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Abstract A second order sufficient optimality criterion is presented for a multi-
objective problem subject to a constraint given just as a set. To this aim, we first
refine known necessary conditions in such a way that the sufficient ones differ by
the replacement of inequalities by strict inequalities. Furthermore, we show that
no relationship holds between this criterion and a sufficient multipliers rule, when
the constraint is described by inequalities and equalities. Finally, improvements
of this criterion for the unconstrained case are presented, stressing the differences
with single-objective optimization.
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1 Introduction

The aim of this paper is to provide sufficient second order optimality conditions
for the multiobjective program

minR
�+f (x) subject to x ∈ X (1)

where f : R
n → R

� and X ⊆ R
n is any subset, matching the corresponding

necessary conditions presented in Bigi and Castellani (2000). The notation minR
�+

marks vector minimum with respect to the cone R
�
+: x̄ ∈ X is said to be a local

vector minimum point of (1) if there exists a neighbourhood N of x̄ such that no
x ∈ X∩N satisfies f (x)−f (x̄) ∈ −R

�
+ with f (x) �= f (x̄), that is fk(x) ≤ fk(x̄)

for all k ∈ K := {1, ..., �} with fk̄(x) < fk̄(x̄) for at least one index.
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Relying on the idea originally exploited in Ben-Tal (1980) and further devel-
oped in Cominetti (1990) and Penot (1994, 1999) for the single-objective case,
second order necessary optimality conditions for (1) have been proved in Bigi
and Castellani (2000), checking optimality just along those curves that allow to
achieve a second order expansion (parabolic curves). In order to know which par-
abolic curves allow to move away from a given point preserving feasibility, the
second order contingent set T 2(X, x̄, d) has therefore been considered: we just
recall that w ∈ T 2(X, x̄, d) if there exist sequences tn ↓ 0 and wn → w such that
x̄+ tnd +2−1t2

nwn ∈ X (see Bonnans et al. 1999 for further details). Exploiting this
tool, Theorem 3.1 of Bigi and Castellani (2000) states that given any local vector
minimum point x̄ ∈ X of (1), setting K(x̄, d) := {k ∈ K : ∇fk(x̄) · d = 0}, the
condition

max
k∈K(x̄,d)

[∇fk(x̄) · w + ∇2fk(x̄)(d, d)] ≥ 0 (2)

holds for any d ∈ D≤(f, x̄) ∩ T (X, x̄) and any w ∈ T 2(X, x̄, d), where D≤(f, x̄)
denotes the set of the descent directions for f at x̄, i.e. d ∈ D≤(f, x̄) if ∇fk(x̄) ·
d ≤ 0 for any k ∈ K , and T (X, x̄) := T 2(X, x̄, 0) denotes the Bouligand contin-
gent cone.

A standard procedure to obtain sufficient optimality conditions from necessary
ones is to replace inequalities with strict inequalities (see for instance Ben-Tal 1980;
Ben-Tal and Zowe 1982; Wang 1991). This procedure does not work when deal-
ing with the above second order necessary conditions, as shown by the following
example.

Example 1 Consider (1) with n = 3, � = 2, and

f1(x1, x2, x3) = x2
3 − x1, f2(x1, x2, x3) = x2

2 − 3

√
x7

3 ,

X = { x ∈ R
3 : x2

1 ≤ x3
2 }.

Choosing the point x̄ = (0, 0, 0), we have

T 2(X, x̄, d) =
{

{0} × R+ × R if d2 = 0
R

3 if d2 �= 0

for any nonzero d ∈ T (X, x̄) ∩ D≤(f, x̄) = {0} × R+ × R. Therefore,

max
k∈K(x̄,d)

∇fk(x̄) · w + ∇2fk(x̄)(d, d)

becomes

max{ −w1 + 2d2
3 , 2d2

2 }

which is positive for any d ∈ T (X, x̄)∩D≤(f, x̄) and w ∈ T 2(X, x̄, d). However,
x̄ is not a local vector minimum point since f1 is zero and f2 is negative along the
curve described by the feasible points xt = (t6, t4, t3) for t ∈ (0, 1).
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A class of sets X, for which such a replacement yields sufficiency in the sin-
gle-objective case, has been identified in Bonnans et al. (1999). However, we aim
to consider a different kind of approach, which does not require any particular
assumption on X and has already been analysed for single-objective optimiza-
tion in Penot (1999). Another second order approximation of the constraining set
is considered in order to achieve an additional necessary condition. Coupling it
together with Theorem 3.1 of Bigi and Castellani (2000), we can turn them into
a sufficient criterion mainly replacing inequalities with strict inequalities. In the
unconstrained case the additional condition is not actually needed, since no con-
straint has to be taken into account; however, some meaningful differences with the
well-known second order optimality conditions for unconstrained single-objective
optimization hold and are analysed in the last section.

2 Sufficient optimality criterion

There are two explanations why changing the inequality in (2) into a strict one
does not lead to sufficiency. The second order contingent sets may be empty (see
the example in Penot 1999) and the corresponding necessary optimality conditions
are meaningless in such a case, since they are obviously satisfied by any objective
function. Furthermore, there is no convincing reason why it should be enough to
test optimality only along parabolic curves, as the above example corroborates.
These two drawbacks can be overcome considering in addition to T 2(X, x̄, d) also
the following sets that take into account curves different from parabolas, which
allow to move away from the given point preserving feasibility.

Definition 1 (Penot 1999) T 2
0 (X, x̄, d) denotes the asymptotic second order con-

tingent set of X at x̄ ∈ cl X in the direction d ∈ R
n, namely w ∈ T 2

0 (X, x̄, d) if
there exist sequences tn ↓ 0, γn ↓ 0 and wn → w such that

γ −1
n t2

n → 0 and x̄ + tnd + γnwn ∈ X.

It is worth noting that the above sets do not consider all possible curves but just
those that, roughly speaking, approach x̄ slower than a parabola.

Proposition 1 If d ∈ T (X, x̄), then T 2(X, x̄, d) ∪ T 2
0 (X, x̄, d) �= ∅.

Proof By assumption there exist tn ↓ 0 and dn → d such that x̄ + tndn ∈ X.
Let sn := ||dn − d||; if sn = 0 for at least a subsequence, then 0 ∈ T 2(X, x̄, d).
Otherwise, let wn := s−1

n (dn−d); taking the suitable subsequence, we can suppose
sn ↓ 0 and wn → w for some w �= 0. Furthermore, we have that x̄+tnd+tnsnwn ∈
X; considering the suitable subsequence, we can suppose an := t−1

n sn → r for
some r ≥ 0 or an → +∞. In the latter case we have w ∈ T 2

0 (X, x̄, d) while
in the former we have 2rw ∈ T 2(X, x̄, d) since ŵn := 2anwn → 2rw and
x̄ + tnd + 2−1t2

nŵn ∈ X. 
�
Therefore, the first drawback can be avoided if the necessary conditions of

Bigi and Castellani (2000) are refined, taking into account also the asymptotic
second order contingent set. It is worth noting that the following result requires
that f is twice continuously differentiable even though only the Jacobians of the
components of f are involved in the condition.
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Theorem 1 If x̄ ∈ X is a local vector minimum point of (1), then

max
k∈K

[∇fk(x̄) · w] ≥ 0, ∀ w ∈ T 2
0 (X, x̄, d) (3)

holds for any direction d ∈ D≤(f, x̄) ∩ T (X, x̄).

Proof Ab absurdo, suppose that ∇fk(x̄) · w < 0 holds for all k ∈ K and some
d ∈ D≤(f, x̄) ∩ T (X, x̄) and w ∈ T 2

0 (X, x̄, d). Furthermore, there exist tn ↓ 0,
γn ↓ 0 and wn → w such that γ −1

n t2
n → 0 and xn := x̄ + tnd + γnwn ∈ X. Since

fk is twice differentiable, we have

fk(xn)−fk(x̄)≤∇fk(x̄) · γnwn + 2−1∇2fk(x̄)(tnd + γnwn, tnd + γnwn) + t2
nεn

with εn → 0. Dividing by γn and taking the limit as n → +∞, the right handside
goes to ∇fk(x̄) · w < 0 and therefore fk(xn) < fk(x̄) whenever n is large enough.
This contradicts the local optimality of x̄. 
�

Therefore, Theorems 3.1 of Bigi and Castellani (2000) and 1 together allow to
check optimality along any curve preserving feasibility: also the second drawback
is overcome. In fact, replacing inequalities with strict inequalities in these two
necessary conditions, we achieve the following sufficient optimality criterion.

Theorem 2 Let x̄ ∈ X. If for each nonzero direction d ∈ D≤(f, x̄) ∩ T (X, x̄) the
condition

max
k∈K(x̄,d)

[∇fk(x̄) · w + ∇2fk(x̄)(d, d)] > 0, (4)

holds for any w ∈ T 2(X, x̄, d) such that w · d = 0 and the condition

max
k∈K(x̄,d)

[∇fk(x̄) · w] > 0, (5)

holds for any nonzero w ∈ T 2
0 (X, x̄, d) such that w ·d = 0, then x̄ is a local vector

minimum point of (1).

Proof Ab absurdo, suppose that there exists a sequence {xn} ⊆ X with xn → x̄
such that f (xn) �= f (x̄) and fk(xn) ≤ fk(x̄) for all k ∈ K . Let tn = ||xn − x̄||
and dn = t−1

n (xn − x̄). Taking the suitable subsequence, we can suppose that
tn ↓ 0 and dn → d for some unit vector d; therefore, d ∈ T (X, x̄) and it is easy
to check that d ∈ D≤(f, x̄). Choosing sn and wn as in Proposition 1, we have
xn = x̄ + tnd + tnsnwn with wn → w for some suitable w �= 0 and sn ↓ 0 unless
sn = 0 for all indexes (in which case we can set wn = w = 0). Since dn and d are
both unit vectors, then

||dn||2 = ||d||2 + ||snwn||2 + 2snwn · d

implies wn · d = −2−1sn||wn||2 and therefore w · d = 0. Given any k ∈ K(x̄, d)
(notice that the assumptions guarantee that this set is nonempty), we have

0 > 2t−2
n [fk(xn) − fk(x̄)] = 2t−1

n sn∇fk(x̄) · wn + ∇2fk(x̄)(d, d)

+2sn∇2fk(x̄)(d, wn) + 2s2
n∇2fk(x̄)(wn, wn) + εn

(6)
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with εn → 0. If t−1
n sn → r for some r ≥ 0, taking the limit as n → +∞ we get

0 ≥ 2r∇fk(x̄) · w + ∇2fk(x̄)(d, d)

which contradicts (4) since 2rw ∈ T 2(X, x̄, d) as already shown in Proposition 1.
If t−1

n sn → +∞, then w ∈ T 2
0 (X, x̄, d); therefore, (5) implies that ∇fk(x̄) ·w > 0

for some k ∈ K(x̄, d) and therefore t−1
n sn∇fk(x̄) · wn → +∞ in contradiction

with (6). 
�
Beyond the standard replacement of inequalities with strict inequalities there

are two other small gaps between the necessary and sufficient criteria: (5) is not
exactly the sufficient counterpart of (3), since it involves only some suitable com-
ponents of the objective function; furthermore, sufficient conditions have to be
checked only for directions d such that w · d = 0.

3 Comparison with sufficient multipliers rules

When the feasible region is described by inequality and equality constraints, i.e.

X = { x ∈ R
n : gi(x) ≤ 0, hj (x) = 0, i ∈ I, j ∈ J } (7)

where g = (g1, ..., gm) : R
n −→ R

m and h = (h1, ..., hp) : R
n −→ R

p are twice
continuously differentiable and I := {1, ..., m} and J := {1, ..., p} denote the
corresponding index sets, second order necessary multipliers rules (see Aghezzaf
and Hachimi 1999; Bolintinéanu and Maghri 1998; Wang 1991) can be turned
into sufficient ones, replacing the inequality involving the second order derivatives
with a strict inequality. Considering a set of descent directions D(x̄) suitable for
(1) along with (7), namely d ∈ D(x̄) if d ∈ D≤(f, x̄) and ∇gi(x̄) · d ≤ 0 for any
i ∈ I (x̄) := {i ∈ I : gi(x̄) = 0} and ∇hj (x̄) · d = 0 for any j ∈ J , the following
criterion has been proved in Wang (1991).

Theorem 3 Let X be given as in (7) and x̄ ∈ X. If for each nonzero descent
direction d ∈ D(x̄), there exist θ ∈ R

�
+, λ ∈ R

m
+ and µ ∈ R

p satisfying
∑
k∈K

θk∇fk(x̄) +
∑
i∈I

λi∇gi(x̄) +
∑
j∈J

µj∇hj (x̄) = 0, (8)

λigi(x̄) = 0, i ∈ I (9)

and moreover
∑

k∈K

θk∇2fk(x̄) +
∑
i∈I

λi∇2gi(x̄) +
∑
j∈J

µj∇2hj (x̄)


 (d, d) > 0, (10)

then x̄ is a local vector minimum point for (1).

The multipliers in the above rule depend upon the considered direction and in
particular the vector multiplier θ can even be zero for some directions; moreover,
it is easy to check that actually conditions (8) and (9) imply that θk = 0 for any
k /∈ K(x̄, d) and λi = 0 for any i /∈ I (x̄, d), where this latter set consists of all the
indexes i ∈ I (x̄) such that ∇gi(x̄) · d = 0.
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In Lemma 1 the above sufficient multipliers rule is equivalently expressed as
the impossibility of a family of nonhomogeneous linear systems, just relying on a
theorem of the alternative (such as Gale’s theorem 2.4.10 in Mangasarian 1969).

Lemma 1 Let X be given as in (7) and x̄ ∈ X. If for each nonzero descent direction
d ∈ D(x̄) the following system





∇fk(x̄) · w + ∇2fk(x̄)(d, d) ≤ 0, k ∈ K(x̄, d),

∇gi(x̄) · w + ∇2gi(x̄)(d, d) ≤ 0, i ∈ I (x̄, d),

∇hj (x̄) · w + ∇2hj (x̄)(d, d) = 0, j ∈ J,

(11)

has no solution w ∈ R
n, then x̄ is a local vector minimum point of (1).

It is straightforward to show, see e.g. Lemma 4.1 in Bigi and Castellani (2000),
that the impossibility of the above linear system implies that (4) holds for any
w ∈ T 2(X, x̄, d); obviously, the converse does not hold, since the second order
contingent set alone is not related to any sufficient optimality criterion. Further-
more, the following examples show that actually no relationship holds between the
sufficient criteria of Lemma 1 (or equivalently Theorem 3) and Theorem 2.

Example 2 Consider (1) and (7) with n = 3, � = m = 2, p = 1 and

f1(x1, x2, x3) = x2
1 + x2, f2(x1, x2, x3) = x2 + x2

3

g1(x1, x2, x3) = −x2, g2(x1, x2, x3) = x2 − x2
1 , h1(x1, x2, x3) = x2x3.

It is easy to check that x̄ = (0, 0, 0) is a vector minimum point. However, chosen
any nonzero d ∈ D≤(f, x̄) ∩ T (X, x̄) = R × {0} × R, condition (5) does not hold
for the choice w = (d3, 0, −d1) ∈ T 2

0 (X, x̄, d) = R×{0}×R since ∇fk(x̄)·w = 0
for k = 1, 2. Therefore, Theorem 2 does not allow to recognize the optimality of x̄;
in contrast, Lemma 1 or equivalently Theorem 3 does. In fact, chosen any nonzero
d ∈ D(x̄) = R × {0} × R, system (11) becomes

w2 + 2d2
1 ≤ 0, w2 + 2d2

3 ≤ 0, w2 ≥ 0, w2 − 2d2
1 ≤ 0, d2d3 = 0

which admits no solution w ∈ R
n.

Example 3 Consider (1) and (7) with n = � = 3, m = p = 1 and

f1(x1, x2, x3) = x1 + x2
2 , f2(x1, x2, x3) = −x1 − x2

2 + x3,

f3(x1, x2, x3) = x2
1 − x2

2 + x3, g1(x1, x2, x3) = −x3, h1(x1, x2, x3) = x1x2.

It is easy to show that x̄ = (0, 0, 0) is a vector minimum point. However, given
any nonzero d ∈ D(x̄) = {0} × R × {0}, system (11) becomes

w1+2d2
2 ≤ 0, w3 − w1 − 2d2

2 ≤ 0, w3+2d2
1 − 2d2

2 ≤ 0, w3 ≥ 0, d1d2 = 0

which admits the solution w = (−2d2
2 , 0, 0). Therefore, Lemma 1 and Theorem 3

do not allow to recognize the optimality of x̄; in contrast, Theorem 2 does: given
any nonzero direction d ∈ D≤(f, x̄) ∩ T (X, x̄) = {0} × R × {0} condition (4)
becomes

max
{

w1 + 2d2
2 , w3 − w1 − 2d2

2 , w3 + 2d2
1 − 2d2

2

}
> 0
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and it is satisfied by any w ∈ T 2(X, x̄, d) = {0}×R×R+ since d2 �= 0; condition
(5) becomes

max { w1, −w1 + w3, w3 } > 0

and it is satisfied by any nonzero w ∈ T 2
0 (X, x̄, d) such that w · d = 0 (which

means w2 = 0) since

T 2
0 (X, x̄, d) =

{
[{0} × R × R+] ∪ [R × R+ × R+] if d2 < 0,

[{0} × R × R+] ∪ [R × R− × R+] if d2 > 0.

4 The unconstrained case

Obviously, Theorem 2 provides a sufficient optimality criterion also in the uncon-
strained case, i.e. X = R

n. However, in this case condition (5) is very unlikely to be
satisfied by all direction w ∈ T 2

0 (X, x̄, d) = R
n such that w ·d = 0 and moreover it

can never happen in the single-objective case. Actually, in the unconstrained case
there is no real need to consider any condition related to the asymptotic second
order set (notice, for instance, that Theorem 1 collapses into the well-known first
order necessary optimality condition). In fact, the following sufficient criterion,
which involves only condition (4), holds.

Theorem 4 Let X = R
n and x̄ ∈ R

n. If (4) holds for each nonzero direction
d ∈ D≤(f, x̄) and any w ∈ R

n such that w · d = 0, then x̄ is a local vector
minimum point of (1).

Proof Ab absurdo, suppose there exist tn ↓ 0 and dn → d with d �= 0 such that
xn = x̄+ tndn satisfies f (xn) �= f (x̄) and fk(xn) ≤ fk(x̄) for all k ∈ K . Therefore,
we have

0 ≥ t−1
n [fk(xn) − fk(x̄)] = ∇fk(x̄) · dn + 2−1tn∇2fk(x̄)(dn, dn) + 2−1tnε

k
n

(12)

with εk
n → 0. Taking the limit as n → +∞, we get that d ∈ D≤(f, x̄). Hence the

assumptions imply that K(x̄, d) �= ∅ and that the system

∇fk(x̄) · w + ∇2fk(x̄)(d, d) ≤ 0, k ∈ K(x̄, d)
d · w = 0

has no solution w ∈ R
n. Therefore, Gale’s theorem of the alternative (see 2.4.10 in

Mangasarian 1969) implies that there exist numbers θk ≥ 0 not all zero such that
∑

k∈K(x̄,d)

θk∇fk(x̄) + θ0d = 0 and
∑

k∈K(x̄,d)

θk∇2fk(x̄)(d, d) > 0. (13)

Since

0 = 0 · d =
∑

k∈K(x̄,d)

θk∇fk(x̄) · d + θ0d · d = θ0||d||2,
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we have that θ0 = 0. Therefore, multiplying both sides of (12) by 2t−1
n θk and

summing up, we get

0 ≥
∑

k∈K(x̄,d)

θk∇2fk(x̄)(dn, dn) + εk
n.

Taking the limit as n → +∞, we get a contradiction with (13). 
�
In the single-objective case the above result collapses into the classical sufficient

conditions, i.e. the gradient is the zero vector and the Hessian matrix is positive
definite. Therefore, summing up together the first and second order terms as in (4)
does not lead to a better criterion than the classical one, in which they are consid-
ered separately. On the contrary, in the multiobjective case it is not so. It could be
checked directly that local vector optimality is achieved at x̄ if condition

max
k∈K

[∇fk(x̄) · w] ≥ 0 (14)

holds for any w ∈ R
n and condition

min
k∈K(x̄,d)

∇2fk(x̄)(d, d) > 0 (15)

holds for any nonzero descent direction d ∈ D≤(f, x̄). However, the following
relationship holds.

Proposition 2 Let a nonzero direction d̄ ∈ D≤(f, x̄) be given. If (14) holds for
any w ∈ R

n and (15) holds for d̄, then (4) holds for d̄ and any w ∈ R
n.

Proof Ab absurdo, suppose there exists w̄ ∈ R
n such that

∇fk(x̄) · w̄ + ∇2fk(x̄)(d̄, d̄) ≤ 0

holds for any k ∈ K(x̄, d̄). Therefore, (15) implies that ∇fk(x̄) · w̄ < 0 for any
k ∈ K(x̄, d̄). If this set is the whole K , then w̄ contradicts (14); otherwise, take

τ := 2−1 min{ −(∇fk(x̄) · d̄)/(∇fk(x̄) · w̄) : k /∈ K(x̄, d̄), ∇fk(x̄) · w̄ > 0 }.
It is obvious that ∇fk(x̄) · (d̄ + τw̄) < 0 whenever k ∈ K(x̄, d̄) or alternatively
∇fk(x̄) · w̄ ≤ 0; for all other indexes we have

∇fk(x̄) · (d̄ + τw̄) = ∇fk(x̄) · d̄ + τ∇fk(x̄) · w̄ ≤ 2−1∇fk(x̄) · d̄ < 0.

Therefore, d̄ + τw̄ does not satisfy (14) in contradiction with the assumption. 
�
The converse does not hold; in fact, the following example shows that relying

on condition (4) we achieve a sharper sufficient optimality criterion.

Example 4 Consider (1) with n = 2, � = 2, X = R
2 and

f1(x1, x2) = x2, f2(x1, x2) = x2
1 − x2.

It is easy to check that x̄ = (0, 0) is a vector minimum point. However, given any
d ∈ D≤(f, x̄) = R × {0}, condition (15) becomes

min { 0, 2d2
1 } > 0

which can never hold. On the contrary, (4) becomes

max { w2, −w2 + 2d2
1 } > 0

which holds for any nonzero descent direction d and any w ∈ R
2.
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Condition (15) may appear a little to strong since it involves the minimum and
not the maximum; the following example shows that such a replacement does not
allow to preserve sufficiency.

Example 5 Consider (1) with n = 2, � = 3, X = R
2 and

f1(x1, x2)=x1 sin x2, f2(x1, x2) = x1 + x2
2 , f3(x1, x2)=−(sin x1 + sin x2).

Since f1 and f2 are negative and f3 is identically zero along the line described by
the points xt = (−t, t) as t ∈ (0, 1), then x̄ = (0, 0) is not a local vector minimum
point of (1). It is easy to check that (14) holds for any w ∈ R

n. Given any nonzero
d̄ ∈ D≤(f, x̄) = {d ∈ R

2 : d1 ≤ 0, d1 + d2 ≥ 0, d2 ≥ 0}, we have 1 ∈ K(x̄, d̄)
and

∇2f1(x̄)(d̄, d̄) = 2d̄1d̄2 > 0

unless d̄1 = 0 (notice that d̄2 = 0 implies d̄1 = 0). In this latter case we have also
2 ∈ K(x̄, d̄) and

∇2f2(x̄)(d̄, d̄) = 2d̄2
2 > 0

Therefore, we have max
k∈K(x̄,d)

∇2fk(x̄)(d, d) > 0 for any nonzero d ∈ D≤(f, x̄).
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Bolintinéanu S, El Maghri M (1998) Second-order efficiency conditions and sensitivity of effi-
cient points. J Optim Theory Appl 98:569–592

Bonnans JF, Cominetti R, Shapiro A (1999) Second order optimality conditions based on para-
bolic second order tangent sets. SIAM J Optim 9:466–492

Cominetti R (1990) Metric regularity, tangent sets, and second-order optimality conditions. Appl
Math Optim 21:265–287

Mangasarian OL (1969) Nonlinear programming. Mc Graw-Hill, New York
Penot JP (1994) Optimality conditions in mathematical programming and composite optimiza-

tion. Math Program 67:225–245
Penot JP (1999) Second-order conditions for optimization problems with constraints. SIAM J

Control Optim 37:303–318
Wang SY (1991) Second order necessary and sufficient conditions in multiobjective program-

ming. Numer Func Anal Optim 12:237–252


