Soluzione della prima prova parziale di Calcolo Numerico 2 Novembre 2009

Compito A

Esercizio 1

La funzione f(x) è definita solo per $|x| \le 1/5$.

(a) Il coefficiente di amplificazione della funzione è

$$c_x = 1 - \frac{1}{\sqrt{1 - 25x^2}}.$$

Poichè il denominatore si annulla per |x| = 1/5, $|c_x|$ non è limitata in un intorno destro di -1/5 e in un intono sinistro di 1/5 e il calcolo di f(x) risulta malcondizionato in tali intorni.

(b) Posto $g(x) = \sqrt{1+5x} + \sqrt{1-5x}$, l'errore algoritmico risulta

$$\epsilon_{\text{alg}} = \epsilon^{(7)} + 2\epsilon^{(6)} + \frac{2}{g(x)} \left[\sqrt{1 + 5x} \left(\epsilon^{(3)} + \frac{1}{2} \epsilon^{(2)} \right) + \sqrt{1 - 5x} \left(\epsilon^{(5)} + \frac{1}{2} \epsilon^{(4)} \right) \right]$$

$$+c_x\epsilon^{(1)}$$

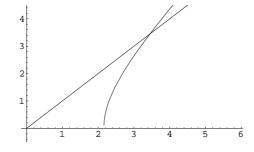
dove $\epsilon^{(1)}$ è l'errore locale della moltiplicazione di 5 per x, $\epsilon^{(2)}$ e $\epsilon^{(3)}$ sono gli errori locali dell'addizione di 1 e 5x e della corrispondente radice quadrata, $\epsilon^{(4)}$ e $\epsilon^{(5)}$ sono gli analoghi errori per 1-5x, $\epsilon^{(6)}$ è l'errore locale dell'addizione delle due radici e $\epsilon^{(7)}$ dell'ultimo quadrato. Maggiorando in modulo gli errori locali con u si ha

$$|\epsilon_{\rm alg}| < u(6 + |c_x|).$$

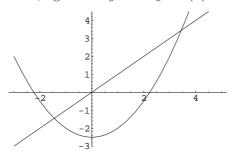
Quindi l'algoritmo non è stabile negli stessi intorni in cui il problema è malcondizionato.

Esercizio 2

Le soluzioni dell'equazione data sono $\alpha=1-\sqrt{6}$ e $\beta=1+\sqrt{6}$. La soluzione α è negativa, quindi non potrà mai essere approssimata con il primo metodo iterativo, che può produrre solo successioni di elementi positivi. Per quanto riguarda la soluzione β , i grafici di y=x e y=g(x) sono



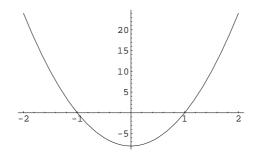
Dal grafico risulta evidente la non convergenza del metodo. Per il secondo metodo, i grafici di y=x e y=h(x) sono



Dal grafico risulta evidente che non vi è convergenza locale alla soluzione β . Per quanto riguarda la soluzione α , si ha $h'(\alpha) = \alpha$, quindi $|h'(\alpha)| > 1$. Anche in questo caso non vi è convergenza locale.

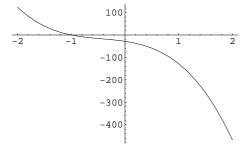
Esercizio 3

- (a) Le due equazioni hanno rispettivamente grado 2 e 3. Due equazioni algebriche a coefficienti reali, la prima di grado pari e la seconda di grado dispari non possono avere lo stesso numero di radici reali con le stesse molteplicità. Nel nostro caso la prima equazione risulta $q_1(x) = 8(x^2 1) = 0$, quindi ha le due soluzioni reali $\alpha = -1$ e $\beta = 1$. La seconda equazione risulta $q_2(x) = -4(x+1)(7x^2+2x+7) = 0$, quindi ha una sola soluzione reale $\alpha = -1$. Perciò le due equazioni non sono equivalenti.
- (b) Il grafico della funzione $q_1(x)$ è



quindi il metodo delle tangenti converge alla soluzione α per ogni $x_0 < 0$ e alla soluzione β per ogni $x_0 > 0$. In entrambi i casi l'ordine è 2.

Il grafico della funzione $q_2(x)$ è



La derivata prima di $q_2(x)$ non si annulla mai, la derivata seconda si annulla solo per x=-3/7, quindi il metodo delle tangenti converge con ordine 2 alla soluzione α per ogni x_0 . Infatti, per $x_0<\alpha$ vi è convergenza monotona da sinistra perché valgono le ipotesi del teorema di convergenza in grande (Teor. 2.9), per $\alpha < x_0 \leq -3/7$ risulta $x_1 < \alpha$ e quindi si ricade nel caso precedente, per $x_0 > -3/7$ la successione generata dal metodo è decrescente (come si vede dal grafico) e quindi esiste un indice i per cui $x_i < -3/7$.

Compito B

Lo svolgimento è sostanzialmente uguale a quello del compito A. Vanno notate solo le seguenti differenze:

Nell'esercizio 2, vi è convergenza locale del secondo metodo alla soluzione $\beta = -2 + \sqrt{5} \sim 0.236$. Poiché |h'(x)| < 1 per |x| < 2, il metodo iterativo converge con ordine 1 a β per ogni x_0 nell'intervallo $[\beta - \rho, \beta + \rho]$, dove $\rho = 2 - 0.24 = 1.76$.

Nell'esercizio 3, l'equazione $q_2(x)=0$ ha la sola soluzione reale $\beta=4$. La derivata della funzione $q_2(x)$ si annulla nei due punti $1\pm\sqrt{2}$. Vi è convergenza di ordine 2 a β purché $x_0>1+\sqrt{2}$.