Soluzione della prova scritta di di Algebra lineare del 31 maggio 2016

Esercizio 1

(a) La matrice aumentata del sistema Ax = b è la seguente:

$$\left[\begin{array}{cc|c} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 2 \end{array}\right],$$

che, con il metodo di Gauss, è ricondotta alla forma triangolare

$$\left[\begin{array}{cc|cc} 1 & 1 & 1 & 1 \\ 0 & -2 & -1 & 1 \end{array}\right].$$

Il teorema di Rouché-Capelli è verificato, le soluzioni esistono infinite, rank A=2 e, ponendo $x_3=\alpha, \ \alpha\in\mathbb{R}$, i vettori di V sono esprimibili come $\boldsymbol{x}=[-\alpha/2+3/2, -\alpha/2-1/2, \alpha]^T$, ovvero

$$\boldsymbol{x} = \left[egin{array}{c} 3/2 \\ -1/2 \\ 0 \end{array}
ight] + lpha \left[egin{array}{c} -1/2 \\ -1/2 \\ 1 \end{array}
ight].$$

(b) Riguardo al nucleo di A, si ha subito che dim $N(A) = 3 - \operatorname{rank} A = 1$, e dal punto precedente risulta che esso è generato dal vettore $\boldsymbol{z} = [-1/2, -1/2, 1]^T$. Un vettore $\boldsymbol{v} \in V$ è ortogonale al nucleo di A se e solo se $\boldsymbol{v}^T \boldsymbol{z} = 0$, da cui si ottiene le sequente condizione:

$$\alpha z^T z = -[3/2, -1/2, 0]^T z,$$

che è soddisfatta dal solo valore $\alpha = 1/3$, che corrisponde a $\mathbf{v}^T = [4/3, -2/3, 1/3]$. Quindi nel caso specifico \mathbf{v} esiste unico. In generale per qualunque sistema $A\mathbf{x} = \mathbf{b}$ consistente esiste un'unica soluzione ortogonale al nucleo di A: l'unicità si dimostra facilmente, perché se si considerano due soluzioni \mathbf{v}_1 e \mathbf{v}_2 entrambe ortogonali al nucleo di A, si ha $(\mathbf{v}_1 - \mathbf{v}_2) \in N(A) \cap N(A)^{\perp} = \{\mathbf{0}\}$, e quindi $\mathbf{v}_1 = \mathbf{v}_2$.

(c) (facoltativo) L'inclusione $V \subset W$ è immediata, perché se $\mathbf{y} \in V$ si ha $A\mathbf{y} = \mathbf{b}$, da cui $A^T A \mathbf{y} = A^T \mathbf{b}$, e quindi $\mathbf{y} \in W$. Resta da dimostrare l'inclusione $W \subset V$: se $\mathbf{y} \in W$ può essere espresso come $\mathbf{y} = \mathbf{y}_1 + \mathbf{s}$, dove \mathbf{y}_1 è una soluzione particolare e $\mathbf{s} \in N(A^T A)$. Come soluzione particolare si scelga $\mathbf{y}_1 = \mathbf{x}_1$, dove \mathbf{x}_1 è una soluzione particolare di $A\mathbf{x} = \mathbf{b}$. Si tenga poi presente che vale la relazione $N(A^T A) = N(A)$, e si ottiene che $\mathbf{y} = \mathbf{x}_1 + \mathbf{s}$ con $\mathbf{s} \in N(A)$, ovvero $\mathbf{y} \in V$.

Esercizio 2

(a) Si ottiene facilmente det $A=1-k^3$, da cui A risulta invertibile se e solo se $k \neq 1$. Quindi, per $k \neq 1$ si ha

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A) = \frac{1}{1 - k^3} \begin{bmatrix} 1 & -k^2 & k \\ -k & 1 & -k^2 \\ k^2 & -k & 1 \end{bmatrix}.$$

(b) A^{-1} è simmetrica se e solo se lo è A, quindi solo se k=0.

Esercizio 3

I cerchi per riga sono:

 K_1 , con centro 4 e raggio 3,

 K_2 , con centro 8 e raggio 2,

 K_3 , con centro 13 e raggio 5,

 K_4 , con centro -3 e raggio 2,

e quelli per colonna sono

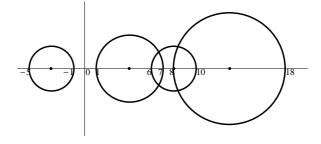
 H_1 , con centro 4 e raggio 4,

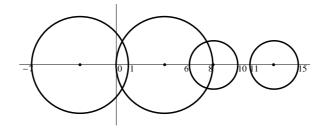
 H_2 , con centro 8 e raggio 2,

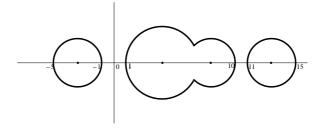
 H_3 , con centro 13 e raggio 2

 H_4 , con centro -3 e raggio 3.

(a) Si riportano di seguito i cerchi di Gerschgorin per righe, per colonne, e l'intersezione delle loro unioni.







- (b) Dalle localizzazioni per riga e per colonna si conclude che esiste al più una coppia di autovalori non reali, perché si hanno almeno due autovalori reali $\lambda_3 \in H_3$ e $\lambda_4 \in K_4$, e quindi $11 \le \lambda_3 \le 15$, $-5 \le \lambda_3 \le -1$.
- (c) Poiché $\max_i |\lambda_i| = |\lambda_3|$ si ottiene $\alpha = 11$ e $\beta = 15$.

Esercizio 4

(a) Si ha $f(x_0) = f(x_1) = 0$, $f(x_2) = f(x_3) = 1$. I coefficienti del polinomio ai minimi quadrati di grado massimo uno (retta di regressione lineare) p(x) sono la soluzione $\tilde{\boldsymbol{a}}$ del sistema $V^T V \boldsymbol{a} = V^T \boldsymbol{f}$, dove

$$V = \begin{bmatrix} -5 & 1 \\ -1 & 1 \\ 1 & 1 \\ 5 & 1 \end{bmatrix}, \quad \mathbf{e} \quad \boldsymbol{f} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

La matrice aumentata iniziale del sistema è

$$[V^TV|V^T\boldsymbol{f}] = \left[\begin{array}{cc|c} 52 & 0 & 6 \\ 0 & 4 & 2 \end{array} \right],$$

da cui si ottiene immediatamente, $\tilde{a} = [3/26, \ 1/2]^T$, e quindi $p(x) = \frac{3}{26}x + \frac{1}{2}$.

(b) Si ha $f(x_4) = 1/2$. Procedendo in modo analogo al punto (a) si ottiene un sistema lineare con matrice aumentata:

$$[V^T V | V^T \boldsymbol{f}] = \begin{bmatrix} 52 & 0 & 6 \\ 0 & 5 & 5/2 \end{bmatrix},$$

che ha la stessa soluzione ottenuta al punto (a). Il motivo è dato dal fatto che $p(x_4) = f(x_4) = 0$, per cui, chiamando $r_4(a)$ il vettore dei residui sui 4 nodi, $r_5(a)$ il vettore dei residui sui 5 nodi e \tilde{a} la soluzione trovata al punto (a), si ha

$$||r_5(\tilde{m{a}})|| = ||r_4(\tilde{m{a}})|| = \min_{m{a}} ||r_4(m{a})|| \le \min_{m{a}} ||r_5(m{a})||,$$

e quindi $\tilde{\boldsymbol{a}}$ e' il punto di minimo per $||\boldsymbol{r}_5(\boldsymbol{a})||$.