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Abstract. Exploiting di¤erent tangent cones, many derivatives for set-valued
functions have been introduced and considered to study optimality. The main
goal of the paper is to address a general concept of K-epiderivative and to
employ it to develop a quite general scheme for necesary optimality conditions
in set-valued problems.
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1 Introduction

In the last years set-valued optimization problems have been considered by
many researchers. Besides intrinsic interest, this type of programs arise quite
naturally in the context of duality for vector optimization (see, for instance,
[14, 17]). Moreover, when the data of a single-valued optimization problem
are not exactly known, it is reasonable to replace the values of the involved
functions with sets representing their fuzzy outcomes.

In order to study set-valued problems, some notion of derivative for set-
valued functions is required. An useful concept of derivative had been in-
troduced by Aubin [1], relying on the Bouligand contingent cone: given two
real normed linear spaces E1 and E2, the contingent derivative of a set-valued
function H : E1 xE2 at the point ðx; yÞ is the map D

g
THðx; yÞ whose graph

equals the Bouligand contingent cone T of the graph of H, i.e.

graphDg
THðx; yÞ ¼ TðgraphH; ðx; yÞÞ ð1Þ

where



graphH :¼ fðx; yÞ A E1 � E2 : y A HðxÞg:

Even if it was originally employed within the context of di¤erential inclusions,
since then many applications also to the study of optimality conditions for
vector and set-valued optimization problems have been provided (see for in-
stance [6, 15, 20]). Recently, Jahn and Rauh [13] introduced the contingent
epiderivative of a set-valued function, extending the concept of ‘‘upper con-
tingent derivative’’ of real-valued ones [1]. The main di¤erence between the
definitions of contingent derivative and epiderivative is that the graph is
replaced by the epigraph and the epiderivative is single-valued. When E2

is partially ordered by a pointed convex cone CE2
, a single-valued map

DHðx; yÞ : E1 ! E2 such that

epiDHðx; yÞ ¼ TðepiH; ðx; yÞÞ ð2Þ

is called contingent epiderivative of H, where

epiH :¼ fðx; yÞ A E1 � E2 : y A HðxÞ þ CE2
g:

Though single-valuedness seems useful to develop calculus rules [12], we be-
lieve that replacing the graph with the epigraph is even more important: ap-
proximating just the graph with the contingent cone may not preserve enough
information about the function. In fact, as pointed out in [13], necessary and
su‰cient optimality conditions based on the contingent derivative do not co-
incide under convexity assumptions. Moreover, sometimes the domain of the
contingent derivative is reduced to only one point (see Example 2).

We stress that both these derivatives rely on the well-known concept of
Bouligand contingent cone to a set. Actually, several kinds of derivatives have
been developed exploiting di¤erent types of concrete tangent cones [2, 6, 18,
20]. Moreover, relying on standard properties, general definitions of tangent
cone have been proposed and employed to define generalized derivatives of
real-valued functions [8, 11, 23].

Following these ideas, we propose a definition of generalized epiderivative
for set-valued functions and we employ it to achieve a general scheme for
necessary optimality conditions of set-valued optimization problems. Finally,
we show how already known conditions can be recovered within this scheme
quite easily.

2 Tangent cones and K-epiderivatives

The main concrete tangent cones, which are useful in optimization theory, fall
within the following general definition (see, for instance, [22]).

Definition 1. Let E be a real normed linear space. A set-valued mapping
K : 2E � ExE is a tangent cone on E if for all AJE and x A E the set
KðA; xÞ is a cone such that 0þAJ 0þKðA; xÞ where

0þA :¼ fd A E : xþ td A A; Ex A A; Etb 0g

is the recession cone of A.
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Actually, other concepts of tangent cones can be considered: an axiomatic def-
inition given through six reasonable properties has been proposed in [8] and the
mappings satisfying them have been referred to as local cone approximations;
another way to introduce general tangent cones is based on the use of quan-
tificational expressions [11, 23].

The disjunction of two sets is a recurrent situation in optimization theory;
in order to analyze it, the knowledge of approximations preserving disjunction
can be very helpful. We call a pair ðK1;K2Þ of tangent cones admissible when
AXB ¼ q implies K1ðA; xÞXK2ðB; xÞ ¼ q.

Given an isotone tangent cone K, i.e. KðA; xÞJKðB; xÞ whenever AJB,
it is well-known [21] that the pair ðK ;KcÞ is admissible, where

KcðA; xÞ :¼ ðKðAc; xÞÞc:

The family of tangent cones is very wide; we recall the Bouligand tangent cone

TðA; xÞ :¼ fw A E : bftng # 0; bfwng ! w s:t: xþ tnwn A Ag

and the Dubovitskij-Miljutin tangent cone

DMðA; xÞ :¼ TcðA; xÞ ¼ fw A E : Eftng # 0; Efwng ! w; xþ tnwn A Ag:

Since the approach developed in this paper is mainly based on tangent cones
of epigraphs, it is interesting to consider also tangent cones on product spaces.
Relying on the structure of product spaces, some particular ones can be in-
troduced. However, they seem not to be so popular; to the best of our knowl-
edge, only one of them has been considered in a few papers [18, 19]. Slightly
modifying classical ones, fairly new tangent cones on product spaces can be
introduced. For instance, given AJE1 � E2, a modified Bouligand tangent
cone is

TmðA; ðx; yÞÞ :¼ fðu; vÞ A E1 � E2 : bftng # 0; bfung ! u s:t:

Efvng ! v; ðxþ tnun; yþ tnvnÞ A Ag

while a modified Dubovitskij-Miljutin tangent cone is

DMmðA; ðx; yÞÞ :¼ ðTmÞcðA; ðx; yÞÞ

¼ fðu; vÞ A E1 � E2 : Eftng # 0;

Efung ! u; bfvng ! v s:t: ðxþ tnun; yþ tnvnÞ A Ag:

The four above tangent cones are all isotone and therefore the pairs ðT ;DMÞ
and ðTm;DMmÞ are admissible.

Concrete epiderivatives for set-valued map have introduced in [6] relying
on Bouligand and Clarke tangent cones. Inspired by the axiomatic approach
for the real-valued case [8], we propose the following general definition.

Definition 2. The K-epiderivative of H : E1 xE2 at ðx; yÞ A graphH is the set-
valued map DKHðx; yÞ : E1 xE2 such that
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graphDKHðx; yÞ ¼ KðepiH; ðx; yÞÞ;

that is

v A DKHðx; yÞðuÞ , ðu; vÞ A KðepiH; ðx; yÞÞ:

It worth noting that this K-epiderivative does not collapse into the one of [8]
when H is a real single-valued map; in fact, the former is always set-valued
while the latter involves the infimum of the ‘‘vertical’’ lines of KðepiH; ðx; yÞÞ
to achieve single-valuedness, i.e.

DKHðx; yÞðuÞ :¼ inffb A R : ðu; bÞ A KðepiH; ðx; yÞÞg:

This definition is suitable only for real-valued maps. Since it is equivalent to
require

KðepiH; ðx; yÞÞJ epiDKHðx; yÞJ clKðepiH; ðx; yÞÞ; ð3Þ

it could be reasonable to consider just the above chain of inclusions as a defi-
nition of the K-epiderivative also in the set-valued case; such a definition would
not guarantee uniqueness. On the contrary, Definition 2 allows to achieve
uniqueness, satisfying (3); in fact, we have

epiDKHðx; yÞ ¼ graphDKHðx; yÞ þ ðf0g � CE2
Þ

¼ KðepiH; ðx; yÞÞ þ ðf0g � CE2
Þ

¼ KðepiH; ðx; yÞÞ

where the last equality is due to the inclusions f0g � CE2
J 0þ epiHJ

0þKðepiH; ðx; yÞÞ. Hence, the reason why it does not collapse in the scalar
case is the lack of single-valuedness. To recover it, the contingent epiderivative
of a set-valued map has been introduced in [13] but unfortunately it may not
exist (see, for instance, the example in [3]); in fact, to achieve single-valuedness,
some particular assumptions are needed [5, 12]. Obviously, the contingent
epiderivative can not coincide with the T-epiderivative; however, their epi-
graphs always do.

Relying on (1), also the concept of contingent derivative can be generalized
in the same way.

Definition 3. The K-derivative of H : E1 xE2 at ðx; yÞ A graphH is the set-
valued map D

g
KHðx; yÞ : E1 xE2 such that

graphDg
KHðx; yÞ ¼ KðgraphH; ðx; yÞÞ:

It is clear that K-epiderivatives and K-derivatives are strictly connected since

DKHðx; yÞ ¼ D
g
KðH þ CE2

Þðx; yÞ;

where ðH þ CE2
ÞðxÞ :¼ HðxÞ þ CE2

. However, some di¤erences do exist. For
instance, necessary optimality conditions based on K-derivatives do not turn
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out to be su‰cient in the convex case while the ones based on K-epiderivatives
do (see [6] when K is Bouligand or Clarke tangent cone). Moreover, it may
happen that K-derivatives do not exist or have very small domains, as shown
by the following examples.

Example 1. Let H : RxR be the function HðxÞ ¼ ½x2; 2x2�. Considering the
point ð0; 0Þ, we have

DMðgraphH; ð0; 0ÞÞ ¼ q and DMðepiH; ð0; 0ÞÞ ¼ R � int Rþ:

Example 2. Let H : RxR be the function HðxÞ ¼ ½
2
ffiffiffiffiffiffi
jxj

p
;


ffiffiffiffiffiffi
jxj

p
�. Con-

sidering the point ð0; 0Þ, we have

TðgraphH; ð0; 0ÞÞ ¼ f0g � R
 and TðepiH; ð0; 0ÞÞ ¼ R2

and hence

D
g
THð0; 0ÞðuÞ ¼ R
 if u ¼ 0

q if u0 0

�
and DTHð0; 0ÞðuÞ ¼ R:

3 A general approach to optimality conditions

Starting from the seminal results presented in [6], in recent years many authors
studied optimality conditions for set-valued problems, using di¤erent concepts
of derivative. Though the most used one has been the contingent derivative
(see [6, 15, 19, 20]), also other ones have been employed [6, 19, 20]. More re-
cently concepts of epiderivatives [3, 5, 9, 10, 13] have been introduced and
applied in the same framework.

In this section we aim to present a general scheme to obtain necessary op-
timality conditions based on K-epiderivatives. Such an approach recalls the one
presented in [4] for the real single-valued case.

Let X ;Y ;Z be real normed linear spaces, CY JY , CZJZ be pointed
convex cones with nonempty interior and F : XxY , G : XxZ be set-valued
functions. We will consider the following constrained set-valued optimization
program

minFðxÞ
subject to

GðxÞX
CZ0q

x A S;

8>><
>>:

ð4Þ

supposing that the feasible region is nonempty. We recall that the pair ðx; yÞ A
graphF is called a weak minimizer of (4) if x A X satisfies the constraints and
there is no feasible x A X such that

F ðxÞX ðy
 intCY Þ0q:

Relying on the cartesian product of the objective and constraining functions,
i.e. ðF ;GÞðxÞ :¼ F ðxÞ � GðxÞ, optimality can be obviously written as
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graphðF ;GÞX ½S � ðy
 intCY Þ � 
CZ� ¼ q; ð5Þ

or equivalently

epiðF ;GÞX ½S � ðy
 intCY Þ � 
CZ� ¼ q: ð6Þ

The characterization given by disjunction (6) is the key to obtain the following
optimality condition based on general K-epiderivatives.

Theorem 1. Let ðK1;K2Þ be an admissible pair. Suppose there exists K3 tangent
cone on X such that the inclusion

K3ðS; xÞ � 
intCY �
int coneðCZ þ zÞ

JK2ðS � ðy
 intCY Þ � 
CZ; ðx; y; zÞÞ ð7Þ

holds for all x A S, y AY, z A 
CZ. If ðx; yÞ A graphF is a weak minimizer of
(4), then for any given z A GðxÞX
CZ the following condition

DK1
ðF ;GÞðx; ðy; zÞÞðuÞX
½intCY � int coneðCZ þ zÞ� ¼ q ð8Þ

holds for all u A K3ðS; xÞ.

Proof. The definition of admissible pair implies that given any z A GðxÞX
CZ,
we have

K1ðepiðF ;GÞ; ðx; y; zÞÞXK2ðS � ðy
 intCY Þ � 
CZ; ðx; y; zÞÞ ¼ q:

Thus, assumption (7) implies

K1ðepiðF ;GÞ; ðx; y; zÞÞX ðK3ðS; xÞ � 
intCY �
int coneðCZ þ zÞÞ¼q: ð9Þ

Therefore, given any u A K3ðS; xÞ and v A DK1
ðF ;GÞðx; yÞðuÞ, we have

ðu; vÞ A K1ðepiðF ;GÞ; ðx; y; zÞÞ

and thus (9) implies that

v B 
½intCY �
int coneðCZ þ zÞ�:

Hence, (8) follows. r

Actually, assumption (7) is not so restrictive as it may seem. On the con-
trary, it is quite natural, requiring (roughly speaking) that the tangent cone of
a ‘‘cylinder’’ with base S contains the ‘‘cylinder’’ whose base is a suitable tan-
gent cone of S; in fact, this assumption is satisfied by a wide range of tangent
cones (see Section 4 for some important cases). For instance, when S ¼ X , a
class of tangent cones such that (7) always holds is given by the local cone
approximations.
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Remark 1. A set-valued optimization problem with no explicit constraint can
be viewed as a particular case of problem (4) setting G1 f0g. Thus

DK1
Fðx; yÞðuÞX
intCY ¼ q; ð10Þ

is a necessary optimality condition for all u A K3ðS; xÞ whenever ðK1;K2Þ is an
admissible pair and K3 satisfies

K3ðS; xÞ � 
intCY JK2ðS � ðy
 intCY Þ; ðx; yÞÞ; Ex A S; y AY :

Remark 2. An unconstrained set-valued optimization problem can be viewed
as a particular case of problem (4) setting G1 f0g and S ¼ X ; thus, at a weak
minimizer of (4), condition (10) holds for all u A X whenever K2 is a local cone
approximation such that the pair ðK1;K2Þ is admissible.

The optimality condition of Theorem 1 is expressed as the impossibility of
a suitable system and it recalls the well-known Abadie Linearization Lemma
of nonlinear programming; thus, no multipliers are involved. Minumum prin-
ciple type optimality conditions for problem (4) can be obtained from Theorem
1 by applying standard separation arguments. To achieve a set of multipliers,
we need to recall that the positive dual cone of a given cone CJE is

C � :¼ fx� A E � : hx�; xib 0; Ex A Cg;

where h� ; �i denotes the duality pairing between E and its topological dual E �.

Theorem 2. Let K1;K2;K3 satisfy the assumptions of the previous theorem. Sup-
pose that S and epiðF ;GÞ are convex, K1 and K3 are convex preserving. If ðx; yÞ
is a weak minimizer of (4), then for all z A GðxÞX
CZ there exist t A C �

Y ,
s A C �

Z not both zero such that hs; zi ¼ 0 and

ht; viþ hs;wib 0 ð11Þ

holds for all ðv;wÞ A DK1
ðF ;GÞðx; ðy; zÞÞðuÞ and u A K3ðS; xÞ.

Proof. Given any z A GðxÞX
CZ, by the previous theorem we have

DK1
ðF ;GÞðx; yÞðK3ðS; xÞÞX
½intCY � ðint coneðCZ þ zÞ� ¼ q ð12Þ

where

DK1
ðF ;GÞðx; yÞðK3ðS; xÞÞ :¼ 6

u AK3ðS;xÞ
DK1

ðF ;GÞðx; yÞðuÞ ð13Þ

To prove that the above set is a convex cone, let us consider any li b 0, vi A
DK1

ðF ;GÞðx; yÞðuiÞ and ui A K3ðS; xÞ, i ¼ 1; . . . ; n. Since

ðui; viÞ A K1ðepiðF ;GÞ; ðx; ðy; zÞÞÞ; i ¼ 1; . . . ; n

and the assumptions imply that K1ðepiðF ;GÞ; ðx; ðy; zÞÞÞ is a convex cone, we
have
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Xn
i¼1

liðui; viÞ A K1ðepiðF ;GÞ; ðx; ðy; zÞÞÞ:

Moreover, also K3ðS; xÞ is a convex cone; therefore, we have

Xn
i¼1

livi A DK1
ðF ;GÞðx; yÞðK3ðS; xÞÞ:

Hence, (13) is a convex cone and a well-known separation theorem implies that
there exist t AY � and s A Z � not both zero such that (11) holds for all ðv;wÞ A
DK1

ðF ;GÞðx; ðy; zÞÞðuÞ and u A K3ðS; xÞ and moreover

ht; cYiþ hs; cZ þ zib 0

holds for all cY A CY and cZ A CZ. It is clear that the above inequality implies
t A C �

Y , s A C �
Z and hs; zib 0. Since z A 
CZ, we have also the complemen-

tarity slackness condition hs; zi ¼ 0. r

Since separation theorems require convexity, what is really needed in the
above theorem is that the sets in (12) are convex; hence, the assumptions on
ðF ;GÞ and S can be obviously replaced by the convexity of the tangent cones
K1;K3.

Remark 3. The proof of Theorem 1 (and consequently also Theorem 2) in-
volves characterization (6) which relies on epigraphs; considering instead char-
acterization (5), we can achieve the analogous results for K-derivatives. How-
ever, approximating the epigraph with a tangent cone generally gives more
information: in the following example necessary optimality conditions based
on the T-epiderivative allow to drop a pair, which is not a weak minimizer,
while the ones based on the T-derivative do not. Let F : RxR be the function

F ðxÞ ¼ ½2; 3� if x A Q
½0; 1� if x B Q:

�

Obviously, the pair ð0; 2Þ is not a weak minimizer of F over R with respect to
the ordering cone Rþ. It is easy to check that

D
g
TF ð0; 2ÞðuÞ ¼ Rþ and DTFð0; 2ÞðuÞ ¼ R:

Thus, (10) is not satisfied by any u A R while the following necessary condition
holds

D
g
TF ð0; 2ÞðuÞX
int Rþ ¼ q; Eu A R:

4 Some applications

The aim of this section is to show that many known optimality conditions can
be obtained applying Theorem 1 with some particular choices of the tangent
cones.

408 G. Bigi, M. Castellani



Since the most popular derivatives are based on Bouligand tangent cone [3,
5, 6, 10, 13], we start considering the choice K1 ¼ T . Therefore, we can take
K2 ¼ Tc ¼ DM and moreover it is easy to check that (7) holds with K3 ¼ DM.

In [13] problem (4) with no explicit constraint is studied. Since the authors
suppose that F is defined only on the set S, their problem can be equivalently
expressed as an unconstrained one with objective function FS defined as

FSðxÞ :¼
F ðxÞ if x A S

q if x B S:

�

In their Theorem 7 the following necessary optimality condition has been
proved

DFSðx; yÞðuÞ B 
intCY ; Eu A ðS 
 xÞ; ð14Þ

where DFS denotes the contingent epiderivative of FS as defined in (2). This
condition can also be deduced from Theorem 1 with our choice, taking into
account Remark 2. In fact, (10) can be equivalently written as

graphDTFSðx; yÞX ½X �
intCY � ¼ q:

Since graphDTFSðx; yÞ ¼ epiDFSðx; yÞ, then (14) follows. It worth noting
that condition (14) does not hold if F : XxY and S0X even in the real
single-valued case, as the following example shows.

Example 3. Let S ¼ R2
þ and F : R2 ! R defined as follows

F ðxÞ ¼ kxk if x2 b 0


kxk if x2 < 0:

�

The point x ¼ ð0; 0Þ is a global minimum of F on S but, choosing u ¼ ð1; 0Þ,
we have DF ðx; 0ÞðuÞ ¼ 
1.

The same contingent epiderivative has been exploited in [10] to obtain a min-
imum principle optimality condition for problem (4). Since T and DM are
convex preserving, this result can be deduced from Theorem 2 with the same
reasoning used to obtain (14).

We notice that if ðK1;K2Þ is an admissible pair then also ðK 0
1;K2Þ is ad-

missible, whenever K 0
1 JK1. Hence, the above choice can be considered with

the Clarke tangent cone in place of the Bouligand one. In particular, the semi-
nal results presented in [6] follow immediately.

Another concept of contingent epiderivative D"Fðx; yÞðuÞ has been pro-
posed in [5] and independently in [3], considering only the minimal points of
DTF ðx; yÞðuÞ. Since graphD"F ðx; yÞJ graphDTF ðx; yÞ, Theorem 5 of [5] fol-
lows from Theorem 1 in a way analogous to Theorem 7 of [13].

Also necessary conditions for Benson proper minimum points can be re-
covered within our scheme. In [3] such a condition has been presented for
problem (4) with no explicit constrains under the assumption that CY has a
compact base. It is well-known (see [3]) that under this assumption any Ben-
son proper minimum point is a weak one with respect to the ordering given by
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some convex cone ĈCY such that CYnf0gJ int ĈCY . Thus, by Theorem 1 we get
that

DTF ðx; yÞðuÞX
int ĈCY ¼ q; Eu A X ;

and Theorem 1 of [3] follows.
Also other types of derivative have been employed in set-valued optimiza-

tion; for instance, optimality conditions for problem (4) have been presented
in [20], relying on the lower Dini derivative introduced in [16]:

DF ðx; yÞðuÞ ¼ lim inf
ðt;u 0Þ!ð0þ;uÞ

t
1½Fðxþ tu 0Þ 
 y�

where lim inf is intended in the sense of set-valued analysis [2]. It is easy to
check that

DF ðx; yÞðuÞ þ CY JDDMm
F ðx; yÞðuÞ ¼ DðF þ CY Þðx; yÞðuÞ ð15Þ

holds for all u A X . Thus, let us consider the choice K1 ¼ DMm: since K2 ¼ Tm
and K3 ¼ T satisfy (7), we can apply Theorem 1 to problem (4) with no ex-
plicit constraints (see Remark 1) to get

DDMm
Fðx; yÞðuÞX
intCY ¼ q; Eu A TðS; xÞ:

Hence, (15) implies Proposition 3.1 of [20]. Moreover, in the same paper prob-
lem (4) has been considered also with explicit constraints. Thus, Theorem 4.1
of [20] follows arguing as above and noting that

DDMm
ðF ;GÞðx; ðy; zÞÞðuÞ ¼ ðDDMm

Fðx; yÞðuÞ;DDMm
Gðx; yÞðuÞÞ:

Though introduced with a di¤erent aim [18], the Shi tangent cone

TShiðA; ðx; yÞÞ :¼ fðu; vÞ A E1 � E2 : bftngJ ð0;þyÞ; bfung ! u;

bfvng ! v s:t: tnun ! 0; ðxþ tnun; yþ tnvnÞ A Ag

has been used to obtain optimality conditions in [19] for unconstrained pro-
grams. Since it is isotone, we can choose K1 ¼ TShi and K2 ¼ ðTShiÞc; the
further choice K3 ¼ DM allows to satisfy (7) and therefore we get the new
necessary optimality condition

DTShi
ðF ;GÞðx; ðy; zÞÞðuÞ

X
½intCY � int coneðCZ þ zÞ� ¼ q; Eu A DMðS; xÞ

for the constrained problem (4).

5 Conclusion

Relying on the concept of K-epiderivative of a set-valued map, we have proved
necessary optimality conditions in a quite general form. In the last section
we have shown how some concrete ones can be easily obtained with suitable
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choices. Actually, many others could be developed in an analogous way. For
instance, the closed radial tangent cone could be used following the ideas in [9]
or the pair composed by the feasible and weak feasible tangent cones could be
considered as already pointed out in [4] for the real single-valued case.

For the sake of simplicity, we showed optimality conditions only for
(global) weak minimizers; however, we stress that all the results presented in
this paper still hold for local weak minimizers, just supposing that at least one
of the involved tangent cones is local. In fact, the characterizations (5) and (6)
hold for local optima if disjunction is achieved considering the two sets and a
suitable cylinder neighbourhood IðxÞ � Y � Z. Moreover, it worth noting that
all the concrete tangent cones, we considered, are local except the Shi one:
however, it satisfies the local property for the above type of cylinder neigh-
bourhoods.

We stress that not all the known optimality conditions fall within this
approach. In fact, it is based only on derivatives and tangent cones while some
results rely on suitable subdi¤erentials; for instance, a quite di¤erent approach
has been proposed in [7], considering the approximate subdi¤erential of a suit-
able distance function.
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