SYNTACTIC ANALYSIS

- How to define Syntax;
- How to do Analysis;
- At what extent Analysis can be done in Linear Time;
- How to build (Linear) Parser Generators;
- Relationship between Analysis and Internal Representation (Tree Representation)

One Pass Structure (Two phase pipeline)

Source is a Sequence of \longrightarrow characters

Syntactic Analysis (Parser) is driven from
Semantics Analysis which is asking for visiting a subtree not built yet

How to define Syntax

- Syntactic Analysis and Syntactic Languages
- Syntactic Languages and Grammars
- Classification of Grammars
- Classification of Languages
- Foundations: Derivation, Sentential Form, Ambiguity, Tarski's Fixpoint Iteration

Syntactic Analysis

- It scans sequences of tokens to check for phrase structures that belong to the Syntax of the Language
- Syntax, just like Lexics, is expressed by a Language: The Syntactic Language
- Syntactic Langs are much more complicated than Lexical ones

$$
\left\{u^{n} v^{n} \mid n \geq 0\right\} \quad \text { has been proved not be regular }
$$

but

$$
\text { num }+(3-((i d * i d)+n u m) / i d) \in\left\{(\alpha u)^{n}(\alpha v)^{\mathrm{n}} \mid \mathrm{n} \geq 0, \alpha \in \mathrm{~L}, \mathrm{u}="(", \mathrm{v}=") "\right\}
$$

Grammar Classification (Chomsky)

Grammars Inclusion

[^0]
Language Classification

Languag e Inclusion


```
[G] = Recursively Enumarable Languages
[\mathbb{MI] = Recursive Languages}
[\mathbb{C}]= Contextual Languages: {\mp@subsup{u}{}{n}\mp@subsup{v}{}{\textrm{n}}\mp@subsup{\textrm{Z}}{}{\textrm{n}}|\textrm{n}\geq0}
[C]P] = Context-Free Languages: {}\mp@subsup{\textrm{u}}{}{\textrm{n}}\mp@subsup{\textrm{v}}{}{\textrm{m}}\mp@subsup{\textrm{Z}}{}{\textrm{k}}|\textrm{n},\textrm{m},\textrm{k}\geq0\mathrm{ and (n=m or m=k)}
[LLRT(k)] = LR/k symbols Languages: { ( }\mp@subsup{\textrm{m}}{}{\textrm{m}
[LA\mathbb{ALR}(\mathbb{R})] = LALR/k symbols Languages
[SLR(\mathbb{R})]= SLR/k symbols Languages
[L/L(v)] = LL/k symbols Languages: { (\mp@subsup{u}{}{n}\mp@subsup{v}{}{n}|n\geq0}
[L]|= Regular Languages: { {\mp@subsup{u}{}{n}\mp@subsup{v}{}{m}|\textrm{n}\geq0,m\geq0}
```


Definitions: Derivation, SF

Let $\mathbf{G}=\langle\mathbf{V}, \boldsymbol{\Sigma}, \mathbf{s} \in \mathbf{V}, \mathbf{P}\rangle$

Derivation is a binary relation \Rightarrow_{G} su $(\Sigma \cup V)^{*} x(\Sigma \cup V) *$

$$
\alpha A \beta \Rightarrow \alpha \gamma \beta \text { sse } A::=\gamma \in P
$$

Subscript, G, is omitted, in \Rightarrow_{G}, when the grammar G is clearly stated from the context
=>*: Transitive and Reflexive Closure of $=>$

- $\alpha=>^{*} \alpha$
- if $\alpha_{1}=>\ldots \ldots=>\alpha_{\text {then }} \alpha_{1}=>* \alpha_{n}$

Sentential form of G $\mathrm{SF}=\left\{\gamma \mid \mathrm{s} \Rightarrow{ }^{*} \gamma\right\}$

=>+: Transitive Closure of $=>$
if $\alpha_{1}=>\alpha_{2}=>\ldots=>\alpha_{n}$ and $\alpha_{1} \neq \alpha_{2} \neq \ldots \neq \alpha_{n}$ allora $\alpha_{1}=>^{+} \alpha_{n}$

L(G): Language Generated by a Grammar

```
Let \(\mathbf{G}=\langle\mathbf{V}, \boldsymbol{\Sigma}, \mathbf{s} \in \mathbf{V}, \mathbf{P}\rangle\)
    \(\mathbf{L}(\mathbf{G})=\left\{\mathbf{w} \in \mathbf{D}^{*} \mid \mathrm{s} \Rightarrow{ }^{+} \mathrm{w}\right\}\)
(where \(\Rightarrow\) is \(\Rightarrow_{\mathbf{G}}\) )
```

Example: Let G below

$$
\begin{aligned}
& \text { p1: } \mathrm{E}::=\mathrm{E}+\mathrm{E} \\
& \text { p2: } \mathrm{E}::=\mathrm{E} * \mathrm{E} \\
& p 3: \mathrm{E}::=\mathrm{id}
\end{aligned}
$$

Then
id+id $\in \mathbf{L}(\mathbf{E})$
A proof (Lefmost Derivation):
$\mathrm{E}=>_{(\mathrm{p} 1)} \mathrm{E}+\mathrm{E}=>_{(\mathrm{p} 3)} \mathrm{id}+\mathrm{E}=>_{(p 3)}$ id+id
A different proof (Rightmost Derivation):
$\mathrm{E} \Rightarrow>_{(\mathrm{p} 1)} \mathrm{E}+\mathrm{E} \Rightarrow>_{(p 3)} \mathrm{E}+\mathrm{id}=>_{(p 3)}$ id +id

Ambiguous Grammars are Bad Definitions for Lang. Syntax

Example: Let G below

```
pl: E::= E+E
p2: E::= E*E
p3: E::= id
Then
```

id+id*id $\in L(E)$
A proof (Lefmost Derivation):
$\mathrm{E}=>_{(\mathrm{p} 1)} \mathrm{E}+\mathrm{E}=>_{(\mathrm{p} 3)} \mathrm{id}+\mathrm{E}=>_{(\mathrm{p} 2)} \mathrm{id}+\mathrm{E} * \mathrm{E}=>_{(\mathrm{p} 3)} \mathrm{id}+\mathrm{id} * \mathrm{E}=>_{(\mathrm{p} 3)} \mathrm{id}+\mathrm{id} * \mathrm{id}$
A different proof (another Leftmost Derivation):
$\mathrm{E}=>_{(p 2)} \mathrm{E} * \mathrm{E}=>_{(p 1)} \mathrm{E}+\mathrm{E} * \mathrm{E}=>_{(p 1)} \mathrm{id}+\mathrm{E}^{*} \mathrm{E}=>_{(\mathrm{p} 1)} \mathrm{id}+\mathrm{id} * \mathrm{E}=>_{(\mathrm{p} 1)} \mathrm{id}+\mathrm{id} * \mathrm{id}$

Derivations (on the P-tree domain)

Let $\mathbf{G}=\langle\mathbf{V}, \boldsymbol{\Sigma}, \mathbf{s} \in \mathbf{V}, \mathbf{P}\rangle$

$(\Sigma \cup V)_{T}{ }^{*}$

Smallest set such that, $\forall \mathrm{a} \in \Sigma \cup \mathrm{V}$:

- leaf: $\langle[\mathbf{a},-]\rangle \in(\Sigma \cup V)_{T}{ }^{*}$
- $\forall<\mathrm{t} 1, \ldots, \mathrm{tn}>\in(\Sigma \cup \mathrm{V})_{\mathrm{T}}{ }^{*}$
- Tree: $\langle[\mathbf{a},<\mathbf{t} 1, \ldots, \mathrm{tn}\rangle]\rangle \in(\Sigma \cup V)_{\mathrm{T}}{ }^{*}$
- Forest: $<\mathbf{t} 1, \ldots, \mathrm{tn}, \mathbf{u} 1, \ldots, \mathrm{um}>\in(\Sigma \cup V)_{\mathrm{T}}{ }^{*}, \forall<\mathbf{u} 1, \ldots, \mathrm{um}>\in(\Sigma \cup V)_{\mathrm{T}}{ }^{*}$

Productions on $(\boldsymbol{\Sigma} \cup \mathbf{V})_{\mathbf{T}}{ }^{*}$

$A::=X_{1} \ldots X_{n} \in P \quad$ sse $\left.<[A,-]>::=<\left[A, \ll\left[X_{1},-\right]\right\rangle, \ldots,<\left[X_{n},-\right] \gg\right]>\in P_{T}$

Relation $=>$ on $(\Sigma \cup V)_{T}{ }^{*} x(\Sigma \cup V)_{T}{ }^{*}$
$\alpha A \beta \Rightarrow \alpha \gamma \beta \quad$ sse $\quad A::=\gamma \in P_{T}$

Ambiguous Grammars A Graphical View

A different proof of ambiguity that uses: The last trees of two different Tree-derivations

From Grammars to Languages A methodology for finding $L(G)$, given G

$$
\begin{aligned}
& \mathrm{A}_{0}::=\mathrm{e}_{0} \\
& \mathrm{~A}_{1}::=\mathrm{e}_{1} \\
& \ldots \\
& \mathrm{~A}_{\mathrm{n}}::=\mathrm{e}_{\mathrm{n}}
\end{aligned}
$$

1) Partial ordering \geq^{G} on non-Terminals

$$
\forall i \geq 0, \quad e_{i} \equiv f\left(A_{i_{1}}, \ldots, A_{i_{n i}}\right) \text { then: } A_{i_{1}}, \ldots, A_{i_{n_{\mathrm{i}}}} \geq A_{i}
$$

Removal of Mutual Recursion, when possible

$$
\begin{aligned}
& A_{j}::=g\left(A_{j 1}, \ldots, A_{i}, \ldots, A_{j_{n j}}\right) \quad \text { con } A_{j 1}, \ldots, A_{j_{n j}} \geq{ }^{G} A_{i} \geq^{G} A_{j} \\
& A_{i}::=f\left(A_{i 1}, \ldots, A_{j}, \ldots, A_{i_{n_{i}}}\right) \quad \operatorname{con} A_{i 1}, \ldots, A_{i_{n_{i}}} \geq{ }^{G} A_{i} \\
& \text { II } \\
& A_{j}::=g\left(A_{j_{1}}, \ldots, A_{i}, \ldots, A_{j_{n j}}\right) \\
& A_{i}::=f\left(A_{i 1}, \ldots, g\left(A_{j 1}, \ldots, A_{i}, \ldots, A_{j_{n j}}\right), \ldots, A_{i_{n j}}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& S::=u A B v \mid B u \\
& B::=u S v \mid u v u
\end{aligned}
$$

$$
A::=v u v \mid B
$$

$$
B::=u S v \mid u v u
$$

$S::=u A B v \mid B u$
$A::=v u v \mid B$
B::= uu A B vvluB uv Iuvu

$$
\begin{aligned}
& A::=v u v \mid B \\
& B::=u u A B \text { vv } \mid \text { u B uv luvu }
\end{aligned}
$$

$$
I
$$

$$
\begin{aligned}
& A::=v u v \mid B \\
& B::=u u(v u v \mid B) B v v \mid u B \text { uv } \mid u v u
\end{aligned}
$$

$S::=u A B v \mid B u$
$A::=v u v \mid B$
$B::=u u$ vuv B vv luu B B vv I u B uv I u v u
$\forall \mathrm{i} \geq 0, \quad \mathrm{~L}\left(\mathrm{~A}_{\mathrm{i}}\right)=\mathrm{L}\left(\mathrm{e}_{\mathrm{i}}\right)$

- $\mathrm{L}(\mathrm{e})$ is an expression on $2^{\Sigma^{*}}$ containing only: X (finite products)
\cup (possibly, denumerable unions)
- L(e) is continuos on $2^{\Sigma^{*}}$

Whenever $\mathrm{L}\left(\mathrm{A}_{\mathrm{i}}\right)=\mathrm{L}\left(\mathrm{e}_{\mathrm{i}}\right)$ is recursive: $\mathrm{L}\left(\mathrm{e}_{\mathrm{i}}\right) \equiv \mathrm{E}\left(L\left(A_{i}\right)\right)$
Recursive equations $\mathrm{X}=\mathrm{E}(\mathrm{X})$, have to be solved in the variable $\mathrm{X} \equiv \mathrm{L}\left(\mathrm{A}_{\mathrm{i}}\right)$ on $\mathbf{2}^{\mathrm{\Sigma}}{ }^{*}$ using the Tarski's (Fixpoint) Iteration below:

$$
\begin{aligned}
& \mathrm{X}=\cup_{i \in \mathbb{N}} \mathrm{E}(\perp)^{\mathrm{i}} \\
& \mathrm{E}(\perp)^{0}=\mathrm{E}(\mathrm{X} \leftarrow \perp) \\
& \mathrm{E}(\perp)^{k+1}=\mathrm{E}\left(\mathrm{X} \leftarrow \mathrm{E}(\perp)^{k}\right)
\end{aligned}
$$

What about a system of equations

$$
\begin{aligned}
& \text { A system of Recursive equations: } \\
& \left\{\mathrm{X}_{1}=\mathrm{E}_{1}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right), \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{E}_{\mathrm{n}}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)\right\} \\
& \mathrm{X}_{\mathrm{i}} \equiv \mathrm{~L}\left(\mathrm{~A}_{\mathrm{i}}\right) \text { on } \mathbf{2}^{\Sigma^{*}} \text { using the Tarski's (Fixpoint) Iteration below: } \\
& X_{j}=U_{i \in \mathbb{K}} \mathbf{E}_{j}(\perp, \ldots, L)^{i} \\
& \mathbf{E}_{j}(\perp, \ldots, L)^{0}=\mathbf{E}_{j}\left(\mathbf{X}_{1} \leftarrow \perp, \ldots, \mathbf{X}_{\mathrm{n}} \leftarrow \perp\right) \\
& \mathbf{E}_{j}(\perp, \ldots, \perp)^{k+1}=E_{j}\left(\mathbf{X}_{1} \leftarrow \mathbf{E}_{\mathbf{1}}(\perp)^{k}, \ldots, X_{\mathrm{n}} \leftarrow \mathrm{E}_{\mathrm{n}}(\perp)^{k}\right)
\end{aligned}
$$

Example1: Tarski’ s Fixpoint Iteration

$\mathrm{S}::=\mathrm{uS\mid} \mathrm{\varepsilon} \longrightarrow \mathrm{X}=\{\mathrm{u}\} \times \mathrm{X} \cup\{\lambda\}$
 E(X)

$$
\begin{gathered}
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{0}=\{\mathrm{u}\} \times \perp \cup\{\lambda\}=\perp \cup\{\lambda\}=\{\lambda\} \\
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{1}=\{\mathrm{u}\} \times\{\lambda\} \cup\{\lambda\}=\{\mathrm{u}, \lambda\} \\
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{2}=\{\mathrm{u}\} \times\{\mathrm{u}, \lambda\} \cup\{\lambda\}=\{\mathrm{uu}, \mathrm{u}, \lambda\} \\
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{3}=\{\mathrm{u}\} \times\{\mathrm{uu}, \mathrm{u}, \lambda\} \cup\{\lambda\}=\left\{\mathrm{u}^{3}, \mathrm{u}^{2}, \mathrm{u}, \lambda\right\} \\
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{\mathrm{n}}=\left\{\mathrm{u}^{\mathrm{n}}, \mathrm{u}^{\mathrm{n}-1}, \ldots, \mathrm{u}, \lambda\right\} \\
\\
\mathrm{L}(\mathrm{~S})=\left\{\mathrm{u}^{\mathrm{n}} \mid \mathrm{n} \in \aleph\right\}=\mathbf{u}^{*}
\end{gathered}
$$

Example2: Tarski’ s Fixpoint Iteration

$$
\mathrm{S}::=\mathrm{uSv\mid z} \longrightarrow \mathrm{X}=\{\mathrm{u}\} \times \mathrm{X} \times\{\mathrm{v}\} \cup\{\mathrm{z}\}
$$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X} \leftarrow \perp)^{0}=\{\mathrm{u}\} \times \perp \times\{\mathrm{v}\} \cup\{\mathrm{z}\}=\perp \cup\{\mathrm{z}\}=\{\mathrm{z}\} \\
& \mathrm{E}(\mathrm{X} \leftarrow \perp)^{1}=\{\mathrm{u}\} \times\{\mathrm{z}\} \times\{\mathrm{v}\} \cup\{\mathrm{z}\}=\{\mathrm{uzv}, \mathrm{z}\} \\
& \mathrm{E}(\mathrm{X} \leftarrow \perp)^{2}=\{\mathrm{u}\} \times\{\mathrm{uzv}, \mathrm{z}\} \times\{\mathrm{v}\} \cup\{\mathrm{z}\}=\left\{\mathrm{u}^{2} \mathrm{zv}^{2}, \mathrm{uzv}, \mathrm{z}\right\} \\
& \mathrm{E}(\mathrm{X} \leftarrow \perp)^{\mathrm{n}}=\left\{\mathrm{u}^{\mathrm{n}} \mathrm{zv}^{\mathrm{n}}, \mathrm{u}^{\mathrm{n}-1} \mathrm{zv} \mathrm{v}^{\mathrm{n}-1}, \ldots, \mathrm{z}\right\} \\
& \\
& \mathrm{L}(\mathrm{~S})=\left\{\mathrm{u}^{\mathrm{n}} \mathrm{zv} \mathrm{v}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}
\end{aligned}
$$

Example3: Tarski’ s Fixpoint Iteration

$$
\begin{aligned}
& \mathrm{A}::=\mathrm{A}+\mathrm{A} \\
& \mathrm{~A}::=\mathrm{A} * \mathrm{~A} \\
& \mathrm{~A}::=\mathrm{id}
\end{aligned}
$$

$$
\mathrm{A}::=\mathrm{A} * \mathrm{~A} \quad \longleftrightarrow \mathrm{X}=\{\mathrm{x}+\mathrm{y} \mid \mathrm{x}, \mathrm{y} \in \mathrm{X}\} \cup\{\mathrm{x} * \mathrm{y} \mid \mathrm{x}, \mathrm{y} \in \mathrm{X}\} \cup\{\mathrm{id}\}
$$

$$
\begin{aligned}
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{0} & =\{\mathrm{x}+\mathrm{y} \mid \mathrm{x}, \mathrm{y} \in \perp\} \cup\{\mathrm{x} * \mathrm{y} \mid \mathrm{x}, \mathrm{y} \in \perp\} \cup\{\mathrm{id}\} \\
& =\perp \cup \perp \cup \mathrm{id}\}=\{\mathrm{id}\}
\end{aligned}
$$

$\mathrm{E}(\mathrm{X} \leftarrow \perp)^{1}=\{\mathrm{x}+\mathrm{y} \mid \mathrm{x}, \mathrm{y} \in\{\mathrm{id}\}\} \cup\{\mathrm{x} * \mathrm{y} \mid \mathrm{x}, \mathrm{y} \in\{\mathrm{id}\}\} \cup\{\mathrm{id}\}$
$=\{\mathrm{id}+\mathrm{id}\} \cup\{\mathrm{id} * \mathrm{id}\} \cup\{\mathrm{id}\}=\{\mathrm{id}, \mathrm{id}+\mathrm{id}, \mathrm{id} * \mathrm{id}\}$
$\mathrm{E}(\mathrm{X} \leftarrow \perp)^{2}=\left\{\mathrm{x}+\mathrm{y} \mid \mathrm{x}, \mathrm{y} \in \mathrm{E}(\mathrm{X} \leftarrow \perp)^{1}\right\} \cup\left\{\mathrm{x} * \mathrm{y} \mid \mathrm{x}, \mathrm{y} \in \mathrm{E}(\mathrm{X} \leftarrow \perp)^{1}\right\} \cup\{\mathrm{id}\}$
$=\{i d, i d+i d, i d * i d, i d+i d+i d, i d+i d * i d, i d * i d+i d, i d * i d * i d, \ldots, i d * i d * i d * i d\}$

$$
\begin{gathered}
\mathrm{E}(\mathrm{X} \leftarrow \perp)^{\mathrm{n}}=\left\{\mathrm{id}, \mathrm{id}_{\mathrm{k}}^{\mathrm{k}} \mid \mathrm{t} \in\{+\mathrm{id}, * \mathrm{id}\}, \mathrm{k} \in\left[1 . .2^{\mathrm{n}}-1\right]\right\} \\
\mathrm{L}(\mathrm{~A})=\left\{\mathrm{id} \mathrm{t}^{\mathrm{n}} \mid \mathrm{t} \in\{+\mathrm{id}, * \mathrm{id}\}, \mathrm{n} \in \mathbb{N}\right\}
\end{gathered}
$$

How to do Syntactic Analysis

- Top-Down and leftmost derivation
- Bottom-Up and reversed roghtmost dervation

TOP-DOWN and BOTTOM-UP Parsers

Let $\mathbf{G}=\langle\mathbf{V}, \boldsymbol{\Sigma}, \mathbf{s} \in \mathbf{V}, \mathbf{P}>$ be a (context free) grammar. Let \mathbf{w} be a sequence of words in Σ.

- Analysis has to answer to the following question: is $w \in L(G)$ or not ?
- or, equivalently:

$$
\text { is } s={ }^{*} w \text { or not } ?
$$

- Membership: is this Decision Problem, computable?
-- Yes. It is decidable for all classes of Monotone Grammars.
- The solution consists in defining a procedure (The Parser Core) able to construct a derivation $s=>\gamma_{1}=>\ldots=>\gamma_{k} \equiv \mathrm{w}$, if one exists.

Construction of a Derivation

- The solution consists in defining a procedure (The Parser Core) able to construct a derivation $s=>\gamma_{1}=>\ldots=>\gamma_{k} \equiv \mathrm{w}$, if one exists.
- The construction of a derivation could be done in a non-efficient way, and even worse, at a non-linear, up to exponential, complexity time (/space) cost.

Trying p optional productions at each γ_{i} leads to:

construction of (exponential) $\left(\mathrm{O}\left(\mathrm{p}^{\mathrm{n}}\right)\right)$ derivations to find the one right or to answer "no-accept".

Top-Down

Simple for Handmade Constructions, Few Grammars

$E_{1}=>E+E \Rightarrow$ id $+E \Rightarrow$ id $+i d$
Leftmost non-terminal of Left-Sentential-Form
First Applicable Production
Failure: Backward to the last alternative

Top-Down $=$ Leftmost

$$
\begin{aligned}
& \text { p1: } \mathrm{E}::=\mathrm{E}+\mathrm{E} \\
& \text { p2: } \mathrm{E}::=\mathrm{E} * \mathrm{E} \\
& \text { p3: }::=\mathrm{id}
\end{aligned}
$$

LSE forms a Complete Base for Context-Free Grammars

$$
\mathrm{G}=<\mathrm{V}, \Sigma, \mathrm{~s} \in \mathrm{~V}, \mathrm{P}\rangle
$$

Left Sentential Form (of G): $\boldsymbol{L S \boldsymbol { F } _ { \boldsymbol { G } }}$

$$
\alpha \beta \gamma \in L S F_{G} \quad \text { iff } \quad \mathrm{s}_{1}=>^{+} \alpha \beta \gamma
$$

$$
\alpha \mathbf{A} \boldsymbol{\beta}_{1}=>\alpha \gamma \beta \quad \text { iff } \quad \mathrm{A}::=\gamma \in \mathrm{P} \& \alpha \in \Sigma^{*}
$$

Only $\boldsymbol{L S} \boldsymbol{F}_{\boldsymbol{G}}$

$$
\begin{aligned}
\mathrm{L}(\mathrm{G}) & =\left\{\mathrm{w} \in \Sigma^{*} \mid \mathrm{s}=>^{+} \mathrm{w}\right\} \\
& =\left\{\mathrm{w} \in \Sigma^{*} \mid \mathrm{s}_{\mathrm{l}}=>^{+} \mathrm{w}\right\}
\end{aligned}
$$

Bottom-Up
 More Complicated Techniques Many More Grammars - Many More Languages

Looking for Handle reduction
failure: backward for "true" Handle

$$
\begin{aligned}
& \text { p1: } \mathrm{E}::=\mathrm{E}+\mathrm{E} \\
& \text { p2: } \mathrm{E}::=\mathrm{E} * \mathrm{E} \\
& \text { p3: }::=\mathrm{id}
\end{aligned}
$$

RSE forms a Complete Base for Context-Free Grammars

$\mathrm{G}=\langle\mathrm{V}, \Sigma, \mathrm{s} \in \mathrm{V}, \mathrm{P}\rangle \quad$ Right Sentential Form (of G): $R S F_{G}$

$$
\begin{gathered}
\alpha \beta \gamma \in R S F_{G} \quad \text { iff } \quad \mathrm{s}_{\mathrm{r}}=>^{+} \alpha \beta \gamma \\
\alpha \mathbf{A} \beta_{\mathrm{r}}=>\alpha \gamma \beta \quad \text { iff } \quad \mathrm{A}::=\gamma \in \mathrm{P} \quad \& \beta \in \Sigma^{*}
\end{gathered}
$$

Only RSF

$$
\begin{aligned}
\mathrm{L}(\mathrm{G}) & =\left\{\mathrm{w} \in \Sigma^{*} \mid \mathrm{s}=>^{+} \mathrm{w}\right\} \\
& =\left\{\mathrm{w} \in \Sigma^{*} \mid \mathrm{s}_{\mathrm{r}}=>^{+} \mathrm{w}\right\}
\end{aligned}
$$

$\mathbf{B}::=\boldsymbol{\beta} \in \mathrm{P}$ is Handle of $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \in R S F_{G}$ if and only if $\alpha \mathrm{B} \gamma \in R S F_{G}$

[^0]: $\mathbf{G}=$ General [Recursive Enumerable but Non-Recursive $-\left\{\mathbf{u}^{\mathrm{n}} \mathrm{v}^{\text {akermann(n) }}\right\}$]
 A=Ambiguous
 $\mathbf{M}=$ Monotone [Recursive Languages - $\left.\left\{\mathrm{u}^{\mathrm{n}} \mathrm{v}^{\mathrm{n}}\right\}\right\}$]
 $\mathbf{C = C o n t e x t u a l ~ [\{ u ^ { n } v ^ { n } z ^ { n } \}]}$
 LR(k)=Context-Free [\{un $\left.\mathrm{v}^{\mathrm{n}}\right\}$]

 Kinds of Grammar
 [Defined Language Features]

 LALR(k)=Context-Free $\left[\left\{u^{n} v^{n}\right\}\right]$
 $\operatorname{SLR}(k)=$ Simple Left-to-right rightmost reversed [Viable-Prefix; Bottom-Up/k symbols $\left\{\mathrm{u}^{\mathrm{n}} \mathrm{v}^{\mathrm{n}}\right\}$]
 $L L(K)=L e f t m o s t-L e f t ~ L e f t-t o-r i g h t ~\left[P r e d i c t i v e ; ~ T o p-D o w n / k ~ s y m b o l s ~\left\{u^{n} v^{n}\right\}\right.$]
 $\mathrm{OP}=$ Operator-Precedence $\left[\left\{\mathrm{u}^{\mathrm{n}} \mathrm{V}^{\mathrm{n}}\right\}\right]$
 L=Linear [Recursive Grammars; Regular Languages]
 DFA $=-$ - [Regular Grammars/Expressions; Regular Languages]
 NFS= -- [Regular Grammars/Expressions; Regular Languages]

