(public) (abstract) (final)
class A (extends B) (implements [y, ..., Ip) {

constructor declarations
field declarations
method declarations

static initializers

A <4 B: Ais a direct subclass of B or B is a direct superclass of A.
A <q 1 Ly, ..., Iy are direct superinterfaces of A.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 1

(public) interface I (extends Ji,..., Jp){

constant declarations

abstract method declarations

}

I <4 J;: I is a direct subinterface of Jy, ..., Jy.

Definition. Let <} be the transitive closure of <.

A <y, B: Ais asubclass of B or B is a superclass of A.
A <y, I: A implements I or [is superinterface of A.
I <y, J: I is a subinterface of J or J is a superinterface of 1.

Definition. A <y, B <= A <, Bor A=DB.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 2

The inheritance relation

Constraint. < must be acyclic.
Consequence. — (A <}, A)

Lemma. The relation =<, is a partial ordering:

1A= A
2.1f A =<y, B and B =, C, then A <}, C.
3.|fAthandthA,thenA:B.

The relation <y, restricted to classes is a finite tree.

Lemma. Let A, B, C be classes. Then we have:
= A <}, Object

ulf A<y Band A <4 C, then B=C.
llfAth and Ajh C, then B =% C or th B.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Packages

Definition. A package is a set of classes and interfaces.
Definition. A Java; program is a set of packages.

Package statement:
package ch.ethz.inf.staerk;
Fully qualified names:
ch.ethz.inf.staerk.Point3D

Definition. A type B is accessible from A, if one of the following
conditions is true:

= B is a primitive type, or
= B is in the same package as A, or
= 3 is public.

Constraint. If A <; B, then B must be acessible from A.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Class (fully qualified) class and interface names,
Field field names (identifiers),
Meth method names (identifiers),
Invk method invocations.
Exp :=... | Field | Class.Field | Invk
Asgn = ... | Field= Exp | Class.Field = Exp

Exps = Expy,..., Expp
Invk := Meth(Exps) | Class.Meth(Exps)

Stm :=... | Invk, | return Exp; | return;
Phrase := ... | static Block

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 5

Class members

Field declaration in class ('

(public | protected | private) (final) (static) A field (= exp);

C'/field static = class field
C'/field not static = instance field

Method declaration in class ('

(public | protected | private)
(abstract) (final) (static) (native)
A meth(Bj locy, . .., By locy) body

body :=";" | block

Method signature msig = meth(By,. .., By)

C'/msig static = class method
C'/msig not static = instance method

Static initializer in class (-
static block

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Constant declaration in interface I:
A field = exp:
I /field is public, static, final.

Abstract method declaration in interface I:
A meth(Bj locy, . .., By locy);
Signature msig = meth(By,..., By)

I /msig is public and abstract (and not static).

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 7

Definition. An element C/x is accessible from A (with respect to B)
iff

sz is private in C and A= C, or

=z is not private in C and C is in the same package as A, or

=z is public in C, or

=1 is protected in C'and A <}, C (and B =<}, A).

Definition. The visibility of members is defined inductively:

= If z is declared in A, then A/z is visible in A.

slf A <1 B, C/zisvisible in B, x is not declared in A and C'/z is
accessible from A, then C'/z is visible in A.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 8

Example 1:

class A {
public static int i = 2
private static int j = 3;
¥
class B extends A {
public static int 1 = 4;

I
Example 2:

interface I {
int MAX = 100;
}
class A implements I {}
class B extends A implements I {}

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 9

class A {
private int 1 = 7,

public static void main(String[] argv) {
B x = new BO);
System.out.println(x.i);

¥
¥

class B extends A { }

JDK version "1.1.7" JDK version "1.3.0"

tomis> javac Test.java tomis> javac Test.java

tomis> java A Test.java:6: i has private access in A
7 System.out.println(x.i);

~

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 10

Definition. A method A/msig directly overrides a method C'/msig, if
there is a class or interface B such that

m A =<q B,
= C'/msig is visible in B,
= C'/msig is accessible from A.

Definition. The relation ‘overrides’ is the reflexive, transitive closure of
‘direct overrides’

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 11

Method overriding (continued)

Constraint. If A/msig directly overrides C'/msig, then the following
constraints must be satisfied:

= The return type of msig in A is the same as in C.
= Method msig is not final in C.

= Method msig is static in A if, and only if, it is static in C.
= Method msig is not private in A.
= If msig is public in (', then msig is public in A.
= If msig is protected in (', then msig is public or protected
in A.
The access may not decrease according to the following ordering:

private < default < protected < public

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

12

Implementing

Constraint. If two methods B/msig and C'/msig with the same
signature are both visible in A, then the following constraints must be
satisfied:

= msig has the same return type in B and C),
u If msig is public in B, then msig is public in C.
m If msig is not static in B, then msig is not static in C.

Definition. A class A implements a method msig, if there exists a
class B such that

s A <}, B and msig is declared in B,
= B/msig is visible in A,
= msig is not abstract in 5.

Constraint. If the abstract method C'/msig is visible in class A and
A does not implement msig, then A is abstract.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 13

Examples (implementing abstract methods)

interface I { int m(int i); }

class B {
public int m(int i) { return i * i; }

}

class A extends B implements I { }

class B {
private int m(int i) { return i * i; }

¥

abstract class A extends B implements I { }

class B {
int m(int i) { return i * i; }

}

abstract class A extends B implements I { }

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

14

B.field .
field } —> (.field [Compiler]
Case 1. If C is unique with

= field is declared in C
= C'/field is visible in B and accessible from A

Syntaxerror, if field is not static in C.

Case 2. If field is not in scope of a local variable declaration of field
and (' is unique with

= field is declared in C
s C'/field is visible in A

and if field is static in C.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 15

Class method invocation expressions in class A

Ymeth”(exps)

« 15 :
O‘C’.methﬁ(exps)} —> “D.m"(exps) [Compiler]

Let msig = meth(7 (73)).

Case 1. Let app(«) be the set of all methods D /m such that

1. A/msig is more specific than D/m and
2. D /m is visible in A.

Case 2. Let app(«) be the set of all methods D /m such that

1. C'/msig is more specific than D /m and
2. D/m is visible in C and accessible from A with respect to C.

Definition. C'/meth(Aq,..., Ay) is more specific than
D/meth(By,...,By), iff C <y, D and A; X B;jfori=1,...,n.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 16

Method invocation expressions in class A (continued)

Method resolution:
Assume that app(«) contains a most specific element D /m, i.e.,

=D/m € app(a)
ulf E/k € app(«), then D/m is more specific than E/k

Assume that m is static in D.
Then D /m is the method chosen by the compiler.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

17

Examples (overloaded methods)

Example 1:

class A {
static void m(double d) {}
static void m(long 1) {}
static void test(int i) {
m(i); // Method m(long) is chosen.
}
}

Example 2:

class A {
static void m(int x,long y) {}
static void m(long x,int y) A

m(0,0); // Reference to m is ambiguous.

¥
}

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

18

Example 3:

class A {
static void m(int x) {}

}

class B extends A {
static void m(long x) {
m(0); // Reference to m is ambiguous.
by

}

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 19

“C.field 7T («v) is the declared type of field in C.

“C.field = ﬁeazp) 7T («v) is the declared type of field in C, field is
not final in C, 7(3) X 7 («).

“C.msig(exps) |7 («) is the declared return type of msig in
class C.

return “exp; If the position « is in the body of a method with
return type A, then 7 (o) < A.

Example:

class Test {
static long m(int i) {
return 1;

}
}

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 20

Type constraints after introduction of primitive type casts

YO field = Pexp)

Let D be the declared type of
field in C'. If D is primitive,
then 7(0) =D =T ().

O‘C.msz’g(ﬁlezpl, . ,%eajpn)

If msig meth(By, ..., Bp)
and B; is a primitive type, then
7(8;) = B;.

return “exp;

If the position « is in the body of
a method with a primitive return

type A, then 7 (o) = A.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Vocabulary of the ASM for Java,

Universes:

MSig method signatures

ClassState .. Linked | InProgress | Initialized | Unusable

Frame (Class/ MSig, Phrase, Pos, Locals)

Abr Break(Lab) | Continue(Lab) | Return | Return(Val)

Static functions:

super: Class — (Class

body : Class/ MSig — Block
Dynamic functions and constants:

classState: Class — ClassState
globals : Class/Field — Val
meth : Class/ MSig

frames : Frame®

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

22

Transition rules for Java,

Initial state of Java,:

meth — Main/main()
restbody = body(meth)
oS = firstPos
locals = ()

frames = ||

globals = ()

classState(c) = Linked, for all classes ¢

Main transition rule for Java:

execJavar =
execJavalzp o
execJavaStm g

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

23

Transition rules for Java, (continued)

Derived predicates:

initialized(c) =
classState(c) = Initialized V classState(c) = InProgress

propagatesAbr(phrase) =
phrase # lab : s N\
phrase # static s

Rule macro:

initialize(c) =
if classState(c) = Linked then
classState(c) := InProgress
forall f € staticFields(c)

globals(f) := default Val(type(f))
invokeMethod(pos, ¢/<clinit>,|])

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

24

Transition rules for Java; (Expressions)

execJavaExpo = case context(pos) of
c.f — if initialized(c) then yield(globals(c/f)) else initialize(c)
c.f =%exp — pos ==«
c.f =®wval — if initialized(c) then
globals(c/f) = val
yieldUp(val)

else initialize(c)

c.m"(exps) — pos ‘=«
c.m®(vals) — if initialized(c) then invokeMethod(up(pos), ¢/m, vals)
else initialize(c)

() — yield([])

(“Lexpy, ..., "exp,) — PoS =

(“Ywaly, . .., %val,) — yieldUp([valy, . .., val,))
(“Ywaly, ..., " val;, “i+texpiiy ... Mexpy) — Pos = Qi1

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

25

Transition rules for Java, (Method Invocation)

invokeMethod(nextPos, ¢/ m, values)
| Native € modifiers(c/m) =
invokeNative(c/m, values)

| otherwise =
frames = push(frames, (meth, restbody, nextPos, locals))
meth = c¢/m
restbody = body(c/m)
POS = firstPos

locals = zip(argNames(c/m), values)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 26

Transition rules for Java; (Statements)

execJavaStme = case context(pos) of
static “stm — let ¢ = classNm/(meth)
if ¢ = 0bject V initialized (super(c)) then pos = «
else initialize(super(c))
static “ Return — yieldUp(Return)

return “exp; — POS = (v
return > val; — yieldUp(Return(val))
return; — yield(Return)

lab : » Return — yieldUp(Return)
lab : » Return(val) — yieldUp(Return(val))

Return — if pos = firstPos N\ —null(frames) then
exitMethod(Norm)

Return(val) — if pos = firstPos A —null(frames) then
exitMethod(val)

> Norm; — yieldUp(Norm)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

27

Transition rules for Java, (continued)

exitMethod(result) =
let (oldMeth, oldPgm, oldPos, oldLocals) = top(frames)
meth = oldMeth
DOS = oldPos
locals = oldLocals
frames := pop(frames)
if methNm(meth) = "<clinit>" A result = Norm then

restbody = oldPgm
classState(classNm(meth)) = Initialized
else

restbody := oldPgm|result / oldPos)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 28

