Soluzione della prova scritta di Calcolo Numerico del 8/9/2010

Esercizio 1

È $\widetilde{x} = 0.0011 = \frac{3}{16}$. Con il primo algoritmo $s_1(x)$ si ha

$$5\widetilde{x} = 0.1111, \quad s_1(\widetilde{x}) = \text{trn}(5\widetilde{x}) = 0.111 = \frac{7}{8}.$$

Con il secondo algoritmo $s_2(x)$ si ha

$$\widetilde{x} + \widetilde{x} = 0.011, \quad (\widetilde{x} + \widetilde{x}) + (\widetilde{x} + \widetilde{x}) = 0.11, \quad (\widetilde{x} + \widetilde{x}) + (\widetilde{x} + \widetilde{x}) + \widetilde{x} = 0.1111,$$

quindi anche $s_2(\widetilde{x})=0.111$. In entrambi i casi l'errore effettivo è $|\epsilon_{\rm eff}|=1/8=0.125$.

Per l'errore inerente si ha

$$\epsilon_{\rm in} = \epsilon_x, \quad {\rm con} \quad |\epsilon_x| = \frac{1}{16}.$$

L'errore algoritmico $\epsilon_{\text{alg}}^{(1)}$ del primo algoritmo è quello di un solo prodotto, quindi maggiorabile con la precisione di macchina che in questo caso è $u = 2^{-2}$. Quindi

$$|\epsilon_{\rm in}| + |\epsilon_{\rm alg}^{(1)}| < \frac{1}{16} + \frac{1}{4} = \frac{5}{16} = 0.3125$$

Per l'errore algoritmico del secondo algoritmo si tiene conto che x+x=2x e (x+x)+(x+x)=2(2x) e che il prodotto per 2 in base 2 non introduce errore. Quindi l'errore algoritmico $\epsilon_{\rm alg}^{(2)}$ del secondo algoritmo è quello corrispondente alla sola addizione finale, quindi maggiorabile con la precisione di macchina u, per cui $|\epsilon_{\rm in}|+|\epsilon_{\rm alg}^{(2)}|<0.3125$.

Esercizio 2

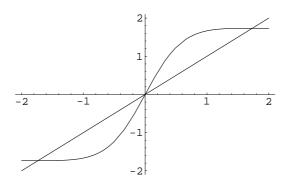
Posto

$$g(x) = \frac{9x + x^3}{3x^2 + 3} = \frac{x}{3} \frac{x^2 + 9}{x^2 + 1},$$

si verifica che l'equazione x=g(x) è equivalente a $3x^3+3x=9x+x^3$, e quindi a $x^3=3x$. Perciò g(x) ha i tre punti fissi $\alpha_0=-\sqrt{3},\ \alpha_1=0,$ $\alpha_2=\sqrt{3}$. Inoltre

$$g'(x) = \frac{(x^2 - 3)^2}{3(x^2 + 1)^2}$$
 e $g'(\alpha_0) = g'(\alpha_2) = 0$ mentre $g'(\alpha_1) = 3$,

e $g''(\alpha_0) = g''(\alpha_2) = 0$, quindi α_0 e α_2 sono punti di flesso a tangente orizzontale. Il grafico delle due funzioni y = x e y = g(x) è



- a) Dal grafico risulta che vi è convergenza ad α_0 per ogni $x_0 < 0$ e ad α_2 per ogni $x_0 > 0$ e che in ogni caso le successioni ottenute sono monotone. Infatti $|x_{i+1}| = |g(x_i)| > |x_i|$ per $0 < |x_i| < \sqrt{3}$, mentre $|x_{i+1}| = |g(x_i)| < |x_i|$ per $|x_i| > \sqrt{3}$. Poiché $g''(\alpha_2) = 0$ e $g'''(\alpha_2) \neq 0$, il metodo è del terzo ordine per α_2 (e analogamente per α_0).
- b) L'equazione $f(x) = x^2 3 = 0$ ha solo le soluzioni $\alpha_0 = -\sqrt{3}$ e $\alpha_2 = \sqrt{3}$. Il metodo delle tangenti converge ad α_0 per ogni $x_0 < 0$ e ad α_2 per ogni $x_0 > 0$. Le successioni ottenute sono monotone a partire dalla seconda iterata. L'ordine è sempre due.
- c) L'ordine di convergenza del metodo $x_{i+1} = g(x_i)$ è più elevato di quello del metodo delle tangenti.

Esercizio 3

È

$$A = \begin{bmatrix} 1 & -\alpha & 1 \\ \alpha & 1 & -\alpha \\ 1 & \alpha & 1 \end{bmatrix}, \qquad J = \begin{bmatrix} 0 & \alpha & -1 \\ -\alpha & 0 & \alpha \\ -1 & -\alpha & 0 \end{bmatrix}.$$

Il polinomio caratteristico di J è $p(\lambda) = -\lambda^3 + (1 - 2\alpha^2)\lambda - 2\alpha^2$. È facile verificare che p(-1) = 0, quindi $p(\lambda)$ è divisibile per $\lambda + 1$ e si ha

$$p(\lambda) = (\lambda + 1)(-\lambda^2 + \lambda - 2\alpha^2).$$

Gli autovalori di J sono

$$\lambda_0 = -1, \quad \lambda_{1,2} = \frac{1 \pm \sqrt{1 - 8\alpha^2}}{2}.$$

Ne segue che la matrice J ha un autovalore di modulo 1 qualunque sia α e quindi il metodo di Jacobi non è convergente per nessun α .

Esercizio 4

Il polinomio di interpolazione è

$$p(x) = -\alpha x^2 + x + 1 + \alpha$$
, e $p(10) = 11 - 99\alpha$.

Il fattore di amplificazione rispetto ad α è $c_{\alpha} = -9\alpha/(1-9\alpha)$. Per α molto piccolo è $|c_{\alpha}| \sim 9|\alpha|$, quindi l'espressione da calcolare è ben condizionata.