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1 Computer Representation of Numbers

Computers which work with real arithmetic use a system called 
oating point.

Suppose a real number x has the binary expansion

x = �m� 2E ; where 1 � m < 2

and

m = (b0:b1b2b3 : : :)2:

To store a number in 
oating point representation, a computer word is divided

into 3 �elds, representing the sign, the exponent E, and the signi�cand m

respectively. A 32-bit word could be divided into �elds as follows: 1 bit

for the sign, 8 bits for the exponent and 23 bits for the signi�cand. Since

the exponent �eld is 8 bits, it can be used to represent exponents between

�128 and 127. The signi�cand �eld can store the �rst 23 bits of the binary

representation of m, namely

b0:b1 : : : b22:

If b23; b24; : : : are not all zero, this 
oating point representation of x is not

exact but approximate. A number is called a 
oating point number if it can be

stored exactly on the computer using the given 
oating point representation

scheme, i.e. in this case, b23; b24; : : : are all zero. For example, the number

11=2 = (1:011)2� 22

would be represented by

0 E = 2 1.0110000000000000000000 ;
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and the number

71 = (1:000111)2� 26

would be represented by

0 E = 6 1.0001110000000000000000 :

To avoid confusion, the exponent E, which is actually stored in a binary

representation, is shown in decimal for the moment.

The 
oating point representation of a nonzero number is unique as long

as we require that 1 � m < 2. If it were not for this requirement, the number

11=2 could also be written

(0:01011)2� 24

and could therefore be represented by

0 E = 4 0.0101100000000000000000 :

However, this is not allowed since b0 = 0 and so m < 1. A more interesting

example is

1=10 = (0:0001100110011 : : :)2:

Since this binary expansion is in�nite, we must truncate the expansion some-

where. (An alternative, namely rounding, is discussed later.) The simplest

way to truncate the expansion to 23 bits would give the representation

0 E = 0 0.0001100110011001100110 ;

but this means m < 1 since b0 = 0. An even worse choice of representation

would be the following: since

1=10 = (0:00000001100110011 : : :)2 � 24;

the number could be represented by

0 E = 4 0.0000000110011001100110 :

This is clearly a bad choice since less of the binary expansion of 1=10 is

stored, due to the space wasted by the leading zeros in the signi�cand �eld.

This is the reason why m < 1, i.e. b0 = 0, is not allowed. The only allowable

representation for 1=10 uses the fact that

1=10 = (1:100110011 : : :)2 � 2�4;
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giving the representation

0 E = �4 1.1001100110011001100110 :

This representation includes more of the binary expansion of 1=10 than the

others, and is said to be normalized, since b0 = 1, i.e. m > 1. Thus none of

the available bits is wasted by storing leading zeros.

We can see from this example why the name 
oating point is used: the

binary point of the number 1=10 can be 
oated to any position in the bitstring

we like by choosing the appropriate exponent: the normalized representation,

with b0 = 1, is the one which should be always be used when possible. It is

clear that an irrational number such as � is also represented most accurately

by a normalized representation: signi�cand bits should not be wasted by

storing leading zeros. However, the number zero is special. It cannot be

normalized, since all the bits in its representation are zero. The exponent E

is irrelevant and can be set to zero. Thus, zero could be represented as

0 E = 0 0.0000000000000000000000 :

The gap between the number 1 and the next largest 
oating point number

is called the precision of the 
oating point system, 1 or, often, the machine

precision, and we shall denote this by �. In the system just described, the

next 
oating point bigger than 1 is

1:0000000000000000000001;

with the last bit b22 = 1. Therefore, the precision is � = 2�22.

Exercise 1 What is the smallest possible positive normalized 
oating point

number using the system just described?

Exercise 2 Could nonzero numbers instead be normalized so that 1

2
� m <

1? Would this be just as good?

It is quite instructive to suppose that the computer word size is much

smaller than 32 bits and work out in detail what all the possible 
oating

numbers are in such a case. Suppose that the signi�cand �eld has room only

to store b0:b1b2, and that the only possible values for the exponent E are �1,
0 and 1. We shall call this system our toy 
oating point system. The set of

toy 
oating point numbers is shown in Figure 1

1Actually, the usual de�nition of precision is one half of this quantity, for reasons that

will become apparent in the next section. We prefer to omit the factor of one half in the

de�nition.
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Figure 1: The Toy Floating Point Numbers

The largest number is (1:11)2� 21 = (3:5)10, and the smallest positive nor-

malized number is (1:00)2 � 2�1 = (0:5)10. All of the numbers shown are

normalized except zero. Since the next 
oating point number bigger than 1 is

1.25, the precision of the toy system is � = 0:25. Note that the gap between


oating point numbers becomes smaller as the magnitude of the numbers

themselves get smaller, and bigger as the numbers get bigger. Note also that

the gap between between zero and the smallest positive number is much big-

ger than the gap between the smallest positive number and the next positive

number. We shall show in the next section how this gap can be \�lled in"

with the introduction of \subnormal numbers".

2 IEEE Floating Point Representation

In the 1960's and 1970's, each computer manufacturer developed its own


oating point system, leading to a lot of inconsistency as to how the same

program behaved on di�erent machines. For example, although most ma-

chines used binary 
oating point systems, the IBM 360/370 series, which

dominated computing during this period, used a hexadecimal base, i.e. num-

bers were represented as �m�16E. Other machines, such as HP calculators,

used a decimal 
oating point system. Through the e�orts of several com-

puter scientists, particularly W. Kahan, a binary 
oating point standard was

developed in the early 1980's and, most importantly, followed very carefully

by the principal manufacturers of 
oating point chips for personal computers,

namely Intel and Motorola. This standard has become known as the IEEE


oating point standard since it was developed and endorsed by a working

committee of the Institute for Electrical and Electronics Engineers.2 (There

is also a decimal version of the standard but we shall not discuss this.)

The IEEE standard has three very important requirements:

2ANSI/IEEE Std 754-1985. Thanks to Jim Demmel for introducing the author to the

standard.
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� consistent representation of 
oating point numbers across all machines

adopting the standard

� correctly rounded arithmetic (to be explained in the next section)

� consistent and sensible treatment of exceptional situations such as di-

vision by zero (to be discussed in the following section).

We will not describe the standard in detail, but we will cover the main

points.

We start with the following observation. In the last section, we chose to

normalize a nonzero number x so that x = m� 2E, where 1 � m < 2, i.e.

m = (b0:b1b2b3 : : :)2;

with b0 = 1. In the simple 
oating point model discussed in the previous

section, we stored the leading nonzero bit b0 in the �rst position of the �eld

provided form. Note, however, that since we know this bit has the value one,

it is not necessary to store it. Consequently, we can use the 23 bits of the

signi�cand �eld to store b1; b2; : : : ; b23 instead of b0; b1; : : : ; b22, changing the

machine precision from � = 2�22 to � = 2�23: Since the bitstring stored in the

signi�cand �eld is now actually the fractional part of the signi�cand, we shall

refer henceforth to the �eld as the fraction �eld. Given a string of bits in the

fraction �eld, it is necessary to imagine that the symbols \1." appear in front

of the string, even though these symbols are not stored. This technique is

called hidden bit normalization and was used by Digital for the Vax machine

in the late 1970's.

Exercise 3 Show that the hidden bit technique does not result in a more

accurate representation of 1=10. Would this still be true if we had started

with a �eld width of 24 bits before applying the hidden bit technique?

Note an important point: since zero cannot be normalized to have a

leading nonzero bit, hidden bit representation requires a special technique for

storing zero. We shall see what this is shortly. A pattern of all zeros in the

fraction �eld of a normalized number represents the signi�cand 1.0, not 0.0.

Zero is not the only special number for which the IEEE standard has a

special representation. Another special number, not used on older machines

but very useful, is the number 1. This allows the possibility of dividing

a nonzero number by 0 and storing a sensible mathematical result, namely

1, instead of terminating with an over
ow message. This turns out to be
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Table 1: IEEE Single Precision

� a1a2a3 : : : a8 b1b2b3 : : : b23

If exponent bitstring a1 : : : a8 is Then numerical value represented is

(00000000)2 = (0)10 �(0:b1b2b3 : : : b23)2 � 2�126

(00000001)2 = (1)10 �(1:b1b2b3 : : : b23)2 � 2�126

(00000010)2 = (2)10 �(1:b1b2b3 : : : b23)2 � 2�125

(00000011)2 = (3)10 �(1:b1b2b3 : : : b23)2 � 2�124

# #
(01111111)2 = (127)10 �(1:b1b2b3 : : : b23)2 � 20

(10000000)2 = (128)10 �(1:b1b2b3 : : : b23)2 � 21

# #
(11111100)2 = (252)10 �(1:b1b2b3 : : : b23)2 � 2125

(11111101)2 = (253)10 �(1:b1b2b3 : : : b23)2 � 2126

(11111110)2 = (254)10 �(1:b1b2b3 : : : b23)2 � 2127

(11111111)2 = (255)10 �1 if b1 = : : : = b23 = 0, NaN otherwise

very useful, as we shall see later, although one must be careful about what

is meant by such a result. One question which then arises is: what about

�1? It turns out to be convenient to have representations for �1 as well

as 1 and �0 as well as 0. We will give more details later, but note for now

that �0 and 0 are two di�erent representations for the same value zero, while

�1 and 1 represent two very di�erent numbers. Another special number

is NaN, which stands for \Not a Number" and is consequently not really a

number at all, but an error pattern. This too will be discussed further later.

All of these special numbers, as well as some other special numbers called

subnormal numbers, are represented through the use of a special bit pattern

in the exponent �eld. This slightly reduces the exponent range, but this is

quite acceptable since the range is so large.

There are three standard types in IEEE 
oating point arithmetic: single

precision, double precision and extended precision. Single precision numbers

require a 32-bit word and their representations are summarized in Table 1.

Let us discuss Table 1 in some detail. The � refers to the sign of the

number, a zero bit being used to represent a positive sign. The �rst line

shows that the representation for zero requires a special zero bitstring for the
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exponent �eld as well as a zero bitstring for the fraction, i.e.

0 00000000 0000000000000000000000 :

No other line in the table can be used to represent the number zero, for all

lines except the �rst and the last represent normalized numbers, with an

initial bit equal to one; this is the one that is not stored. In the case of the

�rst line of the table, the initial unstored bit is zero, not one. The 2�126 in

the �rst line is confusing at �rst sight, but let us ignore that for the moment

since (0:000 : : :0)2 � 2�126 is certainly one way to write the number zero. In

the case when the exponent �eld has a zero bitstring but the fraction �eld

has a nonzero bitstring, the number represented is said to be subnormal. 3

Let us postpone the discussion of subnormal numbers for the moment and go

on to the other lines of the table.

All the lines of Table 1 except the �rst and the last refer to the normalized

numbers, i.e. all the 
oating point numbers which are not special in some way.

Note especially the relationship between the exponent bitstring a1a2a3 : : : a8

and the actual exponent E, i.e. the power of 2 which the bitstring is intended

to represent. We see that the exponent representation does not use any of

sign-and-modulus, 2's complement or 1's complement, but rather something

called biased representation: the bitstring which is stored is simply the binary

representation of E + 127. In this case, the number 127 which is added to

the desired exponent E is called the exponent bias. For example, the number

1 = (1:000 : : :0)2� 20 is stored as

0 01111111 00000000000000000000000 :

Here the exponent bitstring is the binary representation for 0 + 127 and the

fraction bitstring is the binary representation for 0 (the fractional part of 1:0).

The number 11=2 = (1:011)2� 22 is stored as

0 10000001 0110000000000000000000 ;

and the number 1=10 = (1:100110011 : : :)2 � 2�4 is stored as

0 01111011 10011001100110011001100 :

We see that the range of exponent �eld bitstrings for normalized numbers

is 00000001 to 11111110 (the decimal numbers 1 through 254), representing

3These numbers were called denormalized in early versions of the standard.
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actual exponents fromEmin = �126 toEmax = 127. The smallest normalized

number which can be stored is represented by

0 00000001 00000000000000000000000

meaning (1:000 : : :0)2�2�126, i.e. 2�126, which is approximately 1:2�10�38,

while the largest normalized number is represented by

0 11111110 11111111111111111111111

meaning (1:111 : : :1)2 � 2127, i.e. (2� 2�23) � 2127, which is approximately

3:4� 1038.

The last line of Table 1 shows that an exponent bitstring consisting of all

ones is a special pattern used for representing �1 and NaN, depending on

the value of the fraction bitstring. We will discuss the meaning of these later.

Finally, let us return to the �rst line of the table. The idea here is as

follows: although 2�126 is the smallest normalized number which can be rep-

resented, we can use the combination of the special zero exponent bitstring

and a nonzero fraction bitstring to represent smaller numbers called subnor-

mal numbers. For example, 2�127, which is the same as (0:1)2 � 2�126, is

represented as

0 00000000 10000000000000000000000 ;

while 2�149 = (0:0000 : : :01)2 � 2�126 (with 22 zero bits after the binary

point) is stored as

0 00000000 00000000000000000000001 :

This last number is the smallest nonzero number which can be stored. Nowwe

see the reason for the 2�126 in the �rst line. It allows us to represent numbers

in the range immediately below the smallest normalized number. Subnormal

numbers cannot be normalized, since that would result in an exponent which

does not �t in the �eld.

Let us return to our example of a machine with a tiny word size, illustrated

in Figure 1, and see how the addition of subnormal numbers changes it. We

get three extra numbers: (0:11)2 � 2�1 = 3=8, (0:10)2 � 2�1 = 1=4 and

(0:01)2� 2�1 = 1=8: these are shown in Figure 2.
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Figure 2: The Toy System including Subnormal Numbers

Note that the gap between zero and the smallest positive normalized number

is nicely �lled in by the subnormal numbers, using the same spacing as that

between the normalized numbers with exponent �1.
Subnormal numbers are less accurate, i.e. they have less room for nonzero

bits in the fraction �eld, than normalized numbers. Indeed, the accuracy

drops as the size of the subnormal number decreases. Thus (1=10)� 2�123 =

(0:11001100 : : :)2 � 2�126 is stored as

0 00000000 11001100110011001100110 ;

while (1=10)� 2�133 = (0:11001100 : : :)2 � 2�136 is stored as

0 00000000 00000000001100110011001 :

Exercise 4 Determine the IEEE single precision 
oating point representa-

tion of the following numbers: 2, 1000, 23/4, (23=4)� 2100, (23=4)� 2�100,

(23=4)� 2�135, 1=5, 1024=5, (1=10)� 2�140.

Exercise 5 Write down an algorithm that tests whether a 
oating point

number x is less than, equal to or greater than another 
oating point num-

ber y, by simply comparing their 
oating point representations bitwise from

left to right, stopping as soon as the �rst di�ering bit is encountered. The

fact that this can be done easily is the main motivation for biased exponent

notation.

Exercise 6 Suppose x and y are single precision 
oating point numbers. Is

it true 4 that round(x� y) = 0 only when x = y? Illustrate your answer with

some examples. Do you get the same answer if subnormal numbers are not

allowed, i.e. subnormal results are rounded to zero? Again, illustrate with an

example.

4The expression round(x) is de�ned in the next section.
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Table 2: IEEE Double Precision

� a1a2a3 : : : a11 b1b2b3 : : : b52

If exponent bitstring is a1 : : : a11 Then numerical value represented is

(00000000000)2 = (0)10 �(0:b1b2b3 : : : b52)2 � 2�1022

(00000000001)2 = (1)10 �(1:b1b2b3 : : : b52)2 � 2�1022

(00000000010)2 = (2)10 �(1:b1b2b3 : : : b52)2 � 2�1021

(00000000011)2 = (3)10 �(1:b1b2b3 : : : b52)2 � 2�1020

# #
(01111111111)2 = (1023)10 �(1:b1b2b3 : : : b52)2 � 20

(10000000000)2 = (1024)10 �(1:b1b2b3 : : : b52)2 � 21

# #
(11111111100)2 = (2044)10 �(1:b1b2b3 : : : b52)2 � 21021

(11111111101)2 = (2045)10 �(1:b1b2b3 : : : b52)2 � 21022

(11111111110)2 = (2046)10 �(1:b1b2b3 : : : b52)2 � 21023

(11111111111)2 = (2047)10 �1 if b1 = : : := b52 = 0, NaN otherwise

For many applications, single precision numbers are quite adequate. How-

ever, double precision is a commonly used alternative. In this case each


oating point number is stored in a 64-bit double word. Details are shown in

Table 2. The ideas are all the same; only the �eld widths and exponent bias

are di�erent. Clearly, a number like 1=10 with an in�nite binary expansion

is stored more accurately in double precision than in single, since b1; : : : ; b52
can be stored instead of just b1; : : : ; b23.

There is a third IEEE 
oating point format called extended precision.

Although the standard does not require a particular format for this, the stan-

dard implementation used on PC's is an 80-bit word, with 1 bit used for the

sign, 15 bits for the exponent and 64 bits for the signi�cand. The leading bit

of a normalized number is not generally hidden as it is in single and double

precision, but is explicitly stored. Otherwise, the format is much the same as

single and double precision.

We see that the �rst single precision number larger than 1 is 1 + 2�23,

while the �rst double precision number larger than 1 is 1+2�52. The extended

precision case is a little more tricky: since there is no hidden bit, 1 + 2�64

cannot be stored exactly, so the �rst number larger than 1 is 1+2�63. Thus the
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Table 3: What is that Precision?

IEEE Single � = 2�23 � 1:2� 10�7

IEEE Double � = 2�52 � 1:1� 10�16

IEEE Extended � = 2�63 � 1:1� 10�19

exact machine precision, together with its approximate decimal equivalent, is

shown in Table 3 for each of the IEEE single, double and extended formats.

The fraction of a single precision normalized number has exactly 23 bits of

accuracy, i.e. the signi�cand has 24 bits of accuracy counting the hidden bit.

This corresponds to approximately 7 decimal digits of accuracy. In double

precision, the fraction has exactly 52 bits of accuracy, i.e. the signi�cand has

53 bits of accuracy counting the hidden bit. This corresponds to approxi-

mately 16 decimal digits of accuracy. In extended precision, the signi�cand

has exactly 64 bits of accuracy, and this corresponds to approximately 19 dec-

imal digits of accuracy. So, for example, the single precision representation

for the number � is approximately 3:141592, while the double precision repre-

sentation is approximately 3:141592653589793. To see exactly what the single

and double precision representations of � are would require writing out the

binary representations and converting these to decimal.

Exercise 7 What is the gap between 2 and the �rst IEEE single precision

number larger than 2? What is the gap between 1024 and the �rst IEEE

single precision number larger than 1024? What is the gap between 2 and the

�rst IEEE double precision number larger than 2?

Exercise 8 Let x = m � 2E be a normalized single precision number, with

1 � m < 2. Show that the gap between x and the next largest single precision

number is

� � 2E:

(It may be helpful to recall the discussion following Figure 1.)

3 Rounding and Correctly Rounded Arithmetic

We use the terminology \
oating point numbers" to mean all acceptable num-

bers in a given IEEE 
oating point arithmetic format. This set consists of

�0, subnormal and normalized numbers, and �1, but not NaN values, and
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is a �nite subset of the reals. We have seen that most real numbers, such as

1=10 and �, cannot be represented exactly as 
oating point numbers. For

ease of expression we will say a general real number is \normalized" if its

modulus lies between the smallest and largest positive normalized 
oating

point numbers, with a corresponding use of the word \subnormal". In both

cases the representations we give for these numbers will parallel the 
oating

point number representations in that b0 = 1 for normalized numbers, and

b0 = 0 with E = �126 for subnormal numbers.
For any number x which is not a 
oating point number, there are two

obvious choices for the 
oating point approximation to x: the closest 
oating

point number less than x, and the closest 
oating point number greater than

x. Let us denote these x
�

and x+ respectively. For example, consider the

toy 
oating point number system illustrated in Figures 1 and 2. If x = 1:7,

for example, then we have x
�

= 1:5 and x+ = 1:75, as shown in Figure 3.

-�

: : : : : : 0 1 x 2 3

Figure 3: Rounding in the Toy System

Now let us assume that the 
oating point system we are using is IEEE sin-

gle precision. Then if our general real number x is positive, (and normalized

or subnormal), with

x = (b0:b1b2 : : : b23b24b25 : : :)2 � 2E;

we have

x
�

= (b0:b1b2 : : : b23)2 � 2E:

Thus, x
�

is obtained simply by truncating the binary expansion of m at the

23rd bit and discarding b24, b25, etc. This is clearly the closest 
oating point

number which is less than x. Writing a formula for x+ is more complicated

since, if b23 = 1, �nding the closest 
oating point number bigger than x will

involve some bit \carries" and possibly, in rare cases, a change in E. If x is

negative, the situation is reversed: it is x+ which is obtained by dropping bits

b24, b25, etc., since discarding bits of a negative number makes the number

closer to zero, and therefore larger (further to the right on the real line).
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The IEEE standard de�nes the correctly rounded value of x, which we

shall denote round(x), as follows. If x happens to be a 
oating point number,

then round(x) = x. Otherwise, the correctly rounded value depends on which

of the following four rounding modes is in e�ect:

� Round down.

round(x) = x
�

:

� Round up.

round(x) = x+:

� Round towards zero.

round(x) is either x
�

or x+, whichever is between zero and x.

� Round to nearest.

round(x) is either x
�

or x+, whichever is nearer to x. In the case of a

tie, the one with its least signi�cant bit equal to zero is chosen.

If x is positive, then x
�

is between zero and x, so round down and round

towards zero have the same e�ect. If x is negative, then x+ is between zero

and x, so it is round up and round towards zero which have the same ef-

fect. In either case, round towards zero simply requires truncating the binary

expansion, i.e. discarding bits.

The most useful rounding mode, and the one which is almost always used,

is round to nearest, since this produces the 
oating point number which is

closest to x. In the case of \toy" precision, with x = 1:7, it is clear that

round to nearest gives a rounded value of x equal to 1.75. When the word

\round" is used without any quali�cation, it almost always means \round to

nearest". In the more familiar decimal context, if we \round" the number

� = 3:14159 : : : to four decimal digits, we obtain the result 3.142, which is

closer to � than the truncated result 3.141.

Exercise 9 What is the rounded value of 1=10 for each of the four rounding

modes? Give the answer in terms of the binary representation of the number,

not the decimal equivalent.

The (absolute value of the) di�erence between round(x) and x is called

the absolute rounding error associated with x, and its value depends on the

rounding mode in e�ect. In toy precision, when round down or round to-

wards zero is in e�ect, the absolute rounding error for x = 1:7 is 0:2 (since

round(x) = 1:5), but if round up or round to nearest is in e�ect, the absolute
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rounding error for x = 1:7 is 0:05 (since round(x) = 1:75). For all rounding

modes, it is clear that the absolute rounding error associated with x is less

than the gap between x
�

and x+, while in the case of round to nearest, the

absolute rounding error can be no more than half the gap between x
�

and

x+.

Now let x be a normalized IEEE single precision number, and suppose

that x > 0, so that

x = (b0:b1b2 : : : b23b24b25 : : :)2 � 2E;

with b0 = 1. Clearly,

x
�

= (b0:b1b2 : : : b23)2 � 2E:

Thus we have, for any rounding mode, that

jround(x)� xj < 2�23 � 2E;

while for round to nearest

jround(x)� xj � 2�24 � 2E:

Similar results hold for double and extended precision, replacing 2�23 by 2�52

and 2�63 respectively, so that in general we have

jround(x)� xj < �� 2E; (1)

for any rounding mode and

jround(x)� xj � 1

2
�� 2E;

for round to nearest.

Exercise 10 For round towards zero, could the absolute rounding error be

exactly equal to � � 2E? For round to nearest, could the absolute rounding

error be exactly equal to 1

2
� � 2E?

Exercise 11 Does (1) hold if x is subnormal, i.e. E = �126 and b0 = 0?

The presence of the factor 2E is inconvenient, so let us consider the relative

rounding error associated with x, de�ned to be

� =
round(x)

x
� 1 =

round(x)� x

x
:
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Since for normalized numbers

x = �m� 2E; where m � 1

(because b0 = 1) we have, for all rounding modes,

j�j < �� 2E

2E
= �: (2)

In the case of round to nearest, we have

j�j �
1

2
� � 2E

2E
=

1

2
�:

Exercise 12 Does (2) hold if x is subnormal, i.e. E = �126 and b0 = 0?

If not, how big could � be?

Now another way to write the de�nition of � is

round(x) = x(1 + �);

so we have the following result: the rounded value of a normalized number x

is, when not exactly equal to x, equal to x(1 + �), where, regardless of the

rounding mode,

j�j < �:

Here, as before, � is the machine precision. In the case of round to nearest,

we have

j�j � 1

2
�:

This result is very important, because it shows that, no matter how x is

displayed, for example either in binary format or in a converted decimal

format, you can think of the value shown as not exact, but as exact within a

factor of 1+ �. Using Table 3 we see, for example, that IEEE single precision

numbers are good to a factor of about 1 + 10�7, which means that they have

about 7 accurate decimal digits.

Numbers are normally input to the computer using some kind of high-

level programming language, to be processed by a compiler or an interpreter.

There are two di�erent ways that a number such as 1=10 might be input. One

way would be to input the decimal string 0.1 directly, either in the program

itself or in the input to the program. The compiler or interpreter then calls a

standard input-handling procedure which generates machine instructions to
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convert the decimal string to its binary representation and store the correctly

rounded result in memory or a register. Alternatively, the integers 1 and 10

might be input to the program and the ratio 1/10 generated by a division

operation. In this case too, the input-handling program must be called to

read the integer strings 1 and 10 and convert them to binary representation.

Either integer or 
oating point format might be used for storing these values

in memory, depending on the type of the variables used in the program, but

these values must be converted to 
oating point format before the division

operation computes the ratio 1/10 and stores the �nal 
oating point result.

From the point of view of the underlying hardware, there are relatively

few operations which can be done on 
oating point numbers. These include

the standard arithmetic operations (add, subtract, multiply, divide) as well as

a few others such as square root. When the computer performs such a 
oating

point operation, the operands must be available in the processor registers or

in memory. The operands are therefore, by de�nition, 
oating point numbers,

even if they are only approximations to the original program data. However,

the result of a standard operation on two 
oating point numbers may well not

be a 
oating point number. For example, 1 and 10 are both 
oating point

numbers but we have already seen that 1=10 is not. In fact, multiplication

of two arbitrary 24-bit signi�cands generally gives a 48-bit signi�cand which

cannot be represented exactly in single precision.

When the result of a 
oating point operation is not a 
oating point num-

ber, the IEEE standard requires that the computed result must be the cor-

rectly rounded value of the exact result, using the rounding mode and precision

currently in e�ect. It is worth stating this requirement carefully. Let x and

y be 
oating point numbers, let +,�,�,= denote the four standard arithmetic
operations, and let �,	,
,� denote the corresponding operations as they are

actually implemented on the computer. Thus, x + y may not be a 
oating

point number, but x � y is the 
oating point number which the computer

computes as its approximation of x+ y. The IEEE rule is then precisely:

x� y = round(x+ y);

x	 y = round(x� y);

x
 y = round(x � y);

and

x� y = round(x=y):
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From the discussion of relative rounding errors given above, we see then that

the computed value x� y satis�es

x� y = (x+ y)(1+ �)

where

j�j � �

for all rounding modes and

� � 1

2
�

in the case of round to nearest. The same result also holds for the other

operations 	, 
 and �.

Exercise 13 � Show that it follows from the IEEE rule for correctly

rounded arithmetic that 
oating point addition is commutative, i.e.

a� b = b� a

for any two 
oating point numbers a and b.

� Show with a simple example that 
oating point addition is not associa-

tive, i.e. it may not be true that

a � (b� c) = (a� b)� c

for some 
oating point numbers a, b and c.

Now we ask the question: how is correctly rounded arithmetic imple-

mented? Let us consider the addition of two 
oating point numbers x =

m� 2E and y = p� 2F , using IEEE single precision. If the two exponents E

and F are the same, it is necessary only to add the signi�candsm and p. The

�nal result is (m+p)�2E, which then needs further normalization if m+p is

2 or larger, or less than 1. For example, the result of adding 3 = (1:100)2�21

to 2 = (1:000)2� 21 is:

( 1:10000000000000000000000 )2 � 21

+ ( 1:00000000000000000000000 )2 � 21

= ( 10:10000000000000000000000 )2 � 21

and the signi�cand of the sum is shifted right 1 bit to obtain the normalized

format (1:0100 : : :0)2 � 22. However, if the two exponents E and F are
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di�erent, say with E > F , the �rst step in adding the two numbers is to align

the signi�cands, shifting p right E � F positions so that the second number

is no longer normalized and both numbers have the same exponent E. The

signi�cands are then added as before. For example, adding 3 = (1:100)2� 21

to 3=4 = (1:100)2� 2�1 gives:

( 1:1000000000000000000000 )2 � 21

+ ( 0:0110000000000000000000 )2 � 21

= ( 1:1110000000000000000000 )2 � 21:

In this case, the result does not need further normalization.

Now consider adding 3 to 3� 2�23. We get

( 1:1000000000000000000000 )2 � 21

+ ( 0:0000000000000000000001j1 )2 � 21

= ( 1:1000000000000000000001j1 )2 � 21:

This time, the result is not an IEEE single precision 
oating point number,

since its signi�cand has 24 bits after the binary point: the 24th is shown

beyond the vertical bar. Therefore, the result must be correctly rounded.

Rounding down gives the result (1:10000000000000000000001)2 � 21, while

rounding up gives (1:10000000000000000000010)2� 21. In the case of round-

ing to nearest, there is a tie, so the latter result, with the even �nal bit, is

obtained.

For another example, consider the numbers 1, 2�15 and 215, which are

all 
oating point numbers. The result of adding the �rst to the second is

(1:000000000000001)2, which is a 
oating point number; the result of adding

the �rst to the third is (1:000000000000001)2� 215, which is also a 
oating

point number. However, the result of adding the second number to the third

is

(1:000000000000000000000000000001)2� 215;

which is not a 
oating point number in the IEEE single precision format,

since the fraction �eld would need 30 bits to represent this number exactly.

In this example, using any of round towards zero, round to nearest, or round

down as the rounding mode, the correctly rounded result is 215. If round up

is used, the correctly rounded result is (1:00000000000000000000001)2� 215.

Exercise 14 In IEEE single precision, using round to nearest, what are the

correctly rounded values for: 64 + 220, 64 + 2�20, 32 + 2�20, 16 + 2�20,

8 + 2�20. Give the binary representations, not the decimal equivalent. What

are the results if the rounding mode is changed to round up?
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Exercise 15 Recalling how many decimal digits correspond to the 23 bit

fraction in an IEEE single precision number, which of the following numbers

do you think round exactly to the number 1, using round to nearest: 1+10�5,

1 + 10�10, 1 + 10�15?

Although the operations of addition and subtraction are conceptually

much simpler than multiplication and division and are much easier to carry

out by hand, the implementation of correctly rounded 
oating point addition

and subtraction is not trivial, even for the case when the result is a 
oating

point number and therefore does not require rounding. For example, consider

computing x � y with x = (1:0)2 � 20 and y = (1:1111 : : :1)2 � 2�1, where

the fraction �eld for y contains 23 ones after the binary point. (Notice that

y is only slightly smaller than x; in fact it is the next 
oating point number

smaller than x.) Aligning the signi�cands, we obtain:

( 1:00000000000000000000000j )2 � 20

� ( 0:11111111111111111111111j1 )2 � 20

= ( 0:00000000000000000000000j1 )2 � 20:

This is an example of cancellation, since almost all the bits in the two numbers

cancel each other. The result is (1:0)2�2�24, which is a 
oating point number,
but in order to obtain this correct result we must be sure to carry out the

subtraction using an extra bit, called a guard bit, which is shown after the

vertical line following the b23 position. When the IBM 360 was �rst released,

it did not have a guard bit, and it was only after the strenuous objections

of certain computer scientists that later versions of the machine incorporated

a guard bit. Twenty-�ve years later, the Cray supercomputer still does not

have a guard bit. When the operation just illustrated, modi�ed to re
ect the

Cray's longer wordlength, is performed on a Cray XMP, the result generated

is wrong by a factor of two since a one is shifted past the end of the second

operand's signi�cand and discarded. In this example, instead of having

x	 y = (x� y)(1+ �); where � � �; (3)

we have x 	 y = 2(x� y). On a Cray YMP, on the other hand, the second

operand is rounded before the operation takes place. This converts the second

operand to the value 1.0 and causes a �nal result of 0.0 to be computed, i.e.

x 	 y = 0. Evidently, Cray supercomputers do not use correctly rounded

arithmetic.
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Machines supporting the IEEE standarddo, however, have correctly rounded

arithmetic, so that (3), for example, always holds. Exactly how this is im-

plemented depends on the machine, but typically 
oating point operations

are carried out using extended precision registers, e.g. 80-bit registers, even

if the values loaded from and stored to memory are only single or double

precision. This e�ectively provides many guard bits for single and double

precision operations, but if an extended precision operation on extended pre-

cision operands is desired, at least one additional guard bit is needed. In fact,

the following example (given in single precision for convenience) shows that

one, two or even 24 guard bits are not enough to guarantee correctly rounded

addition with 24-bit signi�cands when the rounding mode is round to nearest.

Consider computing x�y where x = 1:0 and y = (1:000 : : :01)2�2�25, where
y has 22 zero bits between the binary point and the �nal one bit. In exact

arithmetic, which requires 25 guard bits in this case, we get:

(1:00000000000000000000000j )2 � 20

� (0:00000000000000000000000j0100000000000000000000001 )2 � 20

= (0:11111111111111111111111j1011111111111111111111111 )2 � 20

Normalizing the result, and then rounding this to the nearest 
oating point

number, we get (1:111 : : :1)2 � 2�1, which is the correctly rounded value of

the exact sum of the numbers. However, if we were to use only two guard

bits (or indeed any number from 2 to 24), we would get the result:

(1:00000000000000000000000j )2 � 20

� (0:00000000000000000000000j01 )2 � 20

= (0:11111111111111111111111j11 )2 � 20

Normalizing and rounding then results in rounding up instead of down, giving

the �nal result 1:0, which is not the correctly rounded value of the exact sum.

Machines that implement correctly rounded arithmetic take such possibilities

into account, and it turns out that correctly rounded results can be achieved

in all cases using only two guard bits together with an extra bit, called a

sticky bit, which is used to 
ag a rounding problem of this kind.

Floating point multiplication, unlike addition and subtraction, does not

require signi�cands to be aligned. If x = m� 2E and y = p� 2F , then

x� y = (m� p)� 2E+F

so there are three steps to 
oating point multiplication: multiply the sig-

ni�cands, add the exponents, and normalize and correctly round the result.
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Single precision signi�cands are easily multiplied in an extended precision reg-

ister, since the product of two 24-bit signi�cand bitstrings is a 48-bit bitstring

which is then correctly rounded to 24 bits after normalization. Multiplication

of double precision or extended precision signi�cands is not so straightfor-

ward, however, since dropping bits may, as in addition, lead to incorrectly

rounded results. The actual multiplication and division implementation may

or may not use the standard \long multiplication" and \long division" al-

gorithms which we learned in school. One alternative for division will be

mentioned in a later section. Multiplication and division are much more

complicated operations than addition and subtraction, and consequently they

may require more execution time on the computer; this is the case for PC's.

However, this is not necessarily true on faster supercomputers since it is pos-

sible, by using enough space on the chip, to design the microcode for the

instructions so that they are all equally fast.

Exercise 16 Assume that x and y are normalized numbers, i.e. 1 � m < 2,

1 � p < 2. How many bits may it be necessary to shift the signi�cand product

m� p left or right to normalize the result?

4 Exceptional Situations

One of the most di�cult things about programming is the need to anticipate

exceptional situations. In as much as it is possible to do so, a program

should handle exceptional data in a manner consistent with the handling of

standard data. For example, a program which reads integers from an input

�le and echos them to an output �le until the end of the input �le is reached

should not fail just because the input �le is empty. On the other hand, if

it is further required to compute the average value of the input data, no

reasonable solution is available if the input �le is empty. So it is with 
oating

point arithmetic. When a reasonable response to exceptional data is possible,

it should be used.

The simplest example is division by zero. Before the IEEE standard was

devised, there were two standard responses to division of a positive number

by zero. One often used in the 1950's was to generate the largest 
oating

point number as the result. The rationale o�ered by the manufacturers was

that the user would notice the large number in the output and draw the

conclusion that something had gone wrong. However, this often led to total

disaster: for example the expression 1=0� 1=0 would then have a result of 0,

which is completely meaningless; furthermore, as the value is not large, the
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user might not notice that any error had taken place. Consequently, it was

emphasized in the 1960's that division by zero should lead to the generation

of a program interrupt, giving the user an informative message such as \fatal

error | division by zero". In order to avoid this abnormal termination, the

burden was on the programmer to make sure that division by zero would never

occur. Suppose, for example, it is desired to compute the total resistance in

an electrical circuit with two resistors connected in parallel, with resistances

respectively R1 and R2 ohms, as shown in Figure 4.

R2R1

The standard formula for the total resistance of the circuit is

T =
1

1

R1

+ 1

R2

:

This formula makes intuitive sense: if both resistances R1 and R2 are the

same value R, then the resistance of the whole circuit is T = R=2, since the

current divides equally, with equal amounts 
owing through each resistor.

On the other hand, if one of the resistances, say R1, is very much smaller

than the other, the resistance of the whole circuit is almost equal to that

very small value, since most of the current will 
ow through that resistor and

avoid the other one. What if R1 is zero? The answer is intuitively clear: if one

resistor o�ers no resistance to the current, all the current will 
ow through

that resistor and avoid the other one; therefore, the total resistance in the
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circuit is zero. The formula for T also makes perfect sense mathematically;

we get

T =
1

1

0
+ 1

R2

=
1

1+ 1

R2

=
1

1 = 0:

Why, then, should a programmer writing code for the evaluation of parallel

resistance formulas have to worry about treating division by zero as an ex-

ceptional situation? In IEEE 
oating point arithmetic, the programmer is

relieved from that burden. As long as the initial 
oating point environment

is set properly (as explained below), division by zero does not generate an

interrupt but gives an in�nite result, program execution continuing normally.

In the case of the parallel resistance formula this leads to a �nal correct result

of 1=1 = 0.

It is, of course, true that a � 0 has the value 0 for any �nite value of a.

Similarly, we can adopt the convention that a=0 = 1 for any positive value

of a. Multiplication with1 also makes sense: a�1 has the value1 for any

positive value of a. But the expressions1� 0 and 0=0 make no mathematical
sense. An attempt to compute either of these quantities is called an invalid

operation, and the IEEE standard calls for the result of such an operation to

be set to NaN (Not a Number). Any arithmetic operation on a NaN gives a

NaN result, so any subsequent computation with expressions which have a

NaN value are themselves assigned a NaN value. When a NaN is discovered

in the output of a program, the programmer knows something has gone wrong

and can invoke debugging tools to determine what the problem is. This may

be assisted by the fact that the bitstring in the fraction �eld can be used to

code the origin of the NaN. Consequently, we do not speak of a unique NaN

value but of many possible NaN values. Note that an 1 in the output of

a program may or may not indicate a programming error, depending on the

context.

Addition and subtraction with 1 also make mathematical sense. In the

parallel resistance example, we see that 1 + 1

R2

= 1. This is true even if

R2 also happens to be zero, because1+1 =1. We also have a+1 =1
and a � 1 = �1 for any �nite value of a. But there is no way to make

sense of the expression 1 � 1, which must therefore have a NaN value.

(These observations can be justi�ed mathematically by considering addition

of limits. Suppose there are two sequences xk and yk both diverging to 1,

e.g. xk = 2k, yk = 2k, for k = 1; 2; 3; : : :. Clearly, the sequence xk + yk

must also diverge to 1. This justi�es the expression 1+1 =1. But it is

impossible to make a statement about the limit of xk � yk, without knowing

23



more than the fact that they both diverge to 1, since the result depends on

which of ak or bk diverges faster to 1.)

Exercise 17 What are the possible values for

1

a
� 1

b

where a and b are both nonnegative (positive or zero)?

Exercise 18 What are sensible values for the expressions 1=0, 0=1 and

1=1?

Exercise 19 Using the 1950's convention for treatment of division by zero

mentioned above, the expression (1=0)=10000000) results in a number very

much smaller than the largest 
oating point number. What is the result in

IEEE arithmetic?

The reader may very reasonably ask the following question: why should

1=0 have the value 1 rather than �1? This is the main reason for the

existence of the value�0, so that the conventions a=0 =1 and a=(�0) = �1
may be followed, where a is a positive number. (The reverse holds if a is

negative.) It is essential, however, that the logical expression h0 = �0i have
the value true while h1 = �1i have the value false. Thus we see that it is
possible that the logical expressions ha = bi and h1=a = 1=bi have di�erent
values, namely in the case a = 0, b = �0 (or a = 1, b = �1). This

phenomenon is a direct consequence of the convention for handling in�nity.

Exercise 20 What are the values of the expressions 0=(�0), 1=(�1) and

�1=(�0)?

Exercise 21 What is the result of the parallel resistance formula if an input

value is negative, �0, or NaN?

Another perhaps unexpected consequence of these conventions concerns

arithmetic comparisons. When a and b are real numbers, one of three condi-

tions holds: a = b, a < b or a > b. The same is true if a and b are 
oating

point numbers in the conventional sense, even if the values�1 are permitted.

However, if either a or b has a NaN value, none of the three conditions can

be said to hold (even if both a and b have NaN values). Instead, a and b are

said to be unordered. Consequently, although the logical expressions ha � bi
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and hnot(a > b)i usually have the same value, they have di�erent values (the
�rst false, the second true) if either a or b is a NaN.

Let us now turn our attention to over
ow and under
ow. Over
ow is

said to occur when the true result of an arithmetic operation is �nite but

larger in magnitude than the largest 
oating point number which can be

stored using the given precision. As with division by zero, there were two

standard treatments before IEEE arithmetic: either set the result to (plus

or minus) the largest 
oating point number, or interrupt the program with

an error message. In IEEE arithmetic, the standard response depends on the

rounding mode. Suppose that the over
owed value is positive. Then round up

gives the result1, while round down and round towards zero set the result to

the largest 
oating point number. In the case of round to nearest, the result

is 1. From a strictly mathematical point of view, this is not consistent with

the de�nition for non-over
owed values, since a �nite over
ow value cannot

be said to be closer to1 than to some other �nite number. From a practical

point of view, however, the choice 1 is important, since round to nearest is

the default rounding mode and any other choice may lead to very misleading

�nal computational results.

Under
ow is said to occur when the true result of an arithmetic operation

is smaller in magnitude than the smallest normalized 
oating point number

which can be stored. Historically, the response to this was almost always

the same: replace the result by zero. In IEEE arithmetic, the result may

be a subnormal positive number instead of zero. This allows results much

smaller than the smallest normalized number to be stored, closing the gap

between the normalized numbers and zero as illustrated earlier. However,

it also allows the possibility of loss of accuracy, as subnormal numbers have

fewer bits of precision than normalized numbers.

Exercise 22 Work out the sensible rounding conventions for under
ow. For

example, using round to nearest, what values are rounded down to zero and

what values are rounded up to the smallest subnormal number?

Exercise 23 More often than not the result of 1 following division by zero

indicates a programming problem. Given two numbers a and b, consider

setting

c =
ap

a2 + b2
; d =

bp
a2 + b2

Is it possible that c or d (or both) is set to the value 1, even if a and b are
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Table 4: IEEE Standard Response to Exceptions

Invalid Operation Set result to NaN

Division by Zero Set result to �1
Over
ow Set result to �1 or largest f.p. number

Under
ow Set result to zero or subnormal number

Precision Set result to correctly rounded value

normalized numbers? 5.

Exercise 24 Consider the computation of the previous exercise again. Is it

possible that d and e could have many less digits of accuracy than a and b,

even though a and b are normalized numbers?

Altogether, the IEEE standard de�nes �ve kinds of exceptions: invalid

operation, division by zero, over
ow, under
ow and precision, together with

a standard response for each of these. All of these have just been described

except the last. The last exception is, in fact, not exceptional at all because it

occurs every time the result of an arithmetic operation is not a 
oating point

number and therefore requires rounding. Table 4 summarizes the standard

response for the �ve exceptions.

The IEEE standard speci�es that when an exception occurs it must be

signaled by setting an associated status 
ag, and that the programmer should

have the option of either trapping the exception, providing special code to

be executed when the exception occurs, or masking the exception, in which

case the program continues executing with the standard response shown in

the table. If the user is not programming in assembly language, but in a

higher-level language being processed by an interpreter or a compiler, the

ability to trap exceptions may or may not be passed on to the programmer.

However, users rarely needs to trap exceptions in this manner. It is usually

better to mask all exceptions and rely on the standard responses described

in the table. Again, in the case of higher-level languages the interpreter or

compiler in use may or may not mask the exceptions as its default action.

5A better way to make this computation may be found in the LAPACK routine slartg,

which can be obtained by sending the message "slartg from lapack" to the Internet address

netlib@ornl.gov
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