CORSO DI LAUREA IN CHIMICA

Corso di Algebra lineare A.A. 2010/2011 - Appello del 12 settembre 2011

NOME

COGNOME

Esercizio 1 Sia V il sottospazio di \mathbb{R}^3 generato dai quattro vettori

$$\mathbf{v}_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 3\\-2\\-1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 3\\-1\\-2 \end{bmatrix}.$$

- (a) Si determini una base di V.
- (b) Si esprima ogni vettore \mathbf{v}_i come combinazione lineare di vettori della base trovata in (a).

Esercizio 2 Sia V il sottospazio di \mathbf{R}^3 formato dai vettori $\mathbf{v} = [x_1, x_2, x_3]^T$ tali che

$$x_1 - x_2 + 2x_3 = 0.$$

Si trovino una base ortonormale di V e una base ortonormale di V^{\perp} .

Esercizio 3 Si considerino le seguenti matrici

$$A_k = \begin{bmatrix} 2 & 0 & 0 \\ k+1 & 1 & 0 \\ 5 & k-1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix},$$

dove k è un numero reale.

- (a) Si determinino i valori di k per i quali A_k è diagonalizzabile per similitudine.
- (b) Nel caso che A_k sia diagonalizzabile si indichi, in funzione di k, una matrice S tale che $S^{-1}A_kS$ sia diagonale.
- (c) (facoltativo) Per k = 0 esistono trasformazioni per similitudine che diagonalizzano sia A_0 che B?

Esercizio 4 Si consideri la funzione $f(x) = x^2$, e i nodi $x_0 = 0$, $x_1 = 1$, $x_2 = t$, con t > 0. Sia $p(x) = a_0x + a_1$ il polinomio di grado al più uno che approssima ai minimi quadrati f(x) nei nodi assegnati. Quale condizione deve soddisfare t affinché sia $a_1 = -1/3$? Esistono valori interi di t che soddisfano tale condizione?