* How to define Syntax;

* How to do Analysis;

* At what extent Analysis can be done in
Linear Time;

 How to build (Linear) Parser Generators;

* Relationship between Analysis and Inter-
nal Representation (Tree Representation)



Source is a
Sequence of

»

characters

Entries:
Lessemi

Syntactic Analysis (Parser) is driven from
Semantics Analysis which 1s asking for visiting a subtree not built yet



Syntactic Analysis and Syntactic Languages

Syntactic Languages and Grammars
Classification of Grammars
Classification of Languages

Foundations: Derivation, Sentential Form, Ambiguity,
Tarski” s Fixpoint Iteration



e It scans sequences of tokens to check tor phrase structures
that belong to the Syntax of the Language

* Syntax, just like Lexics, 1s expressed by a Language: The
Syntactic Language

* Syntactic Langs are much more complicated than Lexical
ones

{u"v" | n>0} has been proved not be regular

but
num+(3-((id-1d)+num)/id) € {(au)* (av)" | n=0,aE L, u="(", v=")"}



Grammars

Inclusion

G=General [Recursive Enumerable but Non-Recursive -{unyakermann(n)1]
A=Ambiguous
M=Monotone [Recursive Languages - {u"v"'}] Kinds of Grammar

CaContextual [{v"v'z"}] [Defined Language Features)
LR(k)=Context-Free [{u"v"}]
LALR(k)=Context-Free [{u"v"}]
SLR(k)=Simple Left-to-right rightmost reversed [ Viable-Prefix; Bottom-Up/k symbols{u"v"}]

LL(K)=Leftmost-Left Left-to-right [Predictive; Top-Down/k symbols{u"v"}]

OP=Operator-Precedence [{u"v"}]

L=Linear [Recursive Grammars; Regular Languages] 5
DFA= -- [Regular Grammars/Expressions; Regular Languages]

NFS= -- [Regular Grammars/Expressions; Regular Languages]




[LR(1)] =..=[LR(K)]

Language [LALR (k)]
Inclusion [SLR(K)]

[@] = Recursively Enumarable Languages

[MI] = Recursive Languages

[C] = Contextual Languages: {unvnzn | n>0}

[CF] = Context-Free Languages: {unvmzk| n,m,k>0 and (n=m or m=k)}

[ILR(k)] = LR/k symbols Languages: {umvn| m>n>0}

[[LALIR(k)] = LALR/k symbols Languages

[SILIR()] = SLR/k symbols Languages 6
[ILIL(k)]| = LL/k symbols Languages: {unv?| n>0}

[ILL] = Regular Languages: {urvm|n>0, m>0}




Let G =<V X seEV,P>
Derivation is a binary relation =>¢ su (G UV)* x (ZUV)*

aAP =>ayp sse A:;=y€EP

Subscript, G, is omitted, in =>¢, when the grammar G is clearly stated from the context

=>*: Transitive and Reflexive Closure of =>
° o =>%q
cifa=>..=>aq,

then o, =>*aq, Sentential form of G
SF={y | s =>"y}

=>*: Transitive Closure of =>
if o,=>a, =>..=>0, and o, # Q, #...# O,
allora o, =>*a,




Let G =<V 2 seV,P>

L(G)={w €2% | s =>* w}

(where => 18 =>¢)

Example: Let G below

Then
id+idEL(E)

A proof (Lefmost Derivation):
E =>.) E+E =>; 1d+E => ;) 1d+id

A different proof (Rightmost Derivation):
E =>.,) E+E =>; E+id =>; 1d+id



Example: Let G below

Then
id+id*idEL(E)

A proof (Lefmost Derivation):
A different proof (another Leftmost Derivation):

Different Leftmost (Rightmeost) Derivations lead to different Parse Trees




ree: <|a,<tl.....tn>|>

Forest: <tl,....,tn,ul,...,um>

A graphical view

Productions on CUV),*

A=X...X, EP sse <[A,]>i=<A<X,]>... <X, - ]>>]> € P

Relation => on (ZUV);" x (ZUV)"

aAf =>ayf sse Au=yeEP;

10



A different proof of ambiguity that uses: The last trees
of two different Tree-derivations

Exercise: Show the same
but using leftmost

ost) derivations
11







S::=uABvIBu
B::=uSvliuvu

B2¢A26¢S 1
Si:=uABvVvIBu
B::=u(uwABvIBu)viuvu

A:=vuvlIB
B::=uwuABvviuBuviuvu

| |

A::=vuvlIB

B::=uu(vuvIiB)BvviuBuviuvu

13



Vi=0, L(A)=L(e)

e L(e) 1s an expression on Zz*containing only:
X (finite products)
U (possibly, denumerable unions)

®
e L(e) 1s continuos on 22

Whenever L(A,) = L(e,) is recursive: L(e,) = E(L(A)))

Recursive equations X=E(X), have to be solved in the variable
X=L(A,) on 2%"using the Tarski’s (Fixpoint) Iteration below:

X=U,. E(L)
E(1)°=E(X< 1)
E(L)k = E(X< E(L)¥)




A system of Recursive equations:

{X,=E,X ... X))o, X =E (X;,... X )}
X.=L(A,) on 2%"using the Tarski’s (Fixpoint) Iteration below:

E(Lyeos )= E(X = L o0 X, L)
E(L yoop )6 = E (X, E{ (DX oo X, E, (L¥)

15



- )y - {u}xXU{\}

E(X)

16



_ ) X= {u}xX x {v} U{z}

E(X)

17




=) X= {x+y | x,yEXIU{x+y | x,yEXJU{id}
E(X)




OW. 10 rIJ:,y

e Top-Down and leftmost derivation
* Bottom-Up and reversed roghtmost dervation

19



SOLE=DONVINFINUN O

Let G=<V.2,s€V,P> be a (context free) grammar. Let w be a
sequence of words in 2.

e Analysis has to answer to the following question:
1s w EL(G) or not ?
e or, equivalently:
1S s =>*w or not ?
e Membership: is this Decision Problem, computable?
-- Yes. It is decidable for all classes of Monotone Grammars.

 The solution consists in defining a procedure (The Parser Core)
able to construct a derivation s=>y,=>...=>Y,=w, 1f one exists.
20



 The solution consists in defining a procedure (The Parser Core)
able to construct a derivation s=>y,=>...=>Y,=w, if one exists.

e The construction of a derivation could be done in a non-efficient
way, and even worse, at a non-linear, up to exponential, complexity
time (/space) cost.
Trying p optional productions at each vy, leads to:

.z
=7 == p choices
,Yl pchoices <\
i+l
27 ™
Y; P choices
S
YP;41 D choices
N\ =7
~~~ ’pchoices

I\

construction of (exponential) (O(p™)) derivations to find the one right

or to answer “no-accept’. ’1



1fop=Doywai

E => E+E > id +E 5> id+id /|\

Leftmost non-terminal of Left-Sentential-Form ¢, ¢

C First Applicable Production ‘ |

Failure: Backward to the last alternative id id

Step 1
Step2  Top-Down = Leftmost.

Step 3




G =<V2s&VP>

Left Sentential Form (of G): LSF

ofy ELSF,;  iff s =>* apy

aAPR =>oyp iff A:=yEP & o &X*

Only LSF

L(G)={wEeX*|s=>Tw}

={W EX*|s |=>+ W}
23



E =>E+E &= E+id =» id+id | |

Looking for Handle \ /E
< reduction E
failure: backward for “true” Handle
Step 2

Step 3




G =<V.2s&€V,P> Right Sentential Form (of G):RSF

opy ERSF, ir s =>*aPy
aAPB =>oyp iff A:=y€P & pex*

Only RSF
L(G) ={we X* | s =>* w}
={we Z*|s =>*w}

B::=f €P is Handle of afy ERSF,
if and only if OCB'Y = RSFG

25



