	
   l	
     l	

Leftmost non-terminal of Left-Sentential-Form	

First Applicable Production	


  Failure: Backward to the last alternative	


E	


E	
 E	
+	


id	
 id	


Step 1	

Step 2	

Step 3	


Top-Down = Leftmost	


p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	


Top-Down ���
Simple for Handmade Constructions, ���

Few Grammars	




23	
23	


Left Sentential Form (of G): LSFG	

	

        αβγ ∈LSFG       iff            s l=>+ αβγ	


G = <V,Σ,s∈V,P>	


Only LSFG	

	

     L(G) ={w ∈ Σ* | s =>+ w}	

              ={w ∈ Σ* | s l=>+ w}	


	

 αAβ l=> αγβ     iff     A::=γ ∈P  & α ∈Σ*	

	


LSF forms a Complete Base for 
Context-Free Grammars	




24	
24	


E  => E+E  => E+id  => id+id!r	
 r	
 r	


Looking for Handle	

reduction	

failure: backward for “true” Handle	


id + id	


E	

E	


E	


Step 1	

Step 2	

Step 3	


Bottom-Up = Rightmost Reversed	


p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	


Bottom-Up ���
	
 More Complicated Techniques ���

             Many More Grammars - Many More Languages	




25	
25	


Right Sentential Form (of G):RSFG	

	

        αβγ ∈RSFG     iff      s r=>+ αβγ	


Only RSF	

     L(G) ={w∈ Σ* | s =>+ w}	

              ={w∈ Σ* | s r=>+ w}	


B::=β ∈P is Handle of αβγ ∈RSFG 	

      if and only if    αBγ ∈ RSFG	


	

 αAβ r=> αγβ   iff   A::=γ ∈P  & β∈Σ*	

	


G = <V,Σ,s∈V,P>	


RSF forms a Complete Base for 
Context-Free Grammars	



