SLR Parsing The Table M (Action-Goto) for SLR

Let $\mathrm{G}=<\mathrm{S} . \mathrm{V}, \Pi . \mathrm{s}>$ and I be the set of LR(0) Collection of G .
Table M (also, called, Action-Goto) consists of two Tables: Action: is II-rows by IVU\{\$\}|-columns Goto: is II|-rows by ISI-columns

For each state, of I:
Action: The operation to apply (shift or reduce)
Goto: The state to go after reduction

The definition of M requires the computation of:

- LR(0) Collection
- Follow(s), for each sES

SLR Parsing The Table Action for SLR(1)

Component, Action, of table M for SLR(1)

```
ACTION(i,a)=s/j
                if goto(Ii,a)=Ij and a\in\Sigma
```

ACTION($\mathbf{i}, \mathbf{a})=\mathbf{r} / \mathbf{p}$
if $\mathrm{A}::=\alpha \in \operatorname{li}$ and $\mathrm{p} \equiv \mathrm{A}::=\alpha$ and
$\mathrm{a} \in$ follow(A)

ACTION(i,\$)= <accept,->

$$
\text { if } S^{\prime}::=S \in \operatorname{Ii}
$$

Where: $\mathrm{s} / \mathrm{j}=$ shortening for Shift(Ij);
r/p = shortening for Reduce(p)

SLR Parsing The Table Goto for SLR(1)

Let $\mathrm{G}=<\mathrm{S}, \mathrm{V}, \Pi, \mathrm{s}>$
GOTO(i,A)=j if $\operatorname{goto}(\mathbf{I i}, \mathbf{A})=\mathrm{Ij}$ and $\mathrm{A} \in \mathrm{S}$

Example Table Action-Goto SLR(1)

LR(0) Collection
10:Closure ($\left.\left\{S^{\prime}::=. S\right\}\right)=\left\{S^{\prime}::=. S, S::=. a A B e\right\}$
I1:Goto(I0,S) =\{S'::=S.\}
I2:Goto(I0,a) $=\{\mathbf{S}::=\mathbf{a} . A b e, A::=. A b c, A::=. b\}$
I3: $\operatorname{Goto}(I 2, A)=\{S::=\mathbf{a A} . B e, A::=A . b c, B::=. d\}$
I4:Goto(I2,b) $=\{\mathrm{A}::=\mathrm{b}$.
15:Goto(I3,B) $=\{\mathbf{S}::=\mathbf{a A B} . \mathrm{e}\}$
I6:Goto(I3,b) $=\{\mathbf{A}::=\mathbf{A b} . \mathrm{c}\}$
I7: $\operatorname{Goto}(I 3, \mathrm{~d})=\{\mathrm{B}::=\mathrm{d}$.
I8: $\operatorname{Goto}(15, \mathrm{e})=\{\mathrm{S}::=\mathbf{a A B e}$.
I9:Goto(I6,c) $=\{\mathbf{A}::=A b c$.

Augmented G'

$$
\begin{aligned}
& S^{\prime}::=S \\
& 0 \quad S::=\text { aABe } \\
& 112 \text { A: }:=\text { Abc Ib } \\
& 3 \text { B::=d }
\end{aligned}
$$

Source Grammar

$S^{\prime}::=S$
0 S::= aABe
112 A: := Abc l b
3 B::=d
Table of Follow
follow $(\mathrm{S})=\{\$\}$ follow $(A)=\{b, d\}$ follow $(B)=\{e\}$

DRIVER: shift-reduce

I/O Control

ACTION(Top,Sym)
 $=\mathrm{S} / \mathrm{K} \quad\{$ push(Sym);push(K) \}
 $=\mathrm{R} / \mathrm{p} \quad\{\operatorname{pop}(2 * \mathrm{n})$, push (\mathbf{A}), push(goto(top-1,top)) \}
 where: $\mathrm{p}=\mathrm{A}::=\alpha$ and $|\alpha|=\mathrm{n}$
 $=\mathrm{ACC}$ \{stop\}
 = undef \{error\}

SLR(1) Parsing Properties of Applicability

Prop1: (No shift-reduce)

$$
\begin{aligned}
& \left(\forall I_{k} \in \operatorname{Coll}(\mathrm{D})\right),\left(\mathrm{V} A z=\alpha, a y, \mathrm{~B} s ;=\beta, \in_{I_{k}}\right) \\
& \\
& \text { aft follow(B) }
\end{aligned}
$$

Prop2: (No reduce-reduce)

$$
\begin{aligned}
& \text { follow(A) } \text { fiollow }(B)=\{ \}
\end{aligned}
$$

Theorem. Let G be a grammar.

- GESLR(1) if and only if both Prop1 and Prop2 hold.
- G has shift-reduce, 1 symbol of lookahead, SLR parser if and only if both Prop1 and Prop2 hold.

SLR Concluding Remarks

1. In what sense is "bottom-up" non predictive?

Bottom-up decides the derivation on the basis of the maximum VP to the handle and this VP entirely, includes the string to derive.
2. Let G be a $\operatorname{SLR}(1)$ grammar.

- Can its ACTION contain more than one action per entry?
- Can its GOTO contain more than one state for a same entry?

3. What means that $\mathrm{G} \in \mathrm{SLR}(1)$ has Table:

ACTION such that: for each I, for each pair $\mathrm{a} \neq \mathrm{b}$, ACTION $(\mathrm{I}, \mathrm{a})=\mathrm{ACTION}(\mathrm{I}, \mathrm{b})$ when ACTION $(\mathrm{I}, \mathrm{a}) \neq \perp \neq \operatorname{ACTION}(\mathrm{I}, \mathrm{b})$?

To answer 3, let us consider the $\mathbf{S L R (0)}$ grammar below:

```
E::= E+TlT
```

T::= num

SLR Concluding Remarks - 2

4. Is $G \in \operatorname{SLR}(1)$ decidable for all Context Free grammars ?

5. Is $\mathbf{L} \in \operatorname{SLR}(1)$ decidable for all Context free languages ?

Recall that: $\mathbf{L} \in \operatorname{SLR}(1) \equiv \exists G \in L L(1): L(G)=\mathbf{L}$
6. Is the class of SLR(1) grammars including that of LL(1) grammars?

To answer 6, let us consider the grammar below:

```
S::= Bc | b | A
A::= aBb
B::=\varepsilon
```


SLR

Concluding Remarks - 3

7. Is the class of SLR(1) languages, including that of LL(1) languages?

To answer 7, let us consider the role of non-terminal B:

```
S::= Bc | b | A
A::= aBb
B::=\varepsilon
```


8. Consider the condition C :

$\mathrm{C} \equiv \mathrm{A}::=\alpha . \in \mathrm{I}_{\mathrm{k}} \in \operatorname{Coll}(0)$ iff $\mathrm{A}::=\alpha$ is the handhe for all $\mathrm{a} \in$ follow(A).
C states a necessary and sufficient for reduction in SLR(1) Grammars.

- Is C again necessary and sufficient for reduction in botton-up (non SLR grammars) ?
- Is C, only a necessary, condition for reduction in botton-up (non SLR grammars)?
- Is C, only a sufficient, condition for reduction in botton-up (non SLR grammars)?

To answer to 8 , let us consider the grammar above and the existence of a rightmost derivation for string b. Such a derivation (in reverse order) is $b<=S$, but $\operatorname{SLR}(1)$ fails in doing it. Why?

Bottom-Up Analysis:

First $(\beta) \in \operatorname{Follow}(A)$

$$
\text { Let: } S=>_{r}^{*} \gamma \alpha \beta \text { for }
$$

$\gamma \alpha \in$ viable prefix - is maximum $v p$ First $(\beta) \in$ follow (A)

$$
\mathrm{A}::=\alpha \text { is Valid Item for } \gamma \alpha
$$

Can you conclude that $A::=\alpha$ is the handle of $\gamma \alpha \beta$?

Use this grammar for a proof
First $(\beta) \in$ follow (A) is not a sufficient condition

```
S::= Bc | b | A
A::= aBb

Proposition. (Inclusion is not a sufficient condition)
\(\forall \mathrm{G}, \forall \gamma \alpha \in \mathrm{VP}_{\mathrm{G}}\) with Valid Item \(\mathrm{A}->\alpha\).
\(\operatorname{First}(\beta) \in\) follow \((A)\) does not imply that \(\mathrm{A}::=\alpha\) is the handle of \(\gamma \alpha \beta\)

Use this grammar for a proof: (proof)
Let \(\gamma \alpha \beta \equiv b\). Then, \(S=>b\)
\(\gamma \alpha=\lambda \in V P\) is maximum prefix; \(\operatorname{First}(\beta) \in \operatorname{Follow}(B) ; B::=\varepsilon\) is valid for \(\gamma \alpha \quad\) BUT \(\quad B::=\varepsilon\) is not the handle of \(b\)

\section*{A New Class of}

\section*{More Powerful Items}

Let \(X::=\alpha . A \beta \in I_{k}\) and \(A::=\gamma\) be a grammar (normal) production
Then
\[
\begin{aligned}
\mathrm{A}::=\gamma \in \mathrm{I}_{\mathrm{k}} & \text { only for the symbols } \\
& \text { in the set } \mathrm{U}=\operatorname{First}(\beta) \quad(\text { for } \mathrm{B} \neq>\lambda)
\end{aligned}
\]
\(\operatorname{First}(\beta \operatorname{look}(X::=\alpha, A \beta))\)

Pairing each \(\operatorname{LR}(0)\) item with the set U of all the symbols that can follow the handle string associated to the item
\[
\mathbf{A}::=\gamma, \boldsymbol{U} \in \mathrm{I}_{\mathrm{k}}
\]

\section*{Canonical collection Coll(1)}

\section*{A New Class of Items that Remember Prefix-Fillow Combinations}

\section*{Let \(G=<S, V, \Pi, s>\)}

\section*{\(\mathbf{S}^{\prime}::=\mathbf{S} / \$ \in \mathrm{I}_{0}\) by definition}
\(\operatorname{Clos}(\mathrm{I})==_{\min } \mathrm{I} \cup \operatorname{Clos}\{\mathrm{B}::=\gamma / \mathrm{U} \mid \mathrm{A}::=\alpha \cdot \mathrm{B} \beta / \mathrm{V} \in \operatorname{Clos}(\mathrm{I}), \mathrm{B}::=\gamma \in \Pi\),
\(\mathrm{U}=\{\operatorname{first}(\beta \mathrm{x}) \mid \mathrm{x} \in \mathrm{V}\}\}\)

Let B a nonterminal let \(\mathbf{u} \in \mathrm{U}\), then:
if \(\mathrm{u} \in \mathrm{V}, \mathrm{A}::=\alpha \cdot \mathrm{B} \beta / \mathrm{V}\) propagates on \(\mathrm{B}::=\gamma / \mathrm{U}\)
if \(\mathrm{u} \notin \mathrm{V}, \mathrm{A}::=\alpha . \mathrm{B} \beta / \mathrm{V}\) spontaneously generates on \(\mathrm{B}::=. \gamma / \mathrm{U}\)

Goto(I,x)=Closure \(\{\mathrm{A}::=\alpha \mathrm{x} . \beta / \mathrm{U} \mid \mathrm{A}::=\alpha \cdot \mathrm{x} \beta / \mathrm{UE} \in \mathrm{I}\}\)

\section*{LR(1) Grammars}
\[
\begin{aligned}
& \text { Prop1: (No shift-reduce) } \\
& \qquad \begin{array}{l}
\left(\forall \mathrm{I}_{\mathrm{k}} \in \operatorname{Coll}(1)\right),\left(\forall \mathrm{A}::=\alpha . a \gamma / \mathrm{V}, \mathrm{~B}::=\beta . / \mathrm{U} \in \mathrm{I}_{\mathrm{k}}\right) \\
\mathrm{a} \notin \mathrm{U}
\end{array}
\end{aligned}
\]

Prop2: (No reduce-reduce)
\[
\begin{gathered}
\left(\forall I_{k} \in \operatorname{Coll}(1)\right),\left(\forall A::=\alpha / V, B::=\beta \cdot / U \in I_{k}\right) \\
V \cap U=\{ \}
\end{gathered}
\]

Theorem. Let \(\mathbf{G}\) be a grammar.
- GELR(1) if and only if both Prop1 and Prop2 hold.
- G has shift-reduce, 1 symbol of lookahead, LR parser if and only if both Prop1 and Prop2 hold.

\section*{LR Parsing The Table Action for LR(1)}

\section*{\(\operatorname{ACTION}(\mathbf{i}, a)=<\) shift, \(\mathbf{j}>\)} if goto(Ii,a)=Ij and \(a \in \Sigma\)
ACTION(i,a)= <reduce,p>
if \(A::=\alpha . / U \in \operatorname{Ii}\) and \(\mathrm{p} \equiv \mathrm{A}::=\alpha\) and \(\mathrm{a} \in \mathrm{U}\)
\(\operatorname{ACTION}(\mathbf{i}, \$)=<\) accept,-> if \(S^{\prime}::=S . / \$ \in\) Ii

GOTO \((\mathbf{i}, \mathbf{A})=\mathbf{j}\)
if goto(Ii,A) \(=\mathrm{Ij}\) and \(\mathrm{A} \in \mathrm{N}\)
\(\mathrm{N}=\) Nonterminal Set

\section*{Apply \(\operatorname{LR}(1)\) to \(\mathrm{G} \notin \operatorname{SLR}(1)\)}
\[
\begin{aligned}
& \text { I0:Closure }\left(\left\{S^{\prime}::=. S\right\}\right)=\left\{S^{\prime}::=. S, \$\right. \\
& S::=. A u, \$, S::=. a v, \$, S::=. B v, \$ \text {, } \\
& \text { A::= .a,u, B::=.xA,v\} } \\
& \text { I1:Goto(I0,S) }=\left\{\mathrm{S}^{\prime}::=\mathrm{S} ., \$\right\} \\
& \text { I2:Goto(I0,A)=\{S::=A.u,\$\} } \\
& \text { I3:Goto(IO,a) }=\{\mathrm{S}::=\mathrm{a} . \mathrm{v}, \$ \\
& \text { A::=a.,u\} No } \\
& \text { conflict } \\
& \text { I4: } \operatorname{Goto}(\mathrm{I} 0, \mathrm{~B})=\{\mathrm{S}::=\mathrm{B} \cdot \mathrm{v}, \$\} \\
& \text { I5:Goto(I0,x) }=\{\mathrm{S}::=\mathrm{x} . \mathrm{A}, \mathrm{v} \\
& \mathrm{A}::=\mathrm{a}, \mathrm{v}\} \\
& \text { I6:Goto(I2,u) }=\{\mathrm{S}::=\mathrm{Au} ., \$\} \\
& \text { I7:Goto(I3,v) }=\{\mathrm{S}::=\mathrm{av} ., \$\} \\
& \text { I8:Goto(I4,v) =\{S::=Bv.,\$\} } \\
& \text { I9:Goto(I5,A) }=\{\mathrm{S}::=\mathrm{xA} ., \mathrm{v}\} \\
& \text { I10: } \operatorname{Goto}(\mathrm{I} 5, \mathrm{a})=\{\mathrm{A}::=\mathrm{a}, \mathrm{v}\}
\end{aligned}
\]

\section*{Space Complexity}

Table Size

\section*{\(\mathbf{G}=<\mathbf{S}, \mathrm{V}, \Pi, \mathbf{s}>\)}
\(\mathbf{L L}(1): \quad \mathrm{O}(\mathrm{N} * \mathrm{~T}) \quad\) (with \(\mathrm{N}=|\mathrm{S}|, \mathrm{T}=|\mathrm{V}|\) )
SLR: \(\quad \mathrm{O}\left(\mathrm{N}^{*} \mathrm{P}^{*} \mathrm{~T}\right) \quad\) (with \(\mathrm{P}=\) production right hand size)
LR(1): \(\quad \mathrm{O}(\mathrm{N} * \mathrm{P} * \mathrm{~T} * \mathrm{~T})\)
LALR(1): the same of SLR```

