
Syntax of a Java class

〈public〉 〈abstract〉 〈final〉
classA 〈extendsB〉 〈implements I1, . . . , In〉 {

...
constructor declarations

...
field declarations

...
method declarations

...
static initializers

...
}

A ≺d B : A is a direct subclass of B or B is a direct superclass of A.

A ≺d Ij : I1, . . . , In are direct superinterfaces of A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 1

Syntax of a Java interface

〈public〉 interface I 〈extends J1, . . . , Jn〉 {
...

constant declarations
...

abstract method declarations
...

}

I ≺d Ji : I is a direct subinterface of J1, . . . , Jn .

Definition. Let ≺h be the transitive closure of ≺d.

A ≺h B : A is a subclass of B or B is a superclass of A.

A ≺h I : A implements I or I is superinterface of A.

I ≺h J : I is a subinterface of J or J is a superinterface of I .

Definition. A �h B :⇐⇒ A ≺h B or A = B .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 2

The inheritance relation

Constraint. ≺h must be acyclic.

Consequence. ¬ (A ≺h A)

Lemma. The relation �h is a partial ordering:

1. A �h A.

2. If A �h B and B �h C , then A �h C .

3. If A �h B and B �h A, then A = B .

The relation �h restricted to classes is a finite tree.

Lemma. Let A, B , C be classes. Then we have:

A �h Object

If A ≺d B and A ≺d C , then B = C .

If A �h B and A �h C , then B �h C or C �h B .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 3

Packages

Definition. A package is a set of classes and interfaces.

Definition. A JavaC program is a set of packages.

Package statement:

package ch.ethz.inf.staerk;

Fully qualified names:

ch.ethz.inf.staerk.Point3D

Definition. A type B is accessible from A, if one of the following
conditions is true:

B is a primitive type, or

B is in the same package as A, or

B is public.

Constraint. If A ≺d B , then B must be acessible from A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 4

Syntax of JavaC
Class (fully qualified) class and interface names,
Field field names (identifiers),
Meth method names (identifiers),
Invk method invocations.

Exp := . . . | Field | Class.Field | Invk
Asgn := . . . | Field = Exp | Class.Field = Exp
Exps := Exp1, . . . ,Expn

Invk := Meth(Exps) | Class.Meth(Exps)
Stm := . . . | Invk; | return Exp; | return;
Phrase := . . . | static Block

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 5

Class members

Field declaration in class C :
〈public | protected | private〉 〈final〉 〈static〉A field 〈= exp〉;
C/field static =⇒ class field
C/field not static =⇒ instance field

Method declaration in class C :
〈public | protected | private〉
〈abstract〉 〈final〉 〈static〉 〈native〉
A meth(B1 loc1, . . . ,Bn locn) body

body ::= ‘;’ | block

Method signature msig = meth(B1, . . . ,Bn)

C/msig static =⇒ class method
C/msig not static =⇒ instance method

Static initializer in class C :
static block

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 6

Interface members

Constant declaration in interface I :
A field = exp;

I /field is public, static, final.

Abstract method declaration in interface I :
A meth(B1 loc1, . . . ,Bn locn);

Signature msig = meth(B1, . . . ,Bn)

I /msig is public and abstract (and not static).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 7

Accessibility and visibility

Definition. An element C/x is accessible from A (with respect to B)
iff

x is private in C and A = C , or

x is not private in C and C is in the same package as A, or

x is public in C , or

x is protected in C and A ≺h C (and B �h A).

Definition. The visibility of members is defined inductively:

If x is declared in A, then A/x is visible in A.

If A ≺d B , C/x is visible in B , x is not declared in A and C/x is
accessible from A, then C/x is visible in A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 8

Examples (visibility)

Example 1:

class A {
public static int i = 2;
private static int j = 3;

}
class B extends A {

public static int i = 4;
}

Example 2:

interface I {
int MAX = 100;

}
class A implements I {}
class B extends A implements I {}

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 9

Example: The meaning of private?

class A {
private int i = 7;

public static void main(String[] argv) {
B x = new B();
System.out.println(x.i);

}
}

class B extends A { }

JDK version "1.1.7"

tomis> javac Test.java

tomis> java A

7

JDK version "1.3.0"

tomis> javac Test.java

Test.java:6: i has private access in A

System.out.println(x.i);

^

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 10

Method overriding

Definition. A method A/msig directly overrides a method C/msig , if
there is a class or interface B such that

A ≺d B ,

C/msig is visible in B ,

C/msig is accessible from A.

Definition. The relation ‘overrides’ is the reflexive, transitive closure of
‘direct overrides’

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 11

Method overriding (continued)

Constraint. If A/msig directly overrides C/msig , then the following
constraints must be satisfied:

The return type of msig in A is the same as in C .

Method msig is not final in C .

Method msig is static in A if, and only if, it is static in C .

Method msig is not private in A.

If msig is public in C , then msig is public in A.

If msig is protected in C , then msig is public or protected
in A.

The access may not decrease according to the following ordering:

private < default < protected < public

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 12

Implementing

Constraint. If two methods B/msig and C/msig with the same
signature are both visible in A, then the following constraints must be
satisfied:

msig has the same return type in B and C ,

If msig is public in B , then msig is public in C .

If msig is not static in B , then msig is not static in C .

Definition. A class A implements a method msig , if there exists a
class B such that

A �h B and msig is declared in B ,

B/msig is visible in A,

msig is not abstract in B .

Constraint. If the abstract method C/msig is visible in class A and
A does not implement msig , then A is abstract.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 13

Examples (implementing abstract methods)

interface I { int m(int i); }

class B {
public int m(int i) { return i * i; }

}
class A extends B implements I { }

class B {
private int m(int i) { return i * i; }

}
abstract class A extends B implements I { }

class B {
int m(int i) { return i * i; }

}
abstract class A extends B implements I { }

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 14

Class field access expressions in class A

B .field
field

}
=⇒ C .field [Compiler]

Case 1. If C is unique with

field is declared in C

C/field is visible in B and accessible from A

Syntaxerror, if field is not static in C .

Case 2. If field is not in scope of a local variable declaration of field
and C is unique with

field is declared in C

C/field is visible in A

and if field is static in C .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 15

Class method invocation expressions in class A

αmethβ(exps)
αC .methβ(exps)

}
=⇒ αD .mβ(exps) [Compiler]

Let msig = meth(T (β)).

Case 1. Let app(α) be the set of all methods D/m such that

1. A/msig is more specific than D/m and

2. D/m is visible in A.

Case 2. Let app(α) be the set of all methods D/m such that

1. C/msig is more specific than D/m and

2. D/m is visible in C and accessible from A with respect to C .

Definition. C/meth(A1, . . . ,An) is more specific than
D/meth(B1, . . . ,Bn), iff C �h D and Ai � Bi for i = 1, . . . , n.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 16

Method invocation expressions in class A (continued)

Method resolution:
Assume that app(α) contains a most specific element D/m, i.e.,

D/m ∈ app(α)

If E/k ∈ app(α), then D/m is more specific than E/k

Assume that m is static in D .

Then D/m is the method chosen by the compiler.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 17

Examples (overloaded methods)

Example 1:

class A {
static void m(double d) {}
static void m(long l) {}
static void test(int i) {
m(i); // Method m(long) is chosen.

}
}

Example 2:

class A {
static void m(int x,long y) {}
static void m(long x,int y) {
m(0,0); // Reference to m is ambiguous.

}
}

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 18

Examples (overloaded methods)

Example 3:

class A {
static void m(int x) {}

}

class B extends A {
static void m(long x) {
m(0); // Reference to m is ambiguous.

}
}

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 19

Type constraints for JavaC
αC .field T (α) is the declared type of field in C .
α(C .field = βexp) T (α) is the declared type of field in C , field is

not final in C , T (β) � T (α).
αC .msig(exps) T (α) is the declared return type of msig in

class C .

return αexp; If the position α is in the body of a method with
return type A, then T (α) � A.

Example:

class Test {
static long m(int i) {
return i;

}
}

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 20

Type constraints after introduction of primitive type casts

α(C .field = βexp) Let D be the declared type of
field in C . If D is primitive,
then T (β) = D = T (α).

αC .msig(β1exp1, . . . ,
βnexpn) If msig = meth(B1, . . . ,Bn)

and Bi is a primitive type, then
T (βi) = Bi .

return αexp; If the position α is in the body of
a method with a primitive return
type A, then T (α) = A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 21

Vocabulary of the ASM for JavaC

Universes:

MSig method signatures
ClassState . . Linked | InProgress | Initialized | Unusable
Frame (Class/MSig,Phrase,Pos, Locals)
Abr Break (Lab) | Continue(Lab) | Return | Return(Val)

Static functions:

super : Class→ Class
body : Class/MSig→ Block

Dynamic functions and constants:

classState: Class→ ClassState
globals : Class/Field→ Val
meth : Class/MSig
frames : Frame∗

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 22

Transition rules for JavaC

Initial state of JavaC:

meth = Main/main()
restbody = body(meth)
pos = firstPos
locals = ∅
frames = []
globals = ∅
classState(c) = Linked , for all classes c

Main transition rule for JavaC:

execJavaC =
execJavaExpC
execJavaStmC

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 23

Transition rules for JavaC (continued)

Derived predicates:

initialized(c) =
classState(c) = Initialized ∨ classState(c) = InProgress

propagatesAbr (phrase) =
phrase 6= lab : s ∧
phrase 6= static s

Rule macro:

initialize(c) =
if classState(c) = Linked then

classState(c) := InProgress
forall f ∈ staticFields(c)

globals(f) := defaultVal(type(f))
invokeMethod(pos , c/<clinit>, [])

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 24

Transition rules for JavaC (Expressions)

execJavaExpC = case context(pos) of

c.f → if initialized(c) then yield(globals(c/f)) else initialize(c)

c.f = αexp → pos := α

c.f = Ival → if initialized(c) then

globals(c/f) := val

yieldUp(val)

else initialize(c)

c.mα(exps)→ pos := α

c.mI(vals) → if initialized(c) then invokeMethod(up(pos), c/m, vals)

else initialize(c)

() → yield([])

(α1exp1, . . . ,
αn expn) → pos := α1

(α1val 1, . . . ,
Ivaln) → yieldUp([val 1, . . . , valn])

(α1val1, . . . ,
Ivali ,

αi+1expi+1 . . .
αn expn)→ pos := αi+1

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 25

Transition rules for JavaC (Method Invocation)

invokeMethod(nextPos , c/m, values)
| Native ∈ modifiers(c/m) =

invokeNative(c/m, values)
| otherwise =

frames := push(frames , (meth, restbody , nextPos , locals))
meth := c/m
restbody := body(c/m)
pos := firstPos
locals := zip(argNames(c/m), values)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 26

Transition rules for JavaC (Statements)

execJavaStmC = case context(pos) of

static αstm → let c = classNm(meth)

if c = Object ∨ initialized(super (c)) then pos := α

else initialize(super (c))

static αReturn → yieldUp(Return)

return αexp; → pos := α

return Ival ; → yieldUp(Return(val))

return; → yield(Return)

lab : IReturn → yieldUp(Return)

lab : IReturn(val)→ yieldUp(Return(val))

Return → if pos = firstPos ∧ ¬null(frames) then

exitMethod(Norm)

Return(val) → if pos = firstPos ∧ ¬null(frames) then

exitMethod(val)

INorm;→ yieldUp(Norm)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 27

Transition rules for JavaC (continued)

exitMethod(result) =
let (oldMeth, oldPgm, oldPos , oldLocals) = top(frames)
meth := oldMeth
pos := oldPos
locals := oldLocals
frames := pop(frames)
if methNm(meth) = "<clinit>" ∧ result = Norm then

restbody := oldPgm
classState(classNm(meth)) := Initialized

else
restbody := oldPgm [result/oldPos]

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 28

