
Capturing Requirements by Abstract State Machines:

The Light Control Case Study

Egon B�orger

(Universit�a di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy

boerger@di.unipi.it { Visiting Microsoft Research, Redmond)

Elvinia Riccobene

(Universit�a di Catania, Dipartimento di Matematica e Informatica,

I-95125 Catania, Italy

riccobene@dmi.unict.it)

Joachim Schmid

(Siemens AG, Corporate Technology,

D-81730 Munich, Germany

joachim.schmid@mchp.siemens.de)

Abstract: We show how to capture informally stated requirements by an ASM (Ab-
stract State Machine) model. The model removes the inconsistencies, ambiguities and
incomplete parts in the informal description without adding details which belong to
the subsequent software design. Such models are formulated using application-domain-
oriented terminology and standard software engineering notation and bridge the gap
between the application-domain and the system design views of the underlying problem
in a reliable and practical way, avoiding any formal overhead. The basic model archi-
tecture reects the three main system parts, namely for the manual and automatic
light control and for handling failures and services. We re�ne the ground model into a
version that is executable by AsmGofer and can be used for high-level simulation, test
and debugging purposes.

1 Introduction

Despite intensive research in the area of requirements engineering there is no

agreement either on the process to follow or on the methods to use, for going

from an informally stated software engineering problem to a formulation which

can be integrated into the subsequent design process and therefore has to be

complete, consistent, abstract but rigorous enough to serve as faithful reference

for the design. We illustrate in this paper an approach to requirements capture,

which through analysis turns informally stated requirements into a rigorous re-

quirements speci�cation providing the possibility

{ to check by analytical means the internal consistency and the intrinsic com-

pleteness of the requirements, in terms of the rigorous speci�cation,



{ to analytically and experimentally check the correctness and completeness of

the rigorous speci�cation with respect to the informal requirements (faith-

fulness and adequacy),

{ to adapt the speci�cation to requirement changes which occur during the

design,

{ to formulate an unambiguous \contract" between the application domain

expert, the \customer", and the system designer. This contract represents

for the customer the binding development goal and for the system designer a

reliable, i.e. clear, stable and complete, starting point for the implementation.

These properties demand that the requirements speci�cation represents a

functionally complete but abstract description of suÆcient but not more than

necessary rigor which

1. can be read and understood by and justi�ed to the customer as corresponding

to what he wants,

2. de�nes every system feature as far as this is semantically relevant for the

work the user expects the system to achieve (avoiding underspeci�cation),

3. contains only what the logic of the problem requires for the system behav-

ior (avoiding overspeci�cation), i.e. does not rely upon any further design

decision belonging to the system implementation (like the representation of

objects, the serialization of parallel actions).

Such high-level speci�cations of requirements { so-called ground models

[B�orger 1999] { have to solve pragmatically the purely theoretically unsolvable

problem to link in a \justi�ably correct" way real-world problems to machine

models, i.e. vague largely natural language descriptions to formal code which is

governed by mathematical laws. They represent the authoritative formulation of

the requirements against which the implementation has to be checked and tested.

Using Abstract State Machines (ASMs), one can provide the needed conceptual,

experimental and mathematical justi�cation for abstract models of given require-

ments. Indeed, on one hand, ASM models can be tailored to the (abstraction

level of the) application domain problem and thus be analysed and compared

to the real-world situation by direct inspection. On the other hand, the rigorous

nature of ASMs allows one to formulate conditions for system validation (test)

and veri�cation (proof), for objective and repeatable machine or thought ex-

periments (elaboration of test plans), together with internal consistency checks.

In this paper, we illustrate this technique by turning the requirements given

for the Light Control Problem [Light 1999b] into an ASM which constitutes an

executable ground model, a satisfactory starting point for the proper software

design.



1.1 The process of ground model construction

For building a ground model there are three things we have to do. The �rst is to

collect the informally presented requirements information and to disambiguate

it, removing the unintended ambiguities and producing a suÆciently precise for-

mulation (elicitation). The unambiguous description extracts from the informal

requirements the involved basic domains (types of objects), the appearing ba-

sic operations and the basic relations among the objects and the domains, in

a word the \object-oriented" structure of the system. This part of the result-

ing description is often called model signature (and indeed will constitute the

signature of the ASM we are going to develop for the Light Control Problem).

During the following design, the signature is typically transformed into data

structures, header and interface de�nitions. The semantic link of the relevant

high-level terms to the application domain notions and to the basic operation

sequences is typically documented in a lexicon or through use cases (user scenar-

ios). Through checklists which relate informal to formal terms and vice versa, for

example by using hypertext links, one has a) to document that nothing has been

forgotten and b) to guarantee that the formalization is traceable. Through the

rather Socratic method of asking ignorant questions [Berry 1995] one can try to

make sure that the semantic interpretation of the informal problem description

is correctly captured in the mapping to the terms of the rigorous description.

The second thing to do is to structure the resulting description to make it

more transparent and more easely checked for internal consistency. Structur-

ing prepares the description for change by parameterization and abstraction. It

also reveals similarities and commonalities among the requirements. During this

structuring work, it is crucial not to loose traceability to the informal require-

ments. This structuring work has also to make explicit the basic architectural

features which are implicitly imposed by a possible solution for the given problem

under the given constraints.

The third step is to complete the resulting description by exhibiting and

�lling in, typically through additional requirements coming from the customer,

all the information which is missing in the informal problem description but

is necessary for a full problem statement. Typically this includes the analysis

of boundary conditions, of exception handling, of robustness features, etc. This

activity eventually turns the description into a ground model of the system

to be developed. This high-level model incorporates all the requirement (not

design) decisions which are relevant from the point of view of the application

domain (customer system view) and have to be documented explicitly during

the process of building the ground model. It helps checking and establishing the

completeness and correctness of ground models that ASM models are machines,

easy to understand for the practitioner, which can also be made executable so

that high-level features of the system to be developed { in particular scenarios



SIMULATOR
adding definitions

Application Domain Knowledge

using data from
application domain

PROVER

TEST
CASES

adding assumptions

Informal Requirements

Ground Model

Validation Verification

 
+

domainsdynamic functions
transition system

Code

reflecting
refinement

design

stepwise

external functions

manual

mechanized

decisions

Figure 1: Development Process

{ can be simulated and visualized by the customer.

This process of ground model construction is usually not linear, but iterative,

and typically is accompanied by extensive simulation, high-level proving activ-

ities, layout of test plans, etc. (see [Figure 1]). Nevertheless, it is important to

document not only the executable code but also the �nal ground model { which

in the worst case will be completely de�ned through later changes which show

up only during implementation { to guarantee the traceability of the initial

requirements to the code and to enhance the maintainability and extendabil-

ity of the resulting system. This implies in particular that during the design

process, the ground model is maintained and kept to correspond to the actual

design. Since ground models \are easier to read than the programs that they

describe"[Parnas 1999, p.195], they support the software developers' daily work

and improve its quality as advocated by Parnas.

1.2 Application to the Light Control Problem

The following sections illustrate for the Light Control Problem this requirements

engineering process by explicitly de�ning the signature, the structure, and the

complete list of additional requirement decisions which together result in the



construction of an ASM ground model for the Light Control Problem. We have

made this ASM executable using AsmGofer [Schmid 1999a], essentially by pro-

viding de�nitions of the features which remain abstract in the ground model, so

that the user can do experiments with the requirements (run user scenarios and

test suites).

We will concentrate our attention here on the ground model construction as

a method to disambiguate informally presented requirements, to structure them,

to analyse them (with respect to internal consistency and correctness) and to

complete them, from the customer's, not the designer's point of view, in a way

which makes them prototypically executable. As a consequence in this paper we

do not investigate the layout of test plans from the ground model, and we also do

not investigate any properties one might wish to be proved for the ground model.

Furthermore we do not adhere to any systematic documentation or traceability

practice, as is mandatory for industrial applications of the method. In particular,

we do not document here the iterative process of ground model construction

(which includes our reaction to the customer feedback [Light 1999a]), but only

its �nal outcome.

We do however list explicitly all those additional requirements which we

introduce along the way in order to disambiguate the given informal require-

ments, to make them consistent and reasonably complete. This requirements

completion is a crucial part of capturing requirements and in practice has to

be worked out in close cooperation with the customer. The present problem

description [Light 1999b], despite repeated revisions due to customer feedback

[Light 1999a] reported in the introductory note, still contains numerous inconsis-

tencies, incoherences and ambiguities which showed up during the ground model

construction. This fact is typical and shows the necessity to build requirements

ground models as a safe basis for software design. Here are some examples of

problems we identi�ed in the informal requirements: missing priority require-

ments to avoid inconsistencies between actions involving \shared actors" (in

particular between manual and automatically triggered actions); the inconsis-

tency of the informal requirements concerning the light scene upon reentering

a room; the ambiguity of notions like room occupation or uncontrollability of

hallway light; the incomplete de�nition of various basic concepts like switching

o� lightgroups, pushing buttons, selecting ambient light scenes, etc. The com-

plete list appears in the appendix and is explained in the following sections. If

our decisions for disambiguating the informal requirements do not always reect

the result of the customer feedback [Light 1999a], as one reviewer pointed out,

this is because our model has been built and made executable for the Dagstuhl

meeting [B�orger et al. 1999a], long before that customer feedback became avail-

able. The interested reader is invited to experiment with adapting our model to

di�erent decisions, to experience how naturally ASM models can be extended



or otherwise modi�ed. For this very same reason of \design for change" we also

pay attention to build our model in a parametric way, exploiting the abstraction

features o�ered by ASMs.

2 Notation and Prerequisites

We use olny standard notation and therefore invite the reader to skip this section

and to come back to it only should the necessity arise. Our notation includes

ASMs, which represent a semantically well-de�ned, precise form of widely used

pseudo-code over abstract structures. We provide in the rest of this section some

intuitive explanations which should suÆce to correctly understand and use ASMs

for turning informally stated requirements into a rigorous form. We refer the

reader to [Gurevich 1995] for a detailed mathematical de�nition.

The states of ASMs are arbitrary structures in the standard sense they are

used in mathematical sciences, i.e. domains of objects with functions and pred-

icates de�ned on them. The basic operations of ASMs are guarded destructive

assignments of values to functions at given arguments, expressed in the following

form:

if cond then Updates

where cond is an arbitrary condition (boolean expression) formulated in the

given signature, Updates consists of �nitely many function updates:

f (t1; : : : ; tn) := t

which are executed simultaneously. The terms t1; : : : ; tn are arguments at which

the value of the arbitrary function f is set to t . For technical convenience we

treat predicates as boolean-valued functions.

An ASM M is a �nite set of rules for such guarded multiple function updates.

The computation of an ASM is de�ned in the standard way transition system

runs are de�ned. Applying one step of M to a state A produces as next state

another state A0, of the same signature, obtained as follows: First evaluate in A,

using the standard interpretation of classical logic, all the guards of all the rules

of M. Then compute in A, for each of the rules of M whose guard evaluates to

true, all the arguments and all the values appearing in the updates of this rule.

Finally replace, simultaneously for each rule and for all the locations in question,

the previous A-function value by the newly computed value if no two required

updates contradict each other. The state A0 thus obtained di�ers from A by the

new values for those functions at those arguments where the values are updated

by a rule of M which could �re in A. The e�ect of an ASM M, started in an

arbitrary state A, is to repeatedly apply one step of M as long as an M-rule can

�re. Such a machine terminates only if no rule is applicable any more (and if



the monitored functions do not change in the state where the guards of all the

M-rules are false).

We freely use standard notational extensions like case of, let and where. We

also use the additional ASM rule construct forall x with P do R with the intended

meaning that rule R is executed simultaneously for all values of x which satisfy

the property P . We also use macros, parameterized ASMs and a natural concept

of submachines which are de�ned more precisely in [B�orger and Schmid 2000].

In addition we make use of the ASM function classi�cation which we are going

to explain below.

It turned out to be practically useful to distinguish, in an ASMM , basic func-

tions from derived functions (which are de�ned in terms of basic ones). Many

requirements can be formalized in this way, by reducing them through de�ni-

tions to basic terms. This simple technique, long established in mathematical

sciences, provides a powerful high-level modularization and information hiding

mechanism.

Within derived or basic functions, static functions, which remain constant

duringM -computations, are distinguished from dynamic ones, which may change

from M -state to M -state. Many application domain features showing up in re-

quirements are of a static nature and can be described independently of the dy-

namics of the system to be built. This separation of concerns helps enormously

to keep high-level models of requirements small and transparent, graspable by

the human reader, avoiding the rightly criticised [Parnas 1999] size explosion

coming with most formalization methods in the literature.

Adapting the terminology introduced in Parnas' Four Variable Model

[Parnas and Madey 1995] we distinguish among the dynamic functions the con-

trolled ones from the monitored ones which we also call in functions. The con-

trolled functions are subject to change by an update appearing in a rule of

M . The monitored functions can change only due to the environment or, more

generally, due to actions of other agents. Controlled functions can be read and

written by M , they are functions f of M -updates f (t1; : : : ; tn) := t and are

allowed to appear also in the arguments and values ti ; t . The in-functions typ-

ically serve to read system input (dynamic interface event). The way they are

updated depends on the speci�c system. The natural pendant to in functions

are out-functions which can only be written by M , i.e., appear only as f in M -

updates f (t1; : : : ; tn) := t but nowhere else, in particular not in ti ; t and not in

rule guards. Last but not least, there are shared functions which can be writ-

ten and read by M and by some other agent and for whose consistency usually

a protocol has to be devised. Shared functions help to naturally reect multi-

agent computations and combined read and write use of locations, like ports

in chip design which are used for both input and output. This classi�cation is

pictorially represented in [Figure 2] and extends the classi�cation appearing in



function/relation

dynamic

basic derived

static static

controlled sharedin out

Figure 2: ASM Function Classi�cation

[B�orger 1999].

For the case study to be discussed here, we use a particular form of monitored

functions, namely events which typically appear in the guards of rules and for

which it is assumed that they are consumed by �ring the rule (read: their value is

reset to undef when the rule is applied). For the case study we deliberately leave

the details of the event model open and limit ourselves to specify as contraints

those conditions which are explicitly imposed by the requirements. In the follow-

ing we need in particular the case of boolean-valued events which, by becoming

true, enable a rule to be �red and become instantly false by �ring the rule. The

special feature of events is that if e enables at clock time (computation time) t

a rule which is �red, its being consumed does not exclude that e may have an

enabling value again at clock time t + 1, namely in the case when, between the

system's computation moments t and t+1, the event happens once again. These

two instances represent di�erent occurrences of the event.

For modularization purposes we use parameterized submachines in a way

which supports established programming practice. For a precise de�nition of

these concepts, in the context of parallel execution of multiple ASM rules, we

refer the reader to [B�orger and Schmid 2000].

3 Capturing the Requirements

In this section we analyse the given Light Control requirements and express them

in a mathematical form. We introduce formal pendants (the signature) for the

various objects and operations mentioned in the document and use de�nitions

and algorithmic notation (ASM rules) to express their static and dynamic de-



pendencies. To facilitate checking the correctness and the completeness of our

modeling, we largely follow the order in which the requirements are presented in

[Light 1999b]. This implies that we develop the model in a bottom up manner,

although for a better understanding of the resulting entire model, a top down

reading will be helpful.

After the short introduction, [Light 1999b] begins with the oor description

(Part 2) to de�ne the signature of the system to be developed, i.e. a listing of

its components with the associated data structures. We reect this signature

de�nition by listing and classifying the basic classes of system objects and their

properties. In Part 3, [Light 1999b] distinguishes three categories of informal

needs, the user needs, the facility manager needs, and fault tolerance. We obtain

a modularization of the requirements by parameterizing and grouping the user

and the facility manager needs into the requirements for the possible manual

interactions of the user or facility manager with the control system, such as

pressing buttons (reecting essentially Section 3.1 of [Light 1999b]), and into the

automatic actions which are triggered by the control system, such as switching

o� light in unoccupied rooms. At the end we describe the malfunctions (reecting

Section 3.2 of [Light 1999b]).

This is already a good place to introduce the formal representation of a

distinction which is made in [Light 1999b] for each category of needs, namely

between actions which are triggered by the user or the facility manager and

actions which are triggered by the control system (due to some calculation on

the basis of external information). We express this distinction by a dynamic

controlled function mode which indicates whether the current light setting op-

eration in a room has been done manually, by the user or the facility manager,

or automatically. In an object-oriented perspective this function can be thought

of as being parameterized by rooms.

3.1 Basic objects and operations (Signature)

The basic objects appearing in the oor description are rooms and hallways,

more precisely hallway sections. They are associated with light groups (window

and wall ceiling lights for rooms and ceiling lights for hallways) which come

with operations of pushing various buttons (on the wall or a control panel)

and of actuating dimmers. Rooms and hallways are also associated with various

motion detectors, light sensors, and door closing contacts. There are also status

lines which report status values of the associated light groups.

The staircases, which are mentioned in the Floor Description, enter the prob-

lem really only through their motion detector. To avoid the proliferation of ir-

relevant object types we include these staircase motion detectors in the class of

motion detectors which are related to the doors for entering a hallway from a

staircase.



These objects enter our formalization as parameters of the various actions

which are described in the following sections. In a systematic documentation of

the requirements elicitation one has to list explicitly the complete signature; the

basic objects have to be de�ned through the lexicon, their properties as well

as the conditions imposed on the operations have to be listed systematically,

making sure that the list is complete and correct with respect to the application

domain information which underlies [Light 1999b]. We abstain from doing this

here; any reliable, systematic method can serve this purpose.

3.2 User interactions (Manual light control)

[Light 1999b] states in Section 2.1-2.4, Paragraphs 7-11 that every room has two

wall switches, one for the wall ceiling light group and the other for the window

ceiling light group. The behavior, if the corresponding push button is pushed, is

formulated in Section 2.1.2 as follows.

1. If the ceiling light group is completely on, it will be switched o�.

2. Otherwise it will be switched on completely.

We capture this requirement with the rule Room wall button. This rule is pa-

rameterized over a room and a light group. The fact that pressing the button is

an external event over which the system has no control is reected by an event

function lightgroup wall button pressed which is supposed to become true when

the corresponding button has been pressed and to become false when the rule

�res whose guard contains the event function (PushButtonReq)1. This inter-

pretation resolves the incompleteness of the de�nition for push button in the

dictionary where it is not made clear when the light e�ect should take place, at

the beginning or at the end of the possibly prolonged button pushing action.

Room wall button(room; lightgroup) =

if lightgroup wall button pressed(room; lightgroup) then

if lightgroup is completely on(room; lightgroup) then

Switch lightgroup o� (room; lightgroup)

else

Switch lightgroup completely on(room; lightgroup)

Notation: We use italic font for rules and functions. Rule names always start

with an initial capital letter and function names with a lower case letter. Local

variables are denoted in roman font and we use typewriter for constants.

[1] Such additional requirements are provided for the purpose of a systematic doc-
umentation of all the decisions taken to interpret or extend the requirements in
[Light 1999b].



Switching a light group o� and switching it completely on is de�ned as setting

all lights in the corresponding room to minDimValue or maxDimValue respectively
2. This de�nition resolves the apparent contradiction in U1, considering it as safe

to allow a person who wants to rest in a room to choose a light scene in which

all the lights are switched o� and the room is dark (U1Req).

As explained above, mode determines for each room whether the light was

set by the user (Manual) or by the control system (Ambient)3.

Switch lightgroup o� (room; lightgroup) =

mode(room) := Manual

forall light 2 lights in group(room; lightgroup)

Switch light(room; light; minDimValue)

Switch lightgroup completely on(room; lightgroup) =

mode(room) := Manual

forall light 2 lights in group(room; lightgroup)

Switch light(room; light; maxDimValue)

Following Section 2.6, in every hallway section there are switch buttons, linked

in parallel (see 2.6.3). The light in the hallway section has to be on if one button

is defective (any hallway button defect). This is according to NF5 where we

interpret \not controllable manually" in view of the safety requirement U1, as

meaning that at least one hallway button is defective (NF5aReq). It would be easy

in our ASM model to change this to a \local" interpretation of \not controllable

manually" in NF5 by parameterizing any hallway button defective by buttons

as arguments. The event function hallway button pressed indicates that a switch

button has been pressed and becomes false by �ring the rules in which the event

appears in the guard.

Hallway button(hallway) =

if hallway button pressed(hallway) ^

:any hallway button defect(hallway) then

if light is on(hallway) then

Switch lights o� (hallway)

else

Switch lights on(hallway)

According to the dictionary de�nition of \push button", switching light on or

o� manually in rooms and hallways is similar. We reect this uniformity by

[2] Following good system development practice we use symbolic names rather than
constants, like 0% and 100%.

[3] This interpretation of Ambient does not preclude to let the light from the sun be
part of what is understood by the environmental light.



introducing the term location standing for rooms and hallways. Switching on or

o� for a location is de�ned as setting all lights of the location to minDimValue or

maxDimValue respectively. We group these lights for short as lights at(location).

Although for uniformity reasons we formulate Switch lights on for locations, we

will use Switch lights on only for hallways, because by requirement U5,U6,U9

and the dictionary entry \light scene", the light in a room is switched on only

for a lightgroup as a whole.

Switch lights on(location) =

forall light 2 lights at(location)

Switch light(location; light; maxDimValue)

Switch lights o� (location) =

forall light 2 lights at(location)

Switch light(location; light; minDimValue)

if location is room(location) then

mode(location) := Manual

The facility manager can switch o� the ceiling light in a room or hallway section

if the room or hallway section is not occupied (FM6).

Manually switch o� (location) =

if manually switch o� pressed(location) ^ :occupied(location) then

Switch lights o� (location)

The rule uses the function occupied . [Light 1999b] does not describe how to

determine occupation. Rooms and hallways have motion sensors but these can

sense only motion. Imagine somebody is sitting for a while quietly on his chair

in a room so that the motion sensor reports no motion. However, the room is

still occupied. Therefore a reasonable de�nition for a location to be not occupied

is that there has been no motion for a period of max quiet time (RoomOccu-

pationReq). It remains to be determined whether this function is �xed once and

for all or whether it can be changed and what is its concrete value for a given

system.4 To reect the malfunction requirement NF4 we include the case that a

location is occupied if at least one of its motion detectors does not work correctly,

so that in this case the light cannot be switched o� by the facility manager. To

guarantee the consistency between user and facility manager light updates in the

rules Room wall button, Hallway button, Manually switch o� , Control panel

we assume that the motion sensor detects when users push buttons (Motion-

DetectorReq). This is a semantic constraint which relates the notion of being

occupied to the event functions pressed associated to buttons.

[4] Dan Berry remarked correctly that this de�nition does not take into account the case
of somebody taking a nap who would not like to be disturbed by the light coming
back due to moves in the sleep.



occupied(location) =

current time � last motion(location) � max quiet time

The dynamic function last motion stores the time of the last motion and we

update the function by observing the motion detector. The monitored function

somebody is moving yields the value of its location's motion detector. To satisfy

NF5, we assume that the function somebody is moving is true if the correspond-

ing motion detector is defect (NF5bReq).

Observe motion detector(location) =

if somebody is moving(location) then

last motion(location) := current time

There is one more action which is triggered by user interaction. According to

U5,U6,U9, one can use the control panel to control the ceiling lights and the

light scene. The ceiling lights can be switched on and o�. Before collecting the

requirements for the light scene we �rst analyse the overall functionality of the

control panel. We use an additional event function switch value to express the

on or o� position chosen by the user for the switch in question.

Control panel(room; switch) =

if switch pressed(room; switch) then case switch of

AmbientSelection!

Activate light scene(room; last light scene(room))

LightGroup(lg)!

case switch value(room; switch) of

On! Switch lightgroup completely on(room; lg)

Off! Switch lightgroup o� (room; lg)

SceneSelection!

case switch value(room; switch) of

Scene(s)! Set light scene(room; s)

One has to guarantee that simultaneous pushing on wall buttons and on the

control panel does not produce e�ects which exclude each other. One can for

example assume that the hardware solves this conict, or one could establish a

�xed priority (PushButtonReq).

The preceding de�nition ful�lls the informal needs U5, U6, and U9. The but-

ton AmbientSelection activates the light scene which was set by the action

SceneSelection using the control panel.

Set light scene(room; scene) =

if mode(room) = Ambient then

Activate light scene(room; scene)

else

last light scene(room) := scene



The rule Set light scene for scene selection in ambient mode changes the current

activated light scene and in manual mode simply stores the selected value in the

dynamic function last light scene. In the second case the scene can be activated

by pressing AmbientSelection.

A light scene contains an ambient light level and an ordered list of lights

together with a dim value for each light (see Requirement 2.10, Paragraph 19).

As the dictionary indicates under the entry light scene, the control system has

to switch on the lights in the given order with the corresponding dim value

in order to achieve the speci�ed ambient light level. Reecting FM1 the control

system must also take into account the ambient light from outside. We capture

these requirements by introducing a function lights to turn on which computes

an ordered set containing all lights that should be switched on in this order

together with their dim values (LightSceneReq). Introducing an order makes the

dictionary de�nition of \light scene" uniform with respect to the way light scenes

and their light groups are built from components, achieving easy adaptability to

changing requirements. The function depends for each room on the value of the

outdoor light sensor and of the activated light scene. This speci�cation leaves

still much freedom for detailing the structure of light scenes. The fact that we use

this function only for rooms and not for hallways reects that the requirements

FM1 and NF3 are useless for hallways if they have no windows, as is suggested by

Figure 1 in Paragraph 5 of [Light 1999b] (HallwayReq)5. Note that the derived

function lights to turn on (see below) takes into account the information about

malfunctioning lights.

Activate light scene(room; scene) =

mode(room) := Ambient

last light scene(room) := scene

if scene = default light scene(room) ^

outdoor light sensor defect(room) then

Switch lights on(room)

else

let lights on = lights to turn on(room; outdoor sensor(room); scene)

forall (light; value) 2 lights on

Switch light(room; light; value)

forall light 2 lights at(room) n fl j (l; v) 2 lights ong

Switch light(room; light; minDimValue)

This rule also correctly reects the requirement NF2:

[5] FM1 and NF3 are useful however if, as one reviewer remarked, light should be taken into
account which may reach hallways through open doors of rooms. It is straightforward
to adapt our model to take also such an interpretation of the requirements into
account.



If any outdoor light sensor does not work correctly, the default light

scene for all rooms is that both ceiling light groups are on.

Also the part of NF1 which complements NF2 is reected by the assumption

that the value of outdoor sensor(room) remains constant if the sensor does not

work correctly (OutdoorSensorReq). This assumption reects that NF1 is not a

requirement on the controller, but on the way the sensor values are transmitted

as input to the controller.

Anticipating the rule Use daylight below we point out already here that the

de�nition of Activate light scene contains a decision about the interpretation

of requirement U10. Since nothing is said about what it means to maintain the

ceiling light group on a given light scene, we interpret this as requesting that the

ceiling lights are set to minDimValue if they do not enter explicitly the lights to

be turned on for the given light scene (U10Req).

The control panel also allows to set the value T1 for a room (U7). This

is formalizable by updates of a corresponding function t1 { similarly for FM4,

FM5. We group them into the Set parameters part of the Failure and service

submachine.

3.3 Automatic light control

The automatic control system is required to be able to switch on and o� any

light in a room or in a hallway section. Switching on is used to ensure that there

is safe illumination in the room or hallway (U1, U13, U14). The lights in the

hallway sections are not dimmable so that switching on can be done there only

completely. Switching on is triggered by the two events (i) motion in the hallway

(somebody is moving) and (ii) a door is open (some door is open).

Auto switch on in hallway(hallway) =

if (somebody is moving(hallway) _ some door is open(hallway)) ^

light is o� (hallway)

then

Switch lights on(hallway)

Switching on the light in a room is more complicated. According to U3 and U4

one has to distinguish two cases:

U3 If the room is reoccupied within T1 minutes after the last person has left the

room, the chosen light scene has to be reestablished.

U4 If the room is reoccupied after more than T1 minutes since the last person

has left the room, the default light scene has to be established.



In the �rst case, instead of establishing the chosen light scene we use the last

light scene (U3Req) since otherwise the requirements would be incoherent, as

the following example shows. By the de�nition in the dictionary in Part 4 of

[Light 1999b], the chosen light scene is the scene selected with the control panel.

Imagine the following scenario:

1. Person A enters the room and selects scene s .

2. Person A leaves the room for more than T1 minutes and no other person

enters the room.

3. Person B enters the room. According to U4, the default light scene should

be established.

4. Person B does not change the light scene and leaves the room.

5. Person B enters within T1 minutes. According to U3, we should establish

the chosen light scene s .

As one can see Person B , upon entering the room for the �rst time, gets the

default light scene and, upon reentering, gets the chosen light scene of Person

A. This seems to be a aw in [Light 1999b] and we therefore select the last light

scene. For the reasons explained above we abstract from the value T1 and use

the function recently occupied .

Auto switch on in room(room) =

if (somebody is moving(room) _ some door is open(room)) ^

light is o� (room)

then

Activate light scene(room; scene)

where scene = if recently occupied(room) then

last light scene(room)

else default light scene(room)

recently occupied(room) = current time � last motion(room) � t1(room)

We do not commit here to any particular de�nition of default light scene (De-

faultLightSceneReq). The de�nition in the dictionary is probably not reasonable

because with that de�nition, requirement U4 makes no sense.

The control system switches o� the light in a room or in a hallway section

if the location is not occupied for T3 or T2 minutes respectively (FM2, FM3).

In accordance with requirement NF5 we do not switch o� the light in a hallway

section if one of its buttons is defective. To reect the malfunction condition NF4,

we stipulate that occurrence of a malfunction for a motion sensor is interpreted

as presence of motion so that the location appears as occupied.



Auto switch o� (location) =

if location is hallway(location) ^ any hallway button defect(location)

then skip

else

if :occupied(location) ^ no motion for long time(location) ^

:some door is open(location) ^ :light is o� (location)

then Switch lights o� (location)

no motion for long time(location) =

if location is room(location) then

current time � last motion(location) > t3(location)

else

current time � last motion(location) > t2(location)

The control system should use daylight to achieve the desired ambient light level

(FM1). We model this by reactivating the current light scene if the room is in

ambient mode and there is no request for the ceiling lights. The following rule

also reects the informal need U10.

Use daylight(room) =

if no event for ceiling light(room) ^ mode(room) = Ambient then

Activate light scene(room; last light scene(room))

U2 is ful�lled automatically in our requirements model because an ASM state

remains unchanged unless a speci�c (user or control system) action triggers a

change for the value of some speci�ed functions for some speci�ed arguments.

3.4 Failure and service

The last part of [Light 1999b] is about malfunctions. There are two actions to

describe, namely identifying and handling malfunctions. Identifying malfunc-

tions is a rather diÆcult application domain and not so much a software design

problem. [Light 1999b] does not provide any further details on this issue so that

we assume having a function malfunction occurs telling whether a component

works correctly or not; a component may be a hallway button, a light sensor, a

motion sensor or any light. For building a concrete plant with its control soft-

ware, this function has to be further speci�ed by the customer, together with

the support requested in FM8 for �nding the reasons for occuring malfunctions.

To reect the malfunction requirement FM1 we stipulate that this function can

also be updated manually.



Malfunction =

forall component 2 all components

if malfunction occurs(component) then

Handle malfunction(component)

According to U8, FM7, and FM10, the handling of malfunction logs the correspond-

ing information. In the case in which a hallway button is defective we switch on

the lights in that hallway (NF5). In case a hallway motion detector is defective, by

assumption (NF5bReq) the function somebody is moving is true and we there-

fore switch on the lights by rule Auto switch on in hallway . In the following

rule we use i as index which has to match the name of the corresponding device

(sensor, button)

Handle malfunction(component) =

case component of

OutdoorLightSensor(i)!

forall room 2 rooms under lightsensor(i)

Inform user(room; LightSensorDefect(i))

Inform facility manager(LightSensorDefect(i))

Write log in database(LightSensorDefect(i))

MotionSensor(location; i)!

if location is room(location) then

Inform user(location; MotionSensorDefect(location; i))

Inform facility manager(MotionSensorDefect(location; i))

Write log in database(MotionSensorDefect(location; i))

HallwayButton(hallway; i)!

Switch lights on(hallway)

Inform facility manager(HallwayButtonDefect(hallway; i))

Write log in database(HallwayButtonDefect(hallway; i))

Luminaire(location; light)!

Inform facility manager(LightDefect(location; light))

Write log in database(LightDefect(location; light))

To satisfy requirement NF9 we add a rule

Detect unreasonable input

Since [Light 1999b] contains no information on the meaning of NF9, we leave it

to further re�nement steps to provide a detailed de�nition, resulting from the

discussion with the application domain expert who is supposed to know what

inputs have to be considered as \unreasonable".

The system should provide reports on energy consumption (FM9). We formal-

ize this requirement by introducing a dynamic function dim value storing the



current dim value of a light. Switching the light is de�ned as setting a dim value.

If the dim value is less than 10% of the maximum dim value, then the light is

switched o� (see [Light 1999b], Table 2):

Switch light(location; light; value) =

if value < maxDimValue=10 then

status of light(location; light) := Light Off

else

status of light(location; light) := Light On

dim value(location; light) := value

Based on the values in dim value, we can de�ne the function power consumption

computing the current power consumption. The function has to take into account

the malfunctioning of lights:

power consumption =
P

[p(l; dim value(l)) j l 2 dom(dim value)]

where p(l; v) = case light defect(l) of

NotDefect! c � v

DefectOn ! c � maxDimValue

DefectOff! c � minDimValue

We use the constant c to adjust the dim value to the electrical power. The energy

consumption is the integral of the power consumption over the time. Therefore

we store the power consumption in each step in a dynamic function and de�ne

the energy consumption as the product of the interval te with the sum of the

power consumptions. We assume that the following rule will be executed every

te minutes.

Report energy consumption =

consumption(current time) := power consumption

energy consumption(current time) := te �
P

t

consumption(t)

3.5 The requirements ground model

The model which results from the formalization in the preceding subsections is

the following ASM, consisting of three submachines:

Light =Manual light control

Automatic light control

Failure and service

TheManual light control actions were described in [Section 3.2]. We introduced

rules for switching light on and o� in hallways and in rooms and described the

functionality of the control panel.



Manual light control =

forall location 2 all locations

Manually switch o� (location)

if location is room(location) then

Room wall button(location; LightGroupWall)

Room wall button(location; LightGroupWindow)

Control panel(location; switch(location))

if :location is room(location) then

Hallway button(location)

The second machine Automatic light control consists of automatically switching

light on and o� and using daylight to achieve the desired light level. Due to

automatically switching lights on and o�, we have also to observe the motion

detectors. The rules are described in [Section 3.3].

Automatic light control =

forall location 2 all locations

Auto switch o� (location)

Observe motion detector(location)

if location is room(location) then

Auto switch on in room(location)

Use daylight(location)

if :location is room(location) then

Auto switch on in hallway(location)

The last of the three submachines is Failure and service, containing handling

of malfunctions, detecting unreasonable inputs, reporting energy consumption,

and setting parameters (reecting FM4, FM5, FM11, U7).

Failure and service =

Malfunction

Detect unreasonable input

Report energy consumption

Set parameters

One can use di�erent policies for the synchronization of the three machines of

Light which has to guarantee the consistency of the three machines' update

actions in the shared data area. One possibility is to make speci�c priority or

scheduling assumptions on possibly conicting actions, as we have indicated at

various places during the formalization of the requirements. Another possibility

is to impose a concrete scheduling on the coordination of the three submachines.

Such a global policy relegates the consistency problem to the local levels of

the single submachines. For our ground model, we can assume, for example for



its executable version explained in the next section, that the manual and the

automatic submachines alternate at a �xed rate { fast enough to guarantee the

desired reaction time of the light system to user or environment input { and

that the failure and service submachine is executed in between with a certain

predescribed frequency, again determined by the time requirements for failure

handling and general services. [Light 1999b] leaves all these issues completely

open. In the ground model we could have reected this freedom explicitly by

introducing appropriate choice functions which determine at which time which

submachine is running. For the executable version of our ground model we had

to make some concrete realistic decisions.

We assume starting at an initial state in which all rooms and all hallways are

empty and all lights are o�. Especially, we assume the following initial values for

our dynamic functions:

mode(room) = Manual

last light scene(room) = default light scene(room)

last motion(location) = 0

4 Ground model validation

In this section we provide further details for the macros used in the previous

sections which allow us to turn the ground model into an executable model

which has been implemented in AsmGofer and is available electronically (see

[Schmid 1999b]). This executable ground model version allows the customer to

validate [Light 1999b] by experiments with our model. A preliminary version

of this simulation model was presented in a demo at the Dagstuhl seminar on

Requirements Capture [B�orger et al. 1999b]. The de�nitions presented in this

section have to be added to the requirements which occur in [Light 1999b] and

can be viewed as further decisions made for directing the real (not any more

prototypical) design. We skip the standard data structures needed to encode

locations, lights, light groups, actuators, light sensor, etc.

Inform user(room;malfunction) =

user information(room; current time;malfunction) := True

Inform facility manager(malfunction) =

facility manager(malfunction; current time) := True

Write log in database(malfunction) =

database(current time;malfunction) := True

Typically the physical realization of Inform user will be required to appear on

the control panel display, but other solutions are possible.



There are several derived functions which can easily be de�ned and are needed

for an executable version. Some of these de�nitions are listed below:

lightgroup is completely on(room; lg) =

8 l 2 lights in group(room; lg) : dim value(room; l) = maxDimValue

light is on(hallway) =

8 l 2 lights at(hallway) : status of light(hallway; l) = Light On

light is o� (location) =

8 l 2 lights at(location) : status of light(location; l) = Light Off

5 Conclusion

By capturing the Light Control Problem requirements as an ASM and making

the ASM executable to support high-level simulation and debugging, we have

shown how a piece of theory { the concept of ASM { can be used with prac-

tical advantage in a sensitive part of the software development process. The

reader may wish to check that in elicitating, specifying and implementing the

informal requirements, we have reected all the requirements which are listed in

the Problem Description, including the real-time aspects, except U11, U12, and

NF6-8 which are about norms and installation issues. We have disambiguated

the requirements, removing inconsistencies and incoherencies, and have com-

pleted them through additional conditions which for documentation purposes are

listed in the appendix. The semantic relevance of these additional requirements

is di�erent from that of those additional de�nitions which we have provided as

re�nements of the ground model to make it executable.

In this case study, structuring elements appear only in the form of param-

eterization of de�nitions and rules which exhibit the uniformity of certain re-

quirements and make the speci�ction reusable. In industrial applications, the

situation is rather di�erent; architectural requirements usually occupy a large

place there [Hofmeister et al. 1999].

The AsmGofer code which implements our speci�cation can be compiled to

C++. The entire modeling and implementation e�ort, including most of the

work to write up this paper, was half a person month.

Acknowledgement. We thank Dan Berry and three anonymous referees for

critical comments on an earlier version of this paper.



A Additional requirements

U1Req It is safe to allow a person who wants to rest in a

room to choose a light scene in which all the lights are

switched o� and the room is dark.

U3Req Instead of establishing the chosen light scene we use

the last light scene.

U10Req If the ceiling lights do not enter explicitly the lights to

be turned on for the given light scene, they are set to

minDimValue.

NF5aReq Ceiling lights in a hallway section are \not controllable

manually" if at least one hallway button is defective.

NF5bReq If a motion detector is defective, its sensor value be-

haves as if there is motion.

PushButtonReq Consistency of simultaneous pushing on di�erent wall

buttons (�xed priority or hardware solution).

RoomOccupationReq A reasonable de�nition for a location to be not occu-

pied is that there has been no motion for a period of

max quiet time.

MotionDetectorReq The motion sensor detects motion when users push

buttons.

LightSceneReq The function lights to turn on computes an ordered

set containing all lights that should be switched on

together with their dim values. The order of the set is

the order in which the lights should be turned on.

HallwayReq The requirements FM1 and NF3 are useless for hallways

if these are without windows.

OutdoorSensorReq The sensor value of an outdoor light sensor remains

constant if the sensor does not work correctly.

DefaultLightSceneReq We do not commit to any particular de�nition of

default light scene.



References

[Berry 1995] Berry, D. M. (1995), "The importance of ignorance in requirements en-
gineering", Journal of Systems and Software, 28(2):179{184.

[B�orger 1999] B�orger, E. (1999), "High level system design and analysis using Abstract
State Machines", In Hutter, D., Stephan, W., Traverso, P., and Ullmann, M., editors,
Current Trends in Applied Formal Methods (FM-Trends 98), number 1641 in Lecture
Notes in Computer Science, pages 1{43, Springer-Verlag.

[B�orger et al. 1999a] B�orger, E., H�orger, B., Parnas, D., and Rombach, D. (1999),
"Requirements Capture, Documentation and Validation", Web pages at:
http://www.iese.fhg.de/Dagstuhl/seminar99241.html.

[B�orger et al. 1999b] B�orger, E., Riccobene, E., and Schmid, J. (1999), "Software re-
quirements speci�cation of the Light Control System", In B�orger, E., H�orger, B.,
Parnas, D., and Rombach, D., editors, Requirements Capture, Documentation, and
Validation, Dagstuhl Seminar No. 99241.

[B�orger and Schmid 2000] B�orger, E. and Schmid, J. (2000), "Composition and sub-
machine concepts", In Computer Science Logic (CSL 2000), Lecture Notes in Com-
puter Science, to appear.

[Gurevich 1995] Gurevich, Y. (1995), "Evolving Algebras 1993: Lipari Guide", In
B�orger, E., editor, Speci�cation and Validation Methods, pages 9{36, Oxford Univer-
sity Press.

[Hofmeister et al. 1999] Hofmeister, C., Nord, R., and Soni, D. (1999), "Applied soft-
ware architecture".

[Light 1999a] Light (1999), "Light Control { customer feedback", Web pages at:
http://rn.informatik.uni-kl.de/~recs/qna.

[Light 1999b] Light (1999), "Light Control { problem description", Web pages at:
http://rn.informatik.uni-kl.de/~recs/problem.

[Parnas 1999] Parnas, D. (1999), "Formal methods technology transfer will fail", Jour-
nal of Systems and Software, 40(3):195{198.

[Parnas and Madey 1995] Parnas, D. and Madey, J. (1995), "Functional documents
for computer systems", Science of Computer Programming, 25(1):41{61.

[Schmid 1999a] Schmid, J. (1999), "Executing ASM speci�cations with AsmGofer",
Web pages at: http://www.tydo.de/AsmGofer.

[Schmid 1999b] Schmid, J. (1999), "The light control system", Web page at:
http://www.tydo.de/AsmGofer/light.


