2. Abstract State Machines

The notion of Abstract State Machines (ASMs), defined in [20], captures in
mathematically rigorous yet transparent form some fundamental operational
intuitions of computing, and the notation is familiar from programming prac-
tice and mathematical standards. This allows the practitioner to work with
ASMs without any further explanation, viewing them as ‘pseudocode over
abstract data’ which comes with a well defined semantics supporting the in-
tuitive understanding. We therefore suggest to skip this chapter and to come
back to it only should the need be felt upon further reading.

For the sake of a definite reference, we nevertheless provide in this chapter
a survey of the notation, including some extensions of the definition in [20]
which are introduced in [7] for structuring complex machines and for reusing
machine components. For the reader who is interested in more details, we
also provide a mathematical definition of the syntax and semantics of ASMs.
This definition helps understanding how the ASMs in this book have been
made executable, despite of their abstract nature; it will also help the more
mathematically inclined reader to check the proofs in this book. We stick
to non distributed (also called sequential) ASMs because they suffice for
modeling Java and the JVM.

2.1 ASMs in a nutshell

ASMs are systems of finitely many transition rules of form
if Condition then Updates

which transform abstract states. (Two more forms are introduced below.)
The Condition (so called guard) under which a rule is applied is an arbitrary
first-order formula without free variables. Updates is a finite set of function
updates (containing only variable free terms) of form

Fltyeost) =t

whose execution is to be understood as changing (or defining, if there was
none) the value of the (location represented by the) function f at the given
parameters.

16 2. Abstract State Machines

Fig. 2.1 Control state ASM diagrams

if cond; & ctl_state = i
then ctl_state := j,
rule,

means
if cond,& ctl_state = i
then ctl_state := j,
rule,

Assume disjoint cond; . Usually the "control states" are notationally suppressed.

The global JVM structure is given by so called control state ASMs [3]
which have finitely many control states ctl_state € {1,..., m}, resembling
the internal states of classical Finite State Machines. They are defined and
pictorially depicted as shown in Fig. 2.1. Note that in a given control state
i, these machines do nothing when no condition cond; is satisfied.

The notion of ASM states is the classical notion of mathematical struc-
tures where data come as abstract objects, i.e., as elements of sets (domains,
universes, one for each category of data) which are equipped with basic op-
erations (partial functions) and predicates (attributes or relations). Without
loss of generality one can treat predicates as characteristic functions.

The notion of ASM run is the classical notion of computation of transition
systems. An ASM computation step in a given state consists in executing
simultaneously all updates of all transition rules whose guard is true in the
state, if these updates are consistent. For the evaluation of terms and formulae
in an ASM state, the standard interpretation of function symbols by the
corresponding functions in that state is used.

Simultaneous execution provides a convenient way to abstract from irrel-
evant sequentiality and to make use of synchronous parallelism. This mech-
anism is enhanced by the following concise notation for the simultaneous
execution of an ASM rule R for each z satisfying a given condition ¢:

forall z with ¢ do R

A priori no restriction is imposed neither on the abstraction level nor on the
complexity nor on the means of definition of the functions used to compute
the arguments ¢; and the new value ¢ in function updates. The major distinc-
tion made in this connection for a given ASM M is between static functions—
which never change during any run of M—and dynamic ones which typically
do change as a consequence of updates by M or by the environment (i.e., by
some other agent than M). The dynamic functions are further divided into

2.1 ASMs in a nutshell 17

four subclasses. Controlled functions (for M) are dynamic functions which
are directly updatable by and only by the rules of M, i.e., functions f which
appear in a rule of M as leftmost function (namely in an update f(s) := ¢ for
some s,t) and are not updatable by the environment. Monitored functions
are dynamic functions which are directly updatable by and only by the en-
vironment, i.e., which are updatable but do not appear as leftmost function
in updates of M. Interaction functions are dynamic functions which are di-
rectly updatable by rules of M and by the environment. Derived functions
are dynamic functions which are not directly updatable neither by M nor by
the environment but are nevertheless dynamic because defined (for example
by an explicit or by an inductive definition) in terms of static and dynamic
functions.

We will use functions of all these types in this book, their use supports the
principles of separation of concerns, information hiding, modularization and
stepwise refinement in system design. A frequently encountered kind of static
or monitored functions are choice functions, used to abstract from details of
static or dynamic scheduling strategies. ASMs support the following concise
notation for an abstract specification of such strategies:

choose z with ¢ do R

meaning to execute rule R with an arbitrary = chosen among those satisfy-
ing the selection property . If there exists no such z, nothing is done. For
choose and forall rules we also use graphical notations of the following
form:

choose x with ¢ forall x with ¢
R R

We freely use as abbreviations combinations of where, let, if then else,
case and similar standard notations which are easily reducible to the above
basic definitions. We usually use the table like case notation with pattern
matching and try out the cases in the order of writing, from top to bottom. We
also use rule schemes, namely rules with variables and named parametrized
rules, but only as an abbreviational device to enhance the readability or
as macro allowing us to reuse machines and to display the global machine
structure. For example

if ...a=(X,Y)...

then... X ... V...
abbreviates

if ...ispair(a)...

then ...fst(a)...snd(a)...,

sparing us the need to write explicitly the recognizers and the selectors. Sim-
ilarly, an occurrence of

18 2. Abstract State Machines

(@,)

where a rule is expected stands for the corresponding rule R (which is sup-
posed to be defined somewhere, say by (1, ...,z,) = R). Such a “rule call”
r(21,...,2,) is used only when the parameters are instantiated by legal val-
ues (objects, functions, rules, whatever) so that the resulting rule has a well
defined semantical meaning on the basis of the explanations given above.

2.2 Mathematical definition of ASMs

In this section we provide a detailed mathematical definition for the syn-
tax and semantics of ASMs. This definition is the basis of the AsmGofer
implementation of the ASMs for Java/JVM in this book.

2.2.1 Abstract states

In an ASM state, data come as abstract elements of domains (also called
universes, one for each category of data) which are equipped with basic oper-
ations represented by functions. Without loss of generality we treat relations
as boolean valued functions and view domains as characteristic functions,
defined on the superuniverse which represents the union of all domains. Thus
the states of ASMs are algebraic structures, also called simply algebras, as
introduced in standard logic or universal algebra textbooks.

Definition 2.2.1 (Vocabulary). A vocabulary X' is a finite collection of
function names. Each function name f has an arity, a non-negative integer.
The arity of a function name is the number of arguments the function takes.
Function names can be static or dynamic. Nullary function names are often
called constants; but be aware that, as we will see below, the interpretation
of dynamic nullary functions can change from one state to the next, so that
they correspond to the variables of programming. Every ASM vocabulary is
assumed to contain the static constants undef, True, False.

Ezample 2.2.1. The vocabulary X0 of Boolean algebras contains two con-
stants 0 and 1, a unary function name ‘-’ and two binary function names
‘+” and ‘*’. The vocabulary Y. of the programming language Scheme con-
tains a constant mil, two unary function names car and cdr and a binary
function name cons, etc.

Definition 2.2.2 (State). A state 2 of the vocabulary X is a non-empty
set X, the superuniverse of 2, together with interpretations of the function
names of X. If f is an n-ary function name of X, then its interpretation f%
is a function from X™ into X; if ¢ is a constant of X', then its interpretation

¢ is an element of X. The superuniverse X of the state 2 is denoted by |A|.

2.2 Mathematical definition of ASMs 19

Ezample 2.2.2. Two states 2 and B for the vocabulary X}, of Exam-
ple 2.2.1: The superuniverse of the state 2 is the set {0,1}. The functions
are interpreted as follows, where a, b are 0 or 1:

0% =0 (zero)

1* =1 (one)

—2q = l—a (logical complement)
a+%b := max(a,b) (logical or)

ax®*b = min(a,b) (logical and)

The superuniverse of the state 98B is the power set of the set of non-negative
integers N. The functions are interpreted as follows, where a, b are subsets
of N:

0% =0 (empty set)

1% = N (full set)

-Ba = N\a (set of all n € N such that n ¢ a)

a+®b = aUb (set of all n € N such that n € a or n € b)
ax®b = anbd (set of all n € N such that n € a and n € b)

Both states, 2 and B, are so-called Boolean algebras.
Other examples of algebraic structures are: groups, rings, lattices, etc.

Remark 2.2.1. Formally, function names are interpreted in states as total
functions. We view them, however, as being partial and define the domain of
an n-ary function name f in 2 to be the set of all n-tuples (ay, ..., a,) € |2A|™
such that f%(ay, ..., a,) # undef™.

Ezxample 2.2.3. In states for the vocabulary Y., of Example 2.2.1, we usu-
ally have: car®(nil®) = undef*, cdr®(nil®) = undef™.

The constant undef represents an undetermined object, the default value
of the superuniverse. It is also used to model heterogeneous domains. In
applications, the superuniverse A of a state 2 is usually divided into smaller
universes, modeled by their characteristic functions. The universe represented
by f is the set of all elements ¢ for which f(¢) # undef. If a unary function f
represents a universe, then we simply write ¢ € f as an abbreviation for the
formula f(t) # undef.

Definition 2.2.3 (Term). The terms of X' are syntactic expressions gener-
ated as follows:

1. Variables vy, v1, v2, ...are terms.

2. Constants c of X are terms.

3. If f is an m-ary function name of X and ¢,...,t, are terms, then
f(t, ..., t,) is a term.

Terms are denoted by 7, s, t; variables are denoted by z, y, z. A term which
does not contain variables is called closed.

20 2. Abstract State Machines

Example 2.2.4. The following are terms of the vocabulary X},q01:
+(1}07U1)7 +(1,*(U7,0))
The are usually written as vy + v; and 1+ (v7 % 0).

Since terms are syntactic objects, they do not have a meaning. A term can
be evaluated in a state, if elements of the superuniverse are assigned to the
variables of the term.

Definition 2.2.4 (Variable assignment). Let 2 be a state. A variable as-
signment for A is a function ¢ which assigns to each variable v; an element
C(vi) € |A]. We write (2 for the variable assignment which coincides with ¢
except that it assigns the element a to the variable z. So we have:

. [a, if v; = ;
CE(UZ) - {C(yi), otherwise.

Given a variable assignment a term can be interpreted in a state.

Definition 2.2.5 (Interpretation of terms). Let 2 be a state of X, ¢ be
a variable assignment for 2 and ¢ be a term of X'. By induction on the length
of t, a value [t]2 € |2 is defined as follows:

L. [[”i]]? = (i),
2. [[c]]gl =%,
3 [f(t, s ta)IF o= P20 - [Ea])

The interpretation of ¢ depends on the values of ¢ on the variables of ¢ only:
if ((z) = &(x) for all variables of ¢, then [¢[¥ = [¢]? (Coincidence Lemma).

Ezxample 2.2.5. Consider the state 2 for X0 of Example 2.2.2. Let ¢ be a
variable assignment with ((v) =0, ((v1) =1 and ((v2) = 1. Then we have:
[(vo + v1) * 1}2]]? =1.
The same term can be interpreted in the state B of Example 2.2.2. Let
&(w) =1{2,3,5}, &(v1) = {2, 7} and &(v2) = {3,7,11}. Then we have:
[(vo + v1) * 112]]? ={3,7}.

In the first case, the value of the term is a non-negative integer, whereas in
the second case the value of the term is a set of non-negative integers.

Definition 2.2.6 (Formula). Let X be a vocabulary. The formulas of X
are generated as follows:

1. If s and ¢ are terms of X, then s = t is a formula.

. If ¢ is a formula, then — ¢ is a formula.

. If ¢ and ¢ are formulas, then (p A), (¢ V ¢) and (¢ — @) are formulas.
. If ¢ is a formula and z a variable, then (Vz) and (3z ¢) are formulas.

=N

2.2 Mathematical definition of ASMs

The logical connectives and quantifiers have the standard meaning:

symbol | name meaning
- negation not
A conjunction and
\Y disjunction or (inclusive)
— implication if-then
v universal quantification | for all
3 existential quantification | there is

21

A formula s = t is called an equation. The expression s # t is an abbreviation
for the formula — (s = t).

In order to increase the readability of formulas parentheses are often omitted.
For example, the following conventions are used:

e AP Ax stands for ((@ AY) A X),
eV Vyx standsfor ((¢ V)V x),
© A — x stands for ((p A1) — x), ete.

Formulas can be interpreted in a state with respect to a variable assignment.
Formulas are either true or false in a state. The truth value of a formula in a
state is computed recursively. The classical truth tables for the logical con-
nectives and the classical interpretation of quantifiers are used. The equality
sign is interpreted as identity.

Definition 2.2.7 (Interpretation of formulas). Let 2 be a state of X, ¢
be a formula of X' and ¢ be a variable assignment in 2. By induction on the

length of ¢, a truth value [¢]2

[s = t]]%l

[A 12

[o vyl -
[— 92

[Va ol

Bze

H%

_ J True, 1f[[]]
False,

0therw1se
— § True, if [[cp]]?
False, otherwise.

True,
False,

\
-{
{ e
-{
-
-{

otherwise.

otherwise.

True,
False,

otherwise.

True,
False,

otherwise.

True,
False,

otherwise.

€ {True, False} is defined as follows:
[[t]]g‘)

= Fulse;

if [HC = True and [$]3 = True;
if [p]? = True or [¢] = True;
if [p]2 = False or [¢]2 = True;
if [ﬂca = True for all a € |2;

if ﬂ(p]]?% = True for some a € |2[;

22 2. Abstract State Machines

We say that a state 2 is a model of ¢, if [[go}]? = True for all variable
assignments (.

Example 2.2.6. The states 2 and B of Example 2.2.2 are models of the fol-
lowing equations:

(zty)+z=z+(y+2), (xy)xz=1xx(yx2),
:c—l—y—y—l—z TxY=1Y*x,

+(zxy) = zx(z+vy) =z,

+ (yx2) (Hy) (z+2), @x(y+2)=(zxy)+(zx2),

513-0-(x) 71 z*(—z) =0.

These formulas are called axioms of a Boolean algebra.

2.2.2 Transition rules and runs

In mathematics, states like Boolean algebras are static. They do not change
over time. In computer science, states are dynamic. They evolve by being
updated during computations. Updating abstract states means to change the
interpretation of (some of) the functions in the underlying signature. The
way ASMs update states is described by transitions rules of the following
form which define the syntax of ASM programs.

Definition 2.2.8 (Transition rules). Let X be a vocabulary. The transi-
tion rules R, S of an ASM are syntactic expressions generated as follows:

1. Skip Rule:
skip
Meaning: Do nothing.
2. Update Rule:
flt,. o tn) =5

Syntactic conditions:
— f is an m-ary, dynamic function name of X

— t,...,t, and s are terms of X
Meaning: In the next state, the value of the function f at the arguments
ty,...,t, is updated to s. It is allowed that f is a 0-ary function, i.e., a

constant. In this case, the update has the form ¢ := s.
3. Block Rule:
RS
Meaning: R and S are executed in parallel.
4. Conditional Rule:
if ¢ then R else S

Meaning: If ¢ is true, then execute R, otherwise execute S.

2.2 Mathematical definition of ASMs 23

5. Let Rule:
letz =tin R
Meaning: Assign the value of ¢ to z and execute R.
6. Forall Rule:
forall z with ¢odo R
Meaning: Execute R in parallel for each z satisfying .
7. Call Rule:
r(t, ..., tn)

Meaning: Call r with parameters t1,..., t,.

A rule definition for a rule name r of arity n is an expression
r(@,..., o) = R,

where R is a transition rule. In a rule call r(#, ..., t,) the variables z; in the
body R of the rule definition are replaced by the parameters t.

Definition 2.2.9 (ASM). An abstract state machine M consists of a vo-
cabulary Y| an initial state 2 for X, a rule definition for each rule name,
and a distinguished rule name of arity zero called the main rule name of the
machine.

The semantics of transition rules is given by sets of updates. Since due to the
parallelism (in the Block and the Forall rules), a transition rule may prescribe
to update the same function at the same arguments several times, we require
such updates to be consistent. The concept of consistent update sets is made
more precise by the following definitions.

Definition 2.2.10 (Update). An update for 2 is a triple (f, (a1,..., an), b),
where f is an n-ary dynamic function name, and ay, . . ., a,, and b are elements

of 2.

The meaning of the update is that the interpretation of the function f in 2 has
to be changed at the arguments ay, . .., a, to the value b. The pair of the first
two components of an update is called a location. An update specifies how the
function table of a dynamic function has to be updated at the corresponding
location. An update set is a set of updates.

In a given state, a transition rule of an ASM produces for each variable
assignment an update set. Since the rule can contain recursive calls to other
rules, it is also possible that it has no semantics at all. The semantics of a
transition rule is therefore defined by a calculus in Fig. 2.2.

24 2. Abstract State Machines

Definition 2.2.11 (Semantics of transition rules). The semantics of a
transition rule R of a given ASM in a state 2 with respect to a variable
assignment (is defined if and only there exists an update set U such that
[[R}]?1 > U can be derived in the calculus in Fig. 2.2. In that case [[R]]gl is
identified with U.

It can happen that the update set [[R]]gl contains several updates for the same
function name f. In this case, the updates have to be consistent, otherwise
the execution stops.

Definition 2.2.12 (Consistent update set). An update set U is called
consistent, if it satisfies the following property:

If (f,(a1,...,an),b) € U and (f,(a1,...,an),c) € U, then b = c.

This means that a consistent update set contains for each function and each
argument tuple at most one value.

If an update set U is consistent, it can be fired in a given state. The result
is a new state in which the interpretations of dynamic function names are
changed according to U. The interpretations of static function names are the
same as in the old state. The interpretation of monitored functions is given
by the environment and can therefore change in an arbitrary way.

Definition 2.2.13 (Firing of updates). The result of firing a consistent
update set U in a state 2 is a new state 9 with the same superuniverse as 2
satisfying the following two conditions for the interpretations of function
names f of X

1. If (f,(a1,...,a,),b) € U, then f®(ay,...,a,) = b.
2. If there is no b with (f,(a1,...,a,),b) € U and f is not a monitored
function, then f®(ay,...,a,) = f*(ay,. .., an).
Since U is consistent, for static and controlled functions the state 98B is de-
termined in a unique way. Notice that only those locations can have a new

value in state 28 with respect to state 2 for which there is an update in U.
(In this way ASMs avoid the so called frame problem.)

Definition 2.2.14 (Run of an ASM). Let M be an ASM with vocabu-
lary X, initial state 20 and main rule name r. Let ¢ be a variable assignment.

A run of M is a finite or infinite sequence By, B, ... of states for X' such
that the following conditions are satisfied:
1. Bg =2
2. If [[r]]?" is not defined or inconsistent, then 9B, is the last state in the
sequence.

3. Otherwise, 98,11 is the result of firing [[r]]?” in B,.

If we assume that for each rule definition r(z1, ..., 2,) = R of the machine M
the free variables of R are among 1, ..., T,, then a run is independent of the
variable assignment ¢ (see Exercise 2.2.2).

2.2 Mathematical definition of ASMs 25

Fig. 2.2 The semantics of ASM rules

[skip }]? > 0

[F(t) = s[¥ > {(f.a,b)} if o = [t and b = [s]¢

[RIE > U [SIZ >V
[RS]X > UUV

[RI? > U
[if ¢ then Relse S| > U

if [¢]2 = True

IS = v
[if ¢ then Relse S|? > U

if []? = False

[R]Z. > U

if a = [¢t]?
let z =tin R[? > U if a=[tl¢

[R]Ze > U, foreachac I

if I = A : [o]*
[forall z with ¢ do R]]%l > Uuer Ua 1 {a €| [[Soﬂc

= True}

a
T

[[R]]?‘—; > U if r(z) = R is a rule definition
[r@®IF > U and a = [t]?

26 2. Abstract State Machines

2.2.3 Syntactic sugar

To extend a subuniverse of the superuniverse by new elements we use the
following notation:

create xdo R
The meaning of this construct is
let z = frew(...)in R

where fpew(...) is a monitored function (possibly with parameters) which
returns a new element of the superuniverse which does not belong to any of
the subuniverses.

As mentioned above we sometimes use the following notation as syntactic
sugar for monitored choice functions:

choose z with pdo R
We understand this notation as an abbreviation for the rule
let z = f,(...) in R,

where f,(...) is an monitored choice function updated by the environment
which returns elements satisfying the selection condition ¢. Of course differ-
ent occurrences of choose have to be replaced by different choice functions
(possibly with parameters) to guarantee the independence of selection.

Another approach would be to add choose as a basic construct to the
syntax and to extend the calculus in Fig. 2.2 in the following way:

[R]Z. > U
choose z with pdo R]% > U
¢

This approach has the disadvantage that the semantics of a transition rule R
is no longer unique, because there can be different update sets U such that
[[R]]?I > U is derivable in the calculus.

2.2.4 Exercises

Exercise 2.2.1. Prove the following equation:
[(if ¢ then R, else Ry) S]]%l = [if ¢ then (R; 5) else (R2 S)]]?
Is the following equation true?
[S (if ¢ then R else Ry)[3 = [if ¢ then (S Ry) else (S Ry)[3
If yes, why? If not, give a counter example.
Exercise 2.2.2. The set of free variables of a term ¢ is defined as follows:

1. FV(v) :=={v}
2. FV(c):=10

