Soluzione della prova scritta di Calcolo Numerico del 1/3/2011

Esercizio 1

In aritmetica esatta i due algoritmi calcolano entrambi $x^{5/2}$. Infatti

$$\sqrt{x^5} = x^{5/2} = e^{\log(x^{5/2})} = e^{(5/2)\log x}.$$

L'errore algorimico del primo algoritmo è

$$\epsilon_{alg}^{(1)} = \epsilon^{(4)} + \frac{1}{2} \left(\epsilon^{(3)} + \epsilon^{(2)} + 2 \, \epsilon^{(1)} \right),$$

dove $\epsilon^{(1)}$, $\epsilon^{(2)}$ e $\epsilon^{(3)}$ sono gli errori locali delle tre moltiplicazioni e $\epsilon^{(5)}$ è l'errore locale della radice quadrata. Quindi

$$\left|\epsilon_{ala}^{(1)}\right| < 3u.$$

L'errore algorimico del secondo algoritmo è

$$\epsilon_{alg}^{(2)} = \eta^{(3)} + \frac{5}{2} \log x \left(\eta^{(2)} + \eta^{(1)} \right),$$

dove $\eta^{(1)}$ è l'errore locale del logaritmo, $\eta^{(2)}$ è l'errore locale della moltiplicazione per 5 e $\eta^{(3)}$ è l'errore locale dell'esponenziazione. Quindi

$$\left|\epsilon_{alg}^{(2)}\right| < \left(1 + 5\left|\log x\right|\right)u.$$

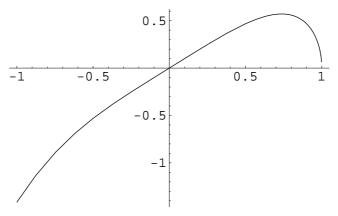
Il primo algoritmo è stabile per ogni x, mentre il secondo algoritmo è instabile per x vicino a zero e per x grande. Confrontando le due maggiorazioni, il secondo algoritmo è preferibile per gli x per cui $|\log x| < 2/5$, cioè per $e^{-2/5} < x < e^{2/5}$.

Esercizio 2

La funzione f(x) è definita solo per $x \le 1$. Si annulla per x = 0 e per x = 1. Quindi l'equazione ha le due soluzioni reali $\alpha = 0$ e $\beta = 1$. Poiché in un intorno dello zero è $f(x) \sim x$, la soluzione α ha molteplicità 1. La funzione non è derivabile in β e β ha molteplicità 1/2. Infatti

$$\lim_{x \to 1^{-}} \frac{x(1-x^3)^{1/2}}{(1-x)^{1/2}} = \lim_{x \to 1^{-}} \frac{x(1-x)^{1/2}(1+x+x^2)^{1/2}}{(1-x)^{1/2}} = \lim_{x \to 1^{-}} x(1+x+x^2)^{1/2} = \sqrt{3}.$$

La figura mostra il grafico di f(x)



È $f'(x) = \frac{2 - 5x^3}{2\sqrt{1 - x^3}}, \quad f''(x) = -\frac{3x^2(8 - 5x^3)}{4(1 - x^3)^{3/2}}.$

Quindi f'(x) = 0 per $x = (2/5)^{1/3} \sim 0.736$ e f''(x) = 0 per x = 0 e f''(x) < 0 per $x \neq 0$. Il metodo delle tangenti è convergente ad α per $x_0 < 0.736$. Poiché α ha molteplicità 1 e $f''(\alpha) = 0$, l'ordine di convergenza è almeno 3 (proseguendo nel calcolo delle derivate si verifica che $f'''(\alpha) = 0$ e che $f^{(4)}(\alpha) \neq 0$, per cui l'ordine di convergenza alla soluzione α risulta 4). Per $x_0 = -0.8$ si ha una successione monotona crescente tendente a zero, per $x_0 = 0.5$, si ha $x_1 = -0.136$ e da x_1 la successione diventa monotona crescente tendente a zero.

Per quanto riguarda la convergenza a β , si nota dal grafico che comunque si scelga x_0 fra il punto di massimo e 1, la tangente interseca l'asse delle x in un punto a destra di 1, in cui la f(x) non è definita. In questo senso si può dire che il metodo delle tangenti non converge a β .

Esercizio 3

Si indica con p_n il polinomio caratteristico di A di dimensione 2n

$$p_n(\lambda) = \det \begin{bmatrix} -\lambda I_n & I_n \\ -I_n & -\lambda I_n \end{bmatrix}.$$

È $p_1(\lambda) = \lambda^2 + 1$. Applicando la regola di Laplace alla prima riga si ha per n=2

$$p_2(\lambda) = -\lambda \det \begin{bmatrix} -\lambda & 0 & 1 \\ 0 & -\lambda & 0 \\ -1 & 0 & -\lambda \end{bmatrix} + \det \begin{bmatrix} 0 & -\lambda & 1 \\ -1 & 0 & 0 \\ 0 & -1 & -\lambda \end{bmatrix}.$$

Questi due determinanti hanno sulla seconda riga un solo elemento non nullo, quindi riapplicando la regola di Laplace si ha

$$p_2(\lambda) = \lambda^2 p_1(\lambda) + p_1(\lambda) = (\lambda^2 + 1) p_1(\lambda) = (\lambda^2 + 1)^2.$$

Procedendo nello stesso modo si trova che

$$p_3(\lambda) = \lambda^2 p_2(\lambda) + p_2(\lambda) = (\lambda^2 + 1) p_2(\lambda) = (\lambda^2 + 1)^3.$$

In generale si ha $p_n(\lambda) = (\lambda^2 + 1)^n$. Quindi gli autovalori di A sono $\pm i$, ciascuno con molteplicità n. Per trovare gli autovettori, sia

$$\boldsymbol{x} = \begin{bmatrix} x_1, \dots, x_n, x_{n+1}, \dots, x_{2n} \end{bmatrix}^T$$

un autovettore di A relativo all'autovalore i. Allora il sistema $Ax = \lambda x$ si spezza nei due sottosistemi

$$x_{n+i} = \mathbf{i}x_i$$
, per $i = 1, \dots, n$, $-x_i = \mathbf{i}x_{i+n}$, per $i = 1, \dots, n$.

Il secondo sottosistema è equivalente al primo, quindi si scarta. Dal primo sottosistema si ottiene che qualunque vettore non nullo le cui seconde n componenti siano uguali alle prime n componenti moltiplicate per i è un autovettore di A relativo all'autovalore i. Per trovare gli autovettori relativi all'autovalore -i si procede in modo analogo.

Un procedimento più semplice è il seguente. Si scrive

$$oldsymbol{x} = \left[egin{array}{c} oldsymbol{x}' \ oldsymbol{x}'' \end{array}
ight].$$

Il sistema $Ax = \lambda x$ risulta

$$\left[egin{array}{cc} O_n & I_n \ -I_n & O_n \end{array} \right] \left[egin{array}{c} x' \ x'' \end{array}
ight] = \lambda \left[egin{array}{c} x' \ x'' \end{array}
ight], \quad {
m cioè} \quad \left\{ egin{array}{c} x'' = \lambda x' \ -x' = \lambda x'' \end{array}
ight.$$

Moltiplicando il primo sottosistema per λ e sommando al secondo si ottiene

$$\lambda^2 x' = -x'.$$

Imponendo che $x' \neq 0$ deve essere $\lambda^2 = -1$, quindi λ può essere solo uguale a $\lambda_1 = +i$ oppure uguale a $\lambda_2 = -i$. D'altra parte la somma di tutti gli autovalori deve essere uguale alla traccia di A, quindi i λ_1 e i λ_2 devono essere in pari numero.

Esercizio 4

Il polinomio di interpolazione risulta

$$p(x) = 2(e - 2\sqrt{e} + 1)x^2 - (e - 4\sqrt{e} + 3)x + 1 \sim 0.842x^2 + 0.877x + 1.$$

Il resto è

$$r(x) = \pi_2(x) \frac{f'''(\xi)}{3!}$$
, dove $\pi_2(x) = x(x - \frac{1}{2})(x - 1)$, $\xi = \xi(x) \in (0, 1)$.

Quindi

$$|r(x)| < \max_{x \in (0,1)} |\pi_2(x)| \max_{x \in (0,1)} \frac{|f'''(x)|}{6} = \frac{e}{6} \max_{x \in (0,1)} |\pi_2(x)|.$$

Per trovare il massimo di $|\pi_2(x)|$, si può notare che

$$\pi'_2(x) = 3x^2 - 3x + \frac{1}{2}, \quad \pi'_2(x) = 0 \text{ per } x = \frac{3 \pm \sqrt{3}}{6}$$

e

$$\max_{x \in (0,1)} |\pi_2(x)| = \max_{x \in (0,1)} \pi_2(x) = \pi_2\left(\frac{3-\sqrt{3}}{6}\right) = \frac{1}{12\sqrt{3}}.$$

Quindi
$$|r(x)| < \frac{e}{72\sqrt{3}} \sim 0.0218.$$

In alternativa si può procedere così

$$\max_{x \in (0,1)} |\pi_2(x)| = \max_{x \in (0,1/2)} \left| x(x - \frac{1}{2})(x - 1) \right| \leq \max_{x \in (0,1/2)} |x(x - \frac{1}{2})| \max_{x \in (0,1/2)} |x - 1| = \frac{1}{4^2},$$

da cui
$$|r(x)| < \frac{\mathrm{e}}{96} \sim 0.028.$$