
1	

1	

•  How to define Syntax;	

•  How to do Analysis;	

•  At what extent Analysis can be done in 	

 Linear Time;	

•  How to build (Linear) Parser Generators;	

•  Relationship between Analysis and Inter-	

 nal Representation (Tree Representation)	

SYNTACTIC ANALYSIS 	

2	

2	

Scanner	

 Parser	

get	

token	

Source is a	

Sequence of	

characters	

Symbol	

Table	

Entries:	

Lessemi	

Entries:	

Simboli	

 Syntactic Analysis (Parser) is driven from	

Semantics Analysis which is asking for visiting a subtree not built yet 	

Rest of	

Front end	

tree	

get	

One Pass Structure (Two phase pipeline)	

3	

How to define Syntax	

•  Syntactic Analysis and Syntactic Languages	

•  Syntactic Languages and Grammars	

•  Classification of Grammars	

•  Classification of Languages	

•  Foundations: Derivation, Sentential Form, Ambiguity,

Tarski’s Fixpoint Iteration	

4	

•  It scans sequences of tokens to check for phrase structures	

 that belong to the Syntax of the Language	

	

•  Syntax, just like Lexics, is expressed by a Language: The 	

 Syntactic Language 	

	

•  Syntactic Langs are much more complicated than Lexical 	

 ones	

{unvn | n ≥ 0} has been proved not be regular	

∈ {(αu)n (αv)n | n ≥ 0, α∈ L, u=“(”, v=“)”}	

but 	

num+(3-((id*id)+num)/id)	

Syntactic Analysis	

4	

5	

5	

Non-monotone C	

Kinds of Grammar	

[Defined Language Features]	

G=General [Recursive Enumerable but Non-Recursive -{unvakermann(n)}]	

A=Ambiguous	

M=Monotone [Recursive Languages - {unvn!}]	

C=Contextual [{unvnzn}]	

LR(k)=Context-Free [{unvn}]	

LALR(k)=Context-Free [{unvn}]	

SLR(k)=Simple Left-to-right rightmost reversed [Viable-Prefix; Bottom-Up/k symbols{unvn}]	

LL(K)=Leftmost-Left Left-to-right [Predictive; Top-Down/k symbols{unvn}]	

OP=Operator-Precedence [{unvn}]	

L=Linear [Recursive Grammars; Regular Languages]	

DFA= -- [Regular Grammars/Expressions; Regular Languages]	

NFS= -- [Regular Grammars/Expressions; Regular Languages]	

Grammars	

Inclusion	

Grammar Classification (Chomsky)	

6	

6	

L	

anguag	

e	

I	

n	

c	

l	

u	

s	

i	

on	

 	

n	

 n	

n	

 	

 	

 n	

m	

k	

 	

 	

 	

 	

 m	

n	

 	

 	

 	

 	

 	

 	

 n	

 n	

 	

 	

 	

 n	

m	

 	

Language Classification	

7	

7	

Let G = <V,Σ,s∈V,P>	

Derivation is a binary relation =>G su (∑∪V)* x (∑∪V)*	

	

	

	

 	

αAβ => αγβ sse A::=γ ∈P	

Subscript, G, is omitted, in =>G, when the grammar G is clearly stated from the context	

Definitions: Derivation, SF	

=>*: Transitive and Reflexive Closure of =>	

•  α =>* α 	

 	

	

•  if α1=> ... => αn 	

	

 	

then 	

 α1 =>* αn 	

=>+: Transitive Closure of =>	

if α1=> α2 =>...=> αn and α1≠ α2 ≠…≠ αn 	

	

 	

allora 	

 α1 =>+ αn	

Sentential form of G	

 SF={γ | s =>* γ}	

8	

8	

	

	

	

 	

 	

L(G)={w ∈Σ* | s =>+ w}	

(where => is =>G)	

L(G): Language Generated ���
by a Grammar	

Let G = <V,Σ,s∈V,P>	

p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	

Example: Let G below	

id+id∈L(E)	

	

A proof (Lefmost Derivation):	

E =>(p1) E+E =>(p3) id+E =>(p3) id+id 	

	

A different proof (Rightmost Derivation):	

E =>(p1) E+E =>(p3) E+id =>(p3) id+id	

Then	

9	

9	

Ambiguous Grammars are ���
Bad Definitions for Lang. Syntax	

p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	

Example: Let G below	

id+id*id∈L(E)	

	

A proof (Lefmost Derivation):	

E =>(p1) E+E =>(p3) id+E =>(p2) id+E*E =>(p3) id+id*E =>(p3) id+id*id	

A different proof (another Leftmost Derivation):	

E =>(p2) E*E =>(p1) E+E*E =>(p1) id+E*E =>(p1) id+id*E =>(p1) id+id*id	

Then	

Different Leftmost (Rightmost) Derivations lead to different Parse Trees	

10	

Derivations (on the P-tree domain)	

Let G = <V,Σ,s∈V,P>	

Smallest set such that, ∀a∈ Σ∪V: 	

•  leaf: <[a,-]> ∈ (Σ∪V)T

*	

•  ∀<t1,…,tn> ∈ (Σ∪V)T
*	

•  Tree: <[a,<t1,…,tn>]> ∈ (Σ∪V)T
*	

•  Forest: <t1,…,tn,u1,…,um> ∈ (Σ∪V)T
*, ∀ <u1,…,um> ∈ (Σ∪V)T

*	

(Σ∪V)T
*	

Productions on (Σ∪V)T
*	

A::=X1…Xn ∈ P sse 	

<[A,-]>::= <[A,<<[X1,-]>,…,<[Xn,-]>>]> ∈ PT	

A	

::=	

 A	

X1	

 Xn	

A graphical view	

Relation => on (Σ∪V)T
* x (Σ∪V)T

*	

αΑβ => αγβ sse Α::=γ ∈ PT	

11	

11	

E

E E+

id E E+

id id

E

E E+

idE E+

id id

A different proof of ambiguity that uses: The last trees 	

of two different Tree-derivations	

 p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	

Ambiguous Grammars ���
A Graphical View	

Exercise: Show the same
but using leftmost
(rightmost) derivations 	

12	

12	

A0::= e0	

A1::= e1	

…	

An::= en	

1) Partial ordering ≥G on non-Terminals	

∀i≥0, ei ≡ f(Ai1,…,Aini

) then: Ai1,…,Aini
≥G Ai 	

Removal of Mutual Recursion, when possible	

Aj ::= g(Aj1,…,Ai,…,Ajnj
)	

Ai ::= f(Ai1,…, g(Aj1,…,Ai,…,Ajnj
),…,Aini

)	

Aj ::= g(Aj1,…,Ai,…,Ajnj
) con Aj1,…,Ajnj

≥G Ai ≥G Aj	

Ai ::= f(Ai1,…,Aj,…,Aini

) con Ai1,…,Aini
≥G Ai 	

From Grammars to Languages ���
A methodology for finding L(G), given G	

13	

13	

S::= u A B v | B u	

A::= v u v | B	

B::= u S v | u v u	

B ≥G A ≥G S	

S::= u A B v | B u	

B::= u S v | u v u	

S::= u A B v | B u	

B::= u (u A B v | B u) v | u v u	

S::= u A B v | B u	

A::= v u v | B	

B::= uu A B vv | u B uv | u v u	

A::= v u v | B	

B::= uu A B vv | u B uv | u v u	

A::= v u v | B	

B::= uu (v u v | B) B vv | u B uv | u v u	

S::= u A B v | B u	

A::= v u v | B	

B::= uu vuv B vv | uu B B vv | u B uv | u v u	

Example	

14	

14	

∀i≥0, L(Ai) = L(ei)	

•  L(e) is an expression on 2Σ*containing only:	

	

X (finite products)	

	

∪ (possibly, denumerable unions)	

•  L(e) is continuos on 2Σ* 	

Whenever L(Ai) = L(ei) is recursive: L(ei) ≡ E(L(Ai)) 	

Recursive equations X=E(X), have to be solved in the variable
X≡L(Ai) on 2Σ*using the Tarski’s (Fixpoint) Iteration below: 	

X=∪i∈ℵ E(⊥)i	

	

 E(⊥)0 = E(X← ⊥)	

	

 E(⊥)k+1 = E(X← E(⊥)k)	

2) Productions as equations on languages L(Ai)	

15	

What about a system of equations	

A system of Recursive equations: 	

	

{X1=E1(X1,… Xn),…, Xn=En(X1,… Xn)}	

Xi≡L(Ai) on 2Σ*using the Tarski’s (Fixpoint) Iteration below: 	

Xj=∪i∈ℵ Ej(⊥,…,⊥)i	

	

 Ej(⊥,…,⊥)0 = Ej(X1← ⊥ ,…,Xn← ⊥)	

	

 Ej(⊥ ,…,⊥)k+1 = Ej(X1← E1(⊥)k ,…,Xn← En(⊥)k)	

16	

S::=u S | ε	

 X=	

{u}×X∪{λ}	

E(X)	

E(X← ⊥)0 = {u}×⊥∪{λ} = ⊥∪{λ} = {λ} 	

E(X← ⊥)1 = {u}×{λ}∪{λ} = {u, λ}	

E(X← ⊥)2 = {u}×{u,λ}∪{λ} = {uu, u, λ}	

E(X← ⊥)3 = {u}× {uu, u, λ} ∪{λ} = {u3,u2,u, λ}	

E(X← ⊥)n = {un,un-1,…,u, λ}	

L(S)={un | n∈ℵ}	

 = u*	

Example1: Tarski’s Fixpoint Iteration	

17	

17	

S::=u S v | z	

E(X)	

X=	

{u}×X × {v} ∪{z}	

E(X← ⊥)0 = {u}×⊥×{v} ∪ {z} = ⊥∪{z} = {z} 	

E(X← ⊥)1 = {u}×{z}×{v} ∪ {z} = {uzv, z}	

E(X← ⊥)2 = {u}×{uzv, z}×{v} ∪{z} = {u2zv2, uzv, z}	

E(X← ⊥)n = {unzvn,un-1zvn-1,…,z}	

L(S)={unzvn | n≥0}	

Example2: Tarski’s Fixpoint Iteration	

18	

A::= A+A 	

A::= A*A 	

A::= id	

X=	

{x+y | x,y∈X}∪{x*y | x,y∈X}∪{id}	

E(X)	

E(X← ⊥)0 = {x+y | x,y∈⊥}∪{x*y | x,y∈⊥}∪{id}	

 = ⊥∪⊥∪{id} = {id} 	

E(X← ⊥)1 = {x+y | x,y∈ {id}}∪{x*y | x,y∈ {id}}∪{id}	

 = {id+id}∪{id*id}∪{id} = {id, id+id, id*id}	

E(X← ⊥)2 = {x+y | x,y∈E(X← ⊥)1}∪{x*y | x,y∈E(X← ⊥)1}∪{id}	

 = {id, id+id, id*id,id+id+id, id+id*id, id*id+id, id*id*id,…, id*id*id*id}	

E(X← ⊥)n = {id, id tk | t∈{+id, *id}, k ∈[1..2n-1]}	

L(A)={id tn | t∈{+id, *id}, n∈ℵ}	

Example3: Tarski’s Fixpoint Iteration	

19	

How to do Syntactic Analysis	

•  Top-Down and leftmost derivation	

•  Bottom-Up and reversed roghtmost dervation	

20	

20	

Let G=<V,Σ,s∈V,P> be a (context free) grammar. Let w be a	

sequence of words in Σ. 	

	

•  Analysis has to answer to the following question:	

	

 is w ∈L(G) or not ?	

•  or, equivalently:	

 is s =>*w or not ?	

•  Membership: is this Decision Problem, computable?	

-- Yes. It is decidable for all classes of Monotone Grammars. 	

	

•  The solution consists in defining a procedure (The Parser Core) 	

 able to construct a derivation s=>γ1=>…=>γk≡w, if one exists.	

TOP-DOWN and BOTTOM-UP Parsers	

21	

Construction of a Derivation	

•  The solution consists in defining a procedure (The Parser Core) 	

 able to construct a derivation s=>γ1=>…=>γk≡w, if one exists.	

•  The construction of a derivation could be done in a non-efficient	

 way, and even worse, at a non-linear, up to exponential, complexity 	

 time (/space) cost.	

Trying p optional productions at each γi leads to:	

construction of (exponential) (O(pn)) derivations to find the one right 	

or to answer “no-accept”.	

p choices	

p choices	

p choices	

γi	

γ1

i+1	

γp
i+1	

p choices	

p choices	

22	

22	

E => E+E => id +E => id+id!l	

 l	

 l	

Leftmost non-terminal of Left-Sentential-Form	

First Applicable Production	

 Failure: Backward to the last alternative	

E	

E	

 E	

+	

id	

 id	

Step 1	

Step 2	

Step 3	

Top-Down = Leftmost	

p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	

Top-Down ���
Simple for Handmade Constructions, ���

Few Grammars	

23	

23	

Left Sentential Form (of G): LSFG	

	

 αβγ ∈LSFG iff s l=>+ αβγ	

G = <V,Σ,s∈V,P>	

Only LSFG	

	

 L(G) ={w ∈ Σ* | s =>+ w}	

 ={w ∈ Σ* | s l=>+ w}	

	

 αAβ l=> αγβ iff A::=γ ∈P & α ∈Σ*	

	

LSF forms a Complete Base for
Context-Free Grammars	

24	

24	

E => E+E => E+id => id+id!r	

 r	

 r	

Looking for Handle	

reduction	

failure: backward for “true” Handle	

id + id	

E	

E	

E	

Step 1	

Step 2	

Step 3	

Bottom-Up = Rightmost Reversed	

p1: E::= E+E 	

p2: E::= E*E 	

p3: E::= id	

Bottom-Up ���
	

 More Complicated Techniques ���

 Many More Grammars - Many More Languages	

25	

25	

Right Sentential Form (of G):RSFG	

	

 αβγ ∈RSFG iff s r=>+ αβγ	

Only RSF	

 L(G) ={w∈ Σ* | s =>+ w}	

 ={w∈ Σ* | s r=>+ w}	

B::=β ∈P is Handle of αβγ ∈RSFG 	

 if and only if αBγ ∈ RSFG	

	

 αAβ r=> αγβ iff A::=γ ∈P & β∈Σ*	

	

G = <V,Σ,s∈V,P>	

RSF forms a Complete Base for
Context-Free Grammars	

