SYNTACTIC ANALYSIS

- How to define Syntax;
- How to do Analysis;
- At what extent Analysis can be done in Linear Time;
- How to build (Linear) Parser Generators;
- Relationship between Analysis and Internal Representation (Tree Representation)

One Pass Structure (Two phase pipeline)

Syntactic Analysis (Parser) is driven from Semantics Analysis which is asking for visiting a subtree not built yet

How to define Syntax

- Syntactic Analysis and Syntactic Languages
- Syntactic Languages and Grammars
- Classification of Grammars
- Classification of Languages
- Foundations: Derivation, Sentential Form, Ambiguity, Tarski's Fixpoint Iteration

Syntactic Analysis

- It scans sequences of tokens to check for *phrase structures* that belong to the Syntax of the Language
- Syntax, just like Lexics, is expressed by a Language: The Syntactic Language
- Syntactic Langs are much more complicated than Lexical ones $\{u^nv^n \mid n \ge 0\}$ has been proved not be regular

but

 $\operatorname{num}+(3-((\operatorname{id}\ast\operatorname{id})+\operatorname{num})/\operatorname{id}) \in \{(\alpha u)^n \ (\alpha v)^n \ | \ n \ge 0, \alpha \in L, u = "(", v = ")"\}$

Grammar Classification (Chomsky)

M=Monotone [Recursive Languages - {uⁿv^{n!}}]

C=Contextual [{uⁿvⁿzⁿ}]

LR(k)=Context-Free [{uⁿvⁿ}]

LALR(k)=Context-Free [{uⁿvⁿ}]

SLR(k)=Simple Left-to-right rightmost reversed [Viable-Prefix; Bottom-Up/k symbols{uⁿvⁿ}]

LL(K)=Leftmost-Left Left-to-right [Predictive; Top-Down/k symbols{uⁿvⁿ}]

OP=Operator-Precedence [{uⁿvⁿ}]

L=Linear [Recursive Grammars; Regular Languages]

DFA= -- [Regular Grammars/Expressions; Regular Languages]

NFS= -- [Regular Grammars/Expressions; Regular Languages]

Kinds of Grammar

[Defined Language Features]

Language Classification

- [G] = Recursively Enumarable Languages [M] = Recursive Languages [C] = Contextual Languages: {uⁿvⁿzⁿ | n≥0} [CF] = Context-Free Languages: {uⁿv^mz^k | n,m,k≥0 and (n=m or m=k)} [U] P(1x) = LP(k symbols Languages: {u^myⁿ | m>n>0})

$$LR(\mathbb{R}) = LR/k$$
 symbols Languages: $\{u^m v^n | m > n \ge 0\}$

$$[LALR(k)] = LALR/k$$
 symbols Languages

$$\mathbb{L}] \stackrel{\text{\tiny{}}}{=} \stackrel{\text{\scriptsize{}}}{\text{Regular Languages: }} \{u^n V^m \mid n \ge 0, m \ge 0\}$$

Definitions: Derivation, SF

Let **G** = <**V**,Σ,s∈**V**,**P**>

Derivation is a binary relation $\Rightarrow_{G} su (\Sigma \cup V)^* x (\Sigma \cup V)^*$ $\alpha A\beta \Rightarrow \alpha \gamma \beta \quad sse \quad A ::= \gamma \in P$ Subscript, G, is omitted, in \Rightarrow_{G} , when the grammar G is clearly stated from the context

=>*: Transitive and Reflexive Closure of =>
•
$$\alpha =>^* \alpha$$

• if $\alpha_1 => \dots => \alpha_n$
then $\alpha_1 =>^* \alpha_n$

=>+: Transitive Closure of => if α_1 => α_2 =>...=> α_n and $\alpha_1 \neq \alpha_2 \neq ... \neq \alpha_n$ allora α_1 =>+ α_n **Sentential form** of G **SF={γ | s =>* γ}**

L(G): Language Generated by a Grammar

Let
$$G = \langle V, \Sigma, s \in V, P \rangle$$

$$L(G) = \{ w \in \Sigma^* \mid s \Rightarrow^+ w \}$$

where \Rightarrow is \Rightarrow_G)

Example: Let G below

p1: E::= E+E *p2*: E::= E*E *p3*: E::= id

Then

id+id∈L(E)

A proof (Lefmost Derivation): $E \Rightarrow_{(p1)} E + E \Rightarrow_{(p3)} id + E \Rightarrow_{(p3)} id + id$

A different proof (Rightmost Derivation): $E \Rightarrow_{(p1)} E + E \Rightarrow_{(p3)} E + id \Rightarrow_{(p3)} id + id$

Ambiguous Grammars are Bad Definitions for Lang. Syntax

Example: Let G belowp1: E::= E+Ep2: E::= E*Ep3: E::= idThen

 $id+id*id\in L(E)$

A proof (Lefmost Derivation): $E \Rightarrow_{(p1)} E + E \Rightarrow_{(p3)} id + E \Rightarrow_{(p2)} id + E^*E \Rightarrow_{(p3)} id + id^*E \Rightarrow_{(p3)} id + id^*id$ A different proof (another Leftmost Derivation): $E \Rightarrow_{(p2)} E^*E \Rightarrow_{(p1)} E + E^*E \Rightarrow_{(p1)} id + E^*E \Rightarrow_{(p1)} id + id^*E \Rightarrow_{(p1)} id + id^*id$

Different Leftmost (Rightmost) Derivations lead to different Parse Trees

Derivations (on the P-tree domain)

Let **G** = <**V**,Σ,s∈**V**,**P**>

$$(\Sigma \cup V)_{T}^{*}$$

Smallest set such that, $\forall a \in \Sigma \cup V$:

- leaf: $\langle [a,-] \rangle \in (\Sigma \cup V)_T^*$
 - $\forall < t1, \dots, tn > \in (\Sigma \cup V)_T^*$
 - Tree: $\langle a, \langle t1, \dots, tn \rangle \rangle \in (\Sigma \cup V)_T^*$
 - Forest: $\langle t1,...,tn,u1,...,um \rangle \in (\Sigma \cup V)_T^*, \forall \langle u1,...,um \rangle \in (\Sigma \cup V)_T^*$

Productions on $(\Sigma \cup V)_{T}^{*}$ A::=X₁...X_n \in P sse <[A,-]>::= <[A,-<[X_1,-]>,...,<[X_n,-]>>]> \in P_T

Relation => on $(\Sigma \cup V)_T^* \times (\Sigma \cup V)_T^*$ $\alpha A\beta \Rightarrow \alpha \gamma \beta$ sse A::= $\gamma \in P_T$ Ambiguous Grammars A Graphical View

A different proof of ambiguity that uses: The *last trees* of two different Tree-derivations

From Grammars to Languages A methodology for finding L(G), given G

1) Partial ordering
$$\geq^{G}$$
 on non-Terminals
 $\forall i \geq 0, e_i \equiv f(A_{i_1}, \dots, A_{i_{n_i}})$ then: $A_{i_1}, \dots, A_{i_{n_i}} \geq^{G} A_i$

Removal of Mutual Recursion, when possible

$$A_{j} ::= g(A_{j_{1}}, \dots, A_{i_{i_{n_{j}}}}) \quad \operatorname{con} A_{j_{1}}, \dots, A_{j_{n_{j}}} \geq^{G} A_{i} \geq^{G} A_{j}$$

$$A_{i} ::= f(A_{i_{1}}, \dots, A_{j_{n_{i_{n_{i}}}}}) \quad \operatorname{con} A_{i_{1}}, \dots, A_{i_{n_{i_{n_{i}}}}} \geq^{G} A_{i}$$

$$A_{j} ::= g(A_{j_{1}}, \dots, A_{i_{n_{i_{n_{i}}}}})$$

$$A_{j} ::= g(A_{j_{1}}, \dots, A_{j_{n_{j_{n_{j}}}}}) \quad A_{j_{n_{j}}} = f(A_{j_{n_{n_{n_{j}}}}})$$

2) Productions as equations on languages $L(A_i)$

$$\forall i \ge 0, L(A_i) = L(e_i)$$

 L(e) is an expression on 2^{Σ*} containing only: X (finite products) U (possibly, denumerable unions)
 L(e) is continuos on 2^{Σ*}

Whenever $L(A_i) = L(e_i)$ is recursive: $L(e_i) = E(L(A_i))$

Recursive equations X=E(X), have to be solved in the variable $X=L(A_i)$ on 2^{Σ^*} using the **Tarski's (Fixpoint) Iteration** below:

$$\begin{split} X = \bigcup_{i \in \mathcal{N}} E(\bot)^{i} \\ E(\bot)^{0} = E(X \leftarrow \bot) \\ E(\bot)^{k+1} = E(X \leftarrow E(\bot)^{k}) \end{split}$$

What about a system of equations

A system of Recursive equations:

{X₁=E₁(X₁,..., X_n),..., X_n=E_n(X₁,..., X_n)} X_i=L(A_i) on 2^{Σ^*} using the Tarski's (Fixpoint) Iteration below:

$$\begin{split} X_{j} = \bigcup_{i \in \aleph} E_{j}(\bot, \dots, \bot)^{i} \\ E_{j}(\bot, \dots, \bot)^{0} = E_{j}(X_{1} \leftarrow \bot, \dots, X_{n} \leftarrow \bot) \\ E_{j}(\bot, \dots, \bot)^{k+1} = E_{j}(X_{1} \leftarrow E_{1}(\bot)^{k}, \dots, X_{n} \leftarrow E_{n}(\bot)^{k}) \end{split}$$

Example1: Tarski's Fixpoint Iteration

Example2: Tarski's Fixpoint Iteration

S::=u S v | z

$$X = \{u\} \times X \times \{v\} \cup \{z\}$$

$$E(X)$$

Example3: Tarski's Fixpoint Iteration

How to do Syntactic Analysis

- Top-Down and leftmost derivation
- Bottom-Up and reversed roghtmost dervation

TOP-DOWN and BOTTOM-UP Parsers

Let $G = \langle V, \Sigma, s \in V, P \rangle$ be a (context free) grammar. Let w be a sequence of words in Σ .

- Analysis has to answer to the following question: is w∈L(G) or not ?
- or, equivalently:

is **s** =>***w** or not ?

- Membership: is this Decision Problem, computable?
 - -- Yes. It is decidable for all classes of Monotone Grammars.
- The solution consists in defining a procedure (**The Parser Core**) able to construct a derivation $s => \gamma_1 => \dots => \gamma_k \equiv w$, if one exists.

Construction of a Derivation

- The solution consists in defining a procedure (**The Parser Core**) able to construct a derivation $s = >\gamma_1 = > \dots = >\gamma_k \equiv w$, if one exists.
- The construction of a derivation could be done in a non-efficient way, and even worse, at a non-linear, up to exponential, complexity time (/space) cost.

Trying *p* optional productions at each γ_i leads to:

$$\gamma_{i}^{1}$$
 p choices
 γ_{i}^{p} p choices
 γ_{i+1}^{p} p choices
 γ_{i+1}^{p} p choices

construction of (exponential) $(O(p^n))$ derivations to find the one right or to answer "no-accept".

Top-Down

Simple for Handmade Constructions, Few Grammars

$E_{I} \Rightarrow E + E_{T} \Rightarrow id + E_{T} > id + id$ $Leftmost non-terminal of Left-Sentential-Form E_{T} + E_{T}$ First Applicable Production Failure: Backward to the last alternative id id

Top-Down = Leftmost

p1: E::= E+E *p2*: E::= E*E *p3*: E::= id

LSF forms a Complete Base for Context-Free Grammars

 $G = <V, \Sigma, s \in V, P >$

Left Sentential Form (of G): *LSF*_G

 $\alpha\beta\gamma \in LSF_G$ iff $s_1 = >+ \alpha\beta\gamma$

 $\alpha A \beta_{l} \Rightarrow \alpha \gamma \beta$ iff $A ::= \gamma \in P \& \alpha \in \Sigma^{*}$

Only LSF_G $L(G) = \{ w \in \Sigma^* | s = \flat^+ w \}$ $= \{ w \in \Sigma^* | s_1 = \flat^+ w \}$

Bottom-Up

More Complicated Techniques Many More Grammars - Many More Languages

Looking for Handle reduction

id + id

failure: backward for "true" Handle

Step 1
Step 2
Step 3Bottom-Up = Rightmost Reversed

p1: E::= E+E *p2*: E::= E*E *p3*: E::= id

RSF forms a Complete Base for Context-Free Grammars

 $G = \langle V, \Sigma, s \in V, P \rangle$ Right Sentential Form (of G): RSF_G

 $\alpha\beta\gamma \in RSF_G$ iff $s_r = >+ \alpha\beta\gamma$

 $\alpha A\beta_{r} \Rightarrow \alpha \gamma \beta \quad iff \quad A ::= \gamma \in P \& \beta \in \Sigma^{*}$

Only RSF $L(G) = \{ w \in \Sigma^* \mid s = y^+ w \}$ $= \{ w \in \Sigma^* \mid s = y^+ w \}$

B::= $\beta \in P$ is **Handle** of $\alpha\beta\gamma \in RSF_G$ *if and only if* $\alpha B\gamma \in RSF_G$