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Abstract. Behavioural equivalences on open systems are usually de-
fined by comparing system behaviour in all environments. Due to this
“universal” quantification over the possible hosting environments, such
equivalences are often difficult to check in a direct way. Here, working
in the setting of process calculi, we introduce a hierarchy of behavioural
equivalences for open systems, building on a previously defined symbolic
approach. The hierarchy comprises both branching, bisimulation-based,
and non-branching, trace-based, equivalences. Symbolic equivalences are
amenable to effective analysis techniques (e.g., the symbolic transition
system is finitely branching under mild assumptions), which result to be
sound, but often not complete due to redundant information. Two kinds
of redundancy, syntactic and semantic, are discussed and and one class of
symbolic equivalences is identified that deals satisfactorily with syntactic
redundant transitions, which are a primary source of incompleteness.

1 Introduction

The widespread diffusion of web applications and mobile devices has shifted
the attention to open systems, i.e., systems where mobile software components
can be dynamically connected to interact with each other. As a consequence,
language-independent frameworks to reason about open systems and software
architectures for coordination have gained interest. In the literature, process
calculi (pc) have been devised as a useful paradigm for the specification and
analysis of open systems. Situated between real programming languages and
mere mathematical abstractions, they facilitate rigorous system analysis, offering
the basis for prototypical implementation and for verification tools. Indeed, many
running implementations exist of languages based on calculi originally proposed
to experiment basic interaction primitives [29, 33, 16, 11].

The operational and abstract semantics of pc, as well as algorithms for ver-
ification, are often naturally defined for components, i.e. closed terms of the
calculus, via a labelled transition system (lts). The extension to coordinators,
i.e. contexts with holes representing the openness of the system, can require
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non-trivial enhancements. Here, in the style, e.g., of the Security Process Alge-
bra (see [19] and references therein), we use process variables as place-holders for
unspecified components which may join the system, i.e., coordinators are viewed
as terms with process variables. A way to lift a semantic equivalence ≈ from
components to coordinators is to define C[X] ≈univ D[X] when C[p] ≈ D[p]
for all components p. This universal quantification can be recasted in a coalge-
braic framework by enriching the original transition system over components:
all coordinators C[X] are taken as states and a transition C[X]→pC[p] is added
for any component p. However the extended transition system is likely to be
intractable, being infinitely branching even for trivial calculi.

In [5], we introduced symbolic transition systems (stss) to ease the analy-
sis of coordinators’ properties. An sts is a transition system where states are
coordinators and transition labels are logic formulae expressing structural and
behavioural requirements on the unknown components which would allow the
transition to occur. Symbolic transition systems account for the operational se-
mantics of coordinators, and, based on this, two abstract semantics are defined:
strict bisimilarity ∼strict, a straight extension of the standard bisimilarity on la-
belled transition systems, and large bisimilarity �∼large, introduced as a mean to
solve, at least in part, the problem of redundant symbolic transitions (see below)
which may cause ∼strict to distinguish “too much”. For suitable stss (i.e., sound
and complete w.r.t. the original lts) both “symbolic” bisimilarities approximate
∼univ, the standard extension of bisimilarity ∼ to coordinators defined by uni-
versal quantification, as illustrated above. Moreover, sound and complete stss
can be automatically derived from sos specifications whenever the sos rules
satisfy rather general syntactic formats.

The first part of this paper consolidates and extends the theory of symbolic
bisimilarities. More specifically, we investigate some basic properties of ∼strict

and �∼large, showing, e.g., that the latter approximates ∼univ strictly better than
∼strict, although in general it is non-transitive (incidentally, the dot on top of ∼
in the symbol for large bisimilarity is a reminder of this fact). We discuss how
the defined equivalences are influenced by redundant symbolic specifications,
identifying two kinds of redundancy, called syntactic and semantic. While ∼strict

cannot overcome redundancy at all, �∼large can deal with significant forms of both
kinds of redundancy, but it does not fully solve any of the two. This motivates the
introduction of a novel bisimilarity �∼irred, called irredundant, which solves the
problem of syntactic redundancy. In general �∼large and �∼irred are not comparable
and a fourth, better approximation of ∼univ can be obtained by combining �∼large

and �∼irred, originating the “diamond” of bisimilarities in Fig. 1(a).
The second part of the paper fully generalises the sts approach to the setting

of trace semantics. Albeit trace semantics are usually easier to deal with, in the
case of coordinators the problem of universal closure w.r.t. all components still
persists and thus also trace equivalences benefit from a symbolic approach. To
every kind of symbolic bisimilarity described above, there corresponds a notion
of symbolic trace semantics. Each trace semantics is refined by the corresponding
bisimilarity, as expected, and all are correct approximations of the universal trace
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Fig. 1.

equivalence �univ. Finally, we introduce a compact form of trace, called tight,
which is exploited to improve the precision of all the approximations of �univ.
Though symbolic trace equivalences are the natural counterparts of symbolic
bisimilarities, the notion of tight trace is original and fully exploits the use of
formulae as transition labels. The full hierarchy of equivalences is in Fig. 1(b).

Synopsis. § 2 recalls the principles of stss from [5]. All material in § 3–5 is
original to this contribution. Relations between ∼strict and �∼large are investigated
in § 3, while § 4 discusses syntactic and semantic redundancy. § 5 provides
a symbolic approach to trace semantics. Technical results come together with
examples, based on calculi designed ad-hoc to clarify the features of interest.
Some concluding remarks and an account of related work are in § 6.

2 Approximating the Universal Bisimilarity

We restrict here to (non-empty) process calculi based on unsorted signatures.
Given a process signature Σ and a denumerable set of variables X (disjoint
from Σ), TΣ(X ) denotes the term-algebra over Σ with variables in X . For
P ∈ TΣ(X ), var(P ) denotes the set of variables in P . If var(P ) = ∅ then P
is closed. Closed terms form the set P of components p (possibly taken mod-
ulo a structural congruence ≡), while terms in TΣ(X ) form the set C of coor-
dinators C. With C[X1, . . . , Xn] we mean that C is a coordinator such that
var(C) ⊆ {X1, . . . , Xn}. To simplify the notation hereafter we shall use single-
holed coordinators, i.e., coordinators with at most one variable, but all definitions
and results straightforwardly extend to many-holed coordinators.

The operational semantics of process calculi is given in terms of labelled tran-
sition systems (ltss). A transition from p to q with observable a ∈ Λ (the label
alphabet) is indicated as p→aq. Transitions are often specified by a collection
of inductive rules, following the sos paradigm [31]. Throughout the paper PC
denotes a fixed process calculus over a signature Σ, with an lts L specified by
a set of sos rules.
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A bisimulation is a symmetric relation ≈ over components such that if p ≈ q,
then for any transition p→ap′ there exist a component q′ and a transition q→aq′

with p′ ≈ q′. Bisimilarity ∼ is the largest bisimulation. The universal bisimilarity
∼univ is the lifting of ∼ to coordinators obtained by closing under all substitu-
tions, i.e. C[X] ∼univ D[X] def⇐⇒ ∀p ∈ P, C[p] ∼ D[p]. Since components are
closed, p ∼univ q iff p ∼ q.

Symbolic Bisimulation. The equivalence ∼univ can be quite intractable. To ad-
dress this problem we exploit a symbolic approach based on:
1. abstracting from components not playing an active role in the transition;
2. specifying the active components as little as possible;
3. making assumptions on the structure and behaviour of active components.

The idea is to derive from the lts a symbolic transition system (sts), where
states are coordinators and labels are formulae expressing behavioural and struc-
tural conditions required to unknown components for enabling the transition.

The logic LPC that we consider has modal and spatial operators in the style
of [8, 12]. It is worth observing that the word “spatial” has been used in the
literature to refer to the logical or physical distribution of system components,
e.g., prefix in ccs is generally not taken as a spatial operator. For the aim
of this paper, this word refers to the structure of a term and any operator of
the signature can be considered spatial. The syntax of LPC-formulae ϕ and the
associated notion of satisfaction are given below, where X ∈ X denotes a process
variable, f ∈ Σ is an operator in the process signature and a ∈ Λ an action label.

ϕ ::= X | f(ϕ, . . . , ϕ) | �a. ϕ

p |= X
p |= f(ϕ1, . . . , ϕn) iff ∃p1, . . . , pn. p ≡ f(p1, . . . , pn) ∧ ∀i. pi |= ϕi

p |= �a. ϕ iff ∃p′. p→ap′ ∧ p′ |= ϕ

We denote by var(ϕ) the set of variables in a formula ϕ. We consider linear
formulae only (i.e. formulae where no variable occurs twice). A formula in LPC is
called spatial if it only contains variables and spatial operators f ∈ Σ (abusing
the notation, spatial expressions can be read both as formulae and as coordina-
tors). Each component p can be regarded as a spatial formula with no variables,
and p |= q iff p ≡ q.

For instance, the action prefix operator yields the spatial formula a.X, which
is satisfied by components of the shape p ≡ a.q. Although for specific calculi
the formulae a.X and �a.X are satisfied exactly by the same set of components
(e.g. the formulae r.X and �r.X in Example 1), we remark that their meaning
is quite different: the former imposes a spatial constraint, the latter imposes a
behavioural constraint, satisfied by components which can perform the action a
(e.g., the process (b.0 | a.0)\b in a ccs-like calculus).

Definition 1 (sts). A symbolic transition system ( sts) S for PC is a set of
transitions C[X] {ϕ} 		

aD[Y ] where C[X] and D[Y ] are coordinators in PC, a ∈ Λ
and ϕ is a formula in LPC with var(ϕ) ⊇ var(D).
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The correspondence between the variable X in the source and its residual
Y in the target is expressed by the occurrence of Y in ϕ. For example, a sym-
bolic transition in a ccs-like calculus could be X\b {�a.Y } 		

aY \b for a �= b. The
modal formula �a.Y is satisfied by any process p which can perform an action a
becoming a generic process, say q. Hence the symbolic transition represents the
infinitely many concrete transitions p\b→aq\b which are obtained by replacing
X and Y by such p and q, respectively.

To provide an adequate representation of the original transition system,
an sts is required to satisfy suitable correspondence properties. Informally,
C[X] {ϕ} 		

aD[Y ] means that the coordinator C, instantiated with any com-
ponent p satisfying ϕ, i.e., p |= ϕ[q/Y ], must be able to perform the action
a becoming an instance of D, namely D[q]. Also, any concrete transition on
components should have symbolic counterparts.

Definition 2 (Sound/Complete sts). An sts S for PC is:

– sound, if for any symbolic transition C[X] {ϕ} 		
aD[Y ] in S and for any p, q

with p |= ϕ[q/Y ], there exists a transition C[p]→aD[q] in the lts of PC.
– complete, if for any coordinator C[X], for any p and for any transition

C[p]→ar in PC there are q and C[X] {ϕ} 		
aD[Y ] in S with p |= ϕ[q/Y ] and

r ≡ D[q].

Observe that a weaker notion of completeness, simply asking that for any
p→aq there exist C[X] {ϕ} 		

aD[Y ] and p′, q′ such that C[p′] ≡ p, D[q′] ≡ q and
p′ |= ϕ[q′/Y ] would be inappropriate since a complete sts would not represent
the proper computational behaviour of coordinators. For instance, it is easy
to see that the lts of components (seen as a trivial sts) would be complete
according to the weaker notion of completeness, although it does not include
any transition for terms with variables.

The straightforward definition of bisimulation equivalence over an sts is given
below.

Definition 3 (∼strict). A symmetric relation ≈ on coordinators is a strict sym-
bolic bisimulation if for all C[X], D[X] with C[X] ≈ D[X] and for any symbolic
transition C[X] {ϕ} 		

aC ′[Y ], there exists D[X] {ϕ} 		
aD′[Y ] such that C ′[Y ] ≈

D′[Y ]. The largest strict symbolic bisimulation ∼strict is an equivalence called
strict symbolic bisimilarity

Strict bisimilarity requires a transition to be simulated by a transition with
exactly the same label. Syntactic equality has been preferred to logical equiva-
lence since, in general, the latter could be hard to verify or, even worse, unde-
cidable. Nevertheless, given a specific calculus, equivalences which are easy to
check can be exploited in symbolic bisimilarity (e.g., to standardise the labels)
and the theory easily carries over.

Strict symbolic bisimilarity distinguishes at least as much as universal bisim-
ilarity, i.e. ∼strict implies ∼univ (Theorem 1 below, taken from [5]), but the
converse does not hold in general. A better approximation of ∼univ is obtained
by relaxing the requirement of exact (spatial) matching between formulae.
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Definition 4 ( �∼large). A symmetric relation ≈ on coordinators is a large sym-
bolic bisimulation if for all C[X], D[X] with C[X] ≈ D[X] and for any transition
C[X] {ϕ} 		

aC ′[Y ] there exist a transition D[X] {ψ} 		
aD′[Z] and a spatial formula

η such that ϕ = ψ[η/Z] and C ′[Y ] ≈ D′[η]. The greatest large bisimulation �∼large

is called large symbolic bisimilarity.

As a trivial example, let Σ = {a, f(.), g(.)} and take the sts with transitions
f(X) {Y } 		

τY , g(X) {Y } 		
τY , and g(X) {a} 		

τa. Obviously, f(X) �∼strict g(X),
because f(X) cannot match the last transition of g(X), while f(X) �∼largeg(X)
since the formula X is “more general” than the spatial formula a.

Theorem 1 (∼strict ⇒ �∼large⇒ ∼univ). For any sound and complete sts and
for all coordinators C[X], D[X] we have

C[X] ∼strict D[X] ⇒ C[X] �∼largeD[X] ⇒ C[X] ∼univ D[X].

Bisimulation by Unification. The framework introduced in [5] is completed by a
constructive definition of a suitable sts associated to any pc whose operational
proof rules are in algebraic format [20] (that generalises, e.g., the well-known
De Simone format [17]). Starting from the algebraic sos proof rules for PC,
a Prolog program ProgA(PC) can be derived which specifies a sound and com-
plete sts over LPC. The program defines a predicate trs(X,A,Y) whose intended
meaning is “any component satisfying X can perform a transition labelled by A
and become a component satisfying Y ”. Then, given a coordinator C[X], if the
query ?- trs(C[X], A, Z) is successful, the corresponding computed answer
substitution represents a symbolic transition for the coordinator. The code in
ProgA(PC) consists of the obvious translation of the sos rules into Horn clauses,
with an additional rule to handle behavioural formulae. Intuitively, the unifi-
cation mechanism is used to compute the minimal requirements on the process
variables of a coordinator which allow an sos rule to be applied. We remark that
if the set of sos rules of PC is finite, then the program ProgA(PC) has a finite
number of clauses and the defined sts is finitely branching (even if the whole sts
has instead infinitely many states and transitions, as obviously it must include
all the original transitions over components).

3 Properties of Strict and Large Bisimilarities

In this section we study some basic properties of ∼strict and �∼large, and we show,
by means of a few examples, that they capture different notions of simulation.

Comparing ∼strict and �∼large. The relation �∼large is always coarser than ∼strict.
On the other hand, �∼large is not guaranteed to be an equivalence relation, since
it may fail to be transitive in some “pathological” situations (as the one below).

Example 1. Consider the simple process calculus sc, whose processes P ∈ P are:

P ::= 0 | r.P | l(P ) | k1(P ) | k2(P ) | k3(P )
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k1(X) {l(r.Y )} 		
ok1(Y ) k2(X) {l(r.Y )} 		

ok2(Y ) k3(X) {l(r.Y )} 		
ok3(Y )

k1(l(X)) {�r.Y } 		
ok1(Y ) k2(l(X)) {�r.Y } 		

ok2(Y ) k3(l(X)) {�r.Y } 		
ok3(Y )

k2(l(X)) {r.Y } 		
ok2(Y ) k3(X) {l(r.l(Y ))} 		

ok3(l(Y ))

Fig. 2. Symbolic transitions for ki(X) and ki(l(X))

k2(X)
∼strict�∼large

∼univ

k1(X)
�∼strict�∼large

∼univ

k3(X)
�∼strict

� �∼large

∼univ

k2(X)

k2(l(X))
�∼strict

� �∼large

∼univ

k3(l(X))

Fig. 3. Example 1 illustrated

This calculus is not intended to represent a meaningful case study, but just
a way to illustrate some peculiarities of our theory. For mnemonic reasons r can
be interpreted as a generic resource, l( ) as a locking mechanism, and k1( ),
k2( ) and k3( ) as three different access keys which may open and fetch a locked
resource. The operational semantics of sc is given by the reduction rules below:

r.P→rP ki(l(r.P ))→oki(P ) i = 1, 2, 3

The use of a resource r is represented by a transition labelled by r, while the
use of a key to unlock a process generates a transition labelled by o (open).

Let S be any sound and complete sts whose transitions for the open terms
k1(X), k2(X), k3(X), k1(l(X)), k2(l(X)), k3(l(X)) are exactly the ones in Fig. 2
(for instance, they could have been generated by separate specifications provided
for each ki by different system analysts). Observe that in S:

– k1(X) �∼largek3(X), since k3(X) {l(r.l(Y ))} 		
ok3(l(Y )) can be simulated by the

instance of k1(X) {l(r.Z)} 		
ok1(Z), where Z is replaced by the spatial formula

l(Y ). Note that, instead, k1(X) �∼strict k3(X).
– k2(X) �∼largek1(X), because k2(X) ∼strict k1(X).
– k2(X)� �∼largek3(X) since k3(X) {l(r.l(Y ))} 		

ok3(l(Y )) cannot be simulated via
k2(X) {l(r.Z)} 		

ok2(Z) with Z replaced by l(Y ), as the target processes
k3(l(Y )) and k2(l(Y )) are not large bisimilar. In fact, though, in this specific
example, the formulae �r.Y and r.Y are satisfied by the same components
(i.e., {r.p | p ∈ P}), the moves of coordinators k3(l(Y )) and k2(l(Y )), re-
spectively labelled by �r.Y and r.Y , cannot be related in the (strict or large)
bisimulation game. However it holds that k3(l(Y )) ∼univ k2(l(Y )).

The outcome of the above discussion is summarised in Fig. 3. In particular,
it shows that �∼large is non-transitive, i.e., �∼large ◦ �∼large �⊆ �∼large. Moreover, in
general, ∼strict �

�∼large� ∼univ, i.e., all the inclusions in Theorem 1 are proper.
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Therefore, both ∼strict and �∼large have some pros and cons. In fact ∼strict is
always an equivalence and, in view of an automated verification, its simpler for-
mulation is helpful. Furthermore, being defined as the straightforward notion of
bisimilarity on the sts, existing tools and techniques can be reused. On the other
hand, �∼large yields a more precise approximation of ∼univ and, from Theorem 1 it
immediately follows that, for sound and complete stss, ( �∼large)∗⇒ ∼univ. Hence
in using �∼large as a proof technique for ∼univ, transitivity can still be exploited.

Congruence Properties. Call a relation ∼= on coordinators an outer-congruence
if C[X] ∼= D[X] implies C[E[Y ]] ∼= D[E[Y ]] for any E[Y ], an inner-congruence if
C[X] ∼= D[X] implies E[C[X]] ∼= E[D[X]] for any E[Y ], and a quasi-congruence
if it is both an inner- and an outer-congruence. A quasi-congruence which is an
equivalence is called a congruence. While ∼univ is an outer-congruence by defini-
tion, in general, ∼strict and �∼large are not : taking the calculus sc in Example 1
and the sts S therein, we have k2(X) �∼largek1(X), but k2(l(X))� �∼largek1(l(X)).
Actually, k2(X) ∼strict k1(X) and thus also ∼strict is not an outer-congruence.
However, since ∼univ is an outer-congruence and both �∼large and ∼strict are cor-
rect approximations of ∼univ, we can reduce the proof of C[E[Y ]] ∼univ D[E[Y ]]
to the proof of C[X] �∼largeD[X] or C[X] ∼strict D[X].

Many sos formats have been introduced to guarantee that bisimilarity is a
congruence. This property can be lifted to the symbolic level for pc in De Simone
format [17] (a special case of the algebraic format) by taking the sts defined via
the Prolog program ProgA(sc) mentioned in § 2. Moreover, by Definition 4, the
absence of spatial operators in the premises of De Simone rules, and hence in
the formulae used as labels in the sts, guarantees ∼strict=

�∼large.

Proposition 1. If PC is in De Simone format, then ProgA(PC) yields a sts
where ∼strict is a congruence and ∼strict=

�∼large.

The generalisation of Proposition 1 to other sos formats (e.g., gsos) is
non-trivial, because they are incomparable w.r.t. the algebraic format and thus
ProgA(PC) (see § 2) cannot be exploited to define a sound and complete sts.

4 Syntactic and Semantic Redundancy

A sound and complete sts may have several different symbolic transitions de-
parting from the same coordinator C[X] but whose instances cover non-disjoint
sets of component behaviours. In this section we discuss the influence of redun-
dant symbolic specifications on symbolic bisimilarities. The following example
shows that we can distinguish between two kinds of redundancy: syntactic and
semantic.

Example 2. Consider the calculus sc in Example 1, where k1(X) �∼largek3(X),
but k1(X) �∼strict k3(X) (see Fig. 3). The equivalence ∼strict distinguishes the
two coordinators because of the symbolic transition k3(X) {l(r.l(Y ))} 		

ok3(l(Y )),
which is an instance of the more general transition k3(X) {l(r.Y )} 		

ok3(Y ). This
is what we call syntactic redundancy.
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On the other hand, k2(l(X)) �∼strict k3(l(X)) and k2(l(X))� �∼largek3(l(X)),
while k2(l(X)) ∼univ k3(l(X)). Roughly, this is due to the fact that the two
distinct symbolic transitions k2(l(X)) {r.Y } 		

ok2(Y ) and k2(l(X)) {�r.Y } 		
ok2(Y )

characterise the same set of concrete component transitions (since, in sc, the
different formulae r.Y and �r.Y are satisfied by the same processes). This is
an aspect of what we call semantic redundancy (in general more complex cases
can arise, whose solution is not as obvious as here and that cannot be recasted
simply in terms of formula equivalences).

4.1 Syntactic Redundancy and Irredundant Bisimilarity

For solving syntactic redundancy the idea is to consider a symbolic bisimula-
tion that takes into account only the “more general” symbolic transitions. For
simplicity, we consider calculi without structural axioms.

Definition 5 (Irredundant Transition). Given a coordinator C[X] in an
sts, a transition C[X] {ϕ} 		

aC ′[Y ] is called redundant if there exists a transition
C[X] {ψ} 		

aC ′′[Z] and a spatial formula χ �= Y such that C ′′[χ] = C ′[Y ], and
ψ[χ/Z] = ϕ. A transition is called irredundant if it is not redundant.

In Example 1, the presence of the (irredundant) transition k3(X) {l(r.Y )} 		
ok3(Y )

makes k3(X) {l(r.l(Y ))} 		
ok3(l(Y )) a redundant transition.

Definition 6 ( �∼irred). A symmetric relation ≈ on coordinators is an irredun-
dant symbolic bisimulation if for all C[X], D[X] such that C[X] ≈ D[X], for any
irredundant transition C[X] {ϕ} 		

aC ′[Y ], there is a transition D[X] {ϕ} 		
aD′[Y ]

such that C ′[Y ] ≈ D′[Y ]. The largest irredundant symbolic bisimulation �∼irred is
called irredundant symbolic bisimilarity.

Like large bisimilarity, also �∼irred might fail to be an equivalence (because
of the lack of transitivity). However, the syntactical property in Proposition 2,
when satisfied by an sts, guarantees transitivity.

Proposition 2. Let S be an sts such that for any redundant symbolic transition
C[X] {ϕ} 		

aC ′[Y ], if C[X] {ψ} 		
aC ′′[Z] and there exists a spatial formula χ with

ψ[χ/Z] = ϕ, then C ′′[χ] = C ′[Y ]. Then �∼irred is transitive.

As mentioned above, large and irredundant bisimilarities, although arising
from similar motivations, are (in general) not comparable. To see, for instance,
that �∼irred �⊆ �∼large consider Example 2. Recall that k2(X)� �∼largek3(X), but
instead k2(X) �∼irredk3(X), since transition k3(X) {l(r.l(Y ))} 		

ok3(l(Y )) is redun-
dant and thus k2(X) and k3(X) have the “same” irredundant transitions. An
analogous counterexample shows that �∼large �⊆ �∼irred (see [6]). Hence it can
be useful to combine �∼large and �∼irred, as, of course, for any sound and com-
plete sts, ( �∼large∪ �∼irred)∗⇒ ∼univ. The relationships between the bisimilarities
introduced so far are summarised in Fig. 1(a), where arrows represent subset
inclusion.

Again, the absence of spatial operators in the premises of De Simone rules,
and hence in the formulae used as labels in the sts, guarantees ∼strict=

�∼irred.
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Proposition 3. If PC is in De Simone format, then ProgA(PC) yields a sts
where ∼strict=

�∼irred.

4.2 On Semantic Redundancy

The fact that �∼large and �∼irred are incomparable shows that large bisimulation
goes beyond syntactic redundancy. Large bisimilarity has been introduced to
avoid the distinction between two coordinators C[X] and D[X] that can perform
the same transitions, apart from transitions which are, in a sense, instances of
other existing transitions. However, in practice, since redundancy check is nested
inside the definition, �∼large can deal with a more general notion of redundancy,
which has a semantic flavour.

The ideal situation would be when the whole hierarchy in Fig. 1(a) collapses
into the simplest symbolic bisimilarity ∼strict, which could then be used as a
complete proof technique for ∼univ.

However, when sketching the proof of the possible implication ∼univ ⇒ ∼strict,
one soon realizes that ∼univ can hardly be formulated as a strict bisimilarity. In
fact assume C[X] ∼univ D[X], and take any symbolic move C[X] {ϕ(Y )} 		

aC ′[Y ]
of a sound and complete sts. Then, by soundness, we know that ∀pi, qi such
that pi |= ϕ(qi) we have C[pi]→aC ′[qi]. Then, since C[X] ∼univ D[X], for any
such move, we must have D[pi]→adi, with di ∼ C ′[qi]. By completeness, it must
be the case that there exist ϕi(Z),D′

i[Z], q′i with D[X] {ϕi(Z)} 		
aD′

i[Z] such that
pi |= ϕi(q′i) and D′

i[q
′
i] = di, meaning that in general, according to ∼univ, a sym-

bolic move of C[X] can be simulated via the joint effort of several symbolic moves
of D[X]. More precisely, the choice of the symbolic move D[X] {ϕi(Z)} 		

aD′
i[Z]

is dependent on the components pi and qi that C[X] is going to use. Thus, the
difference between the symbolic and the universal approach is essentially the
difference between “early” and “late” semantics, based on the time in which pi

and qi are fixed (before the choice of transition D[X] {ϕi(Z)} 		
aD′

i[Z] in ∼univ,
after in ∼strict).

The distinction between early and late is inessential provided that either (1)
each formula uniquely characterises exactly one pi and one qi, or (2) the set
of processes satisfying any two different formulae are disjoint and all symbolic
transitions with the same source have different labels. Only having the calculus
at hand, these semantic assumptions can be verified and eventually exploited.
Finding a general way to face this issue is a challenging open problem.

The discussion about semantic redundancy also suggests that syntactical for-
mats are not enough for guaranteeing that exact approximations of ∼univ can
be inferred. Indeed, the next example shows that even De Simone format cannot
ensure that ∼strict=∼univ.

Example 3. Let us extend finite ccs with the operators onea( ), stop( ), and
with the sos rule

P→µQ

onea(P )→astop(Q)

The resulting calculus ccs∗ adheres to the De Simone format. One can easily
verify that the processes C[X] = a.0+a.b.0+a.oneb(X) and D[X] = a.0+a.b.0+
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stop(X) are universally bisimilar, but in the sts generated by ProgA(ccs∗) (see
§ 2), they are not strict bisimilar (intuitively, because instantiation is dynamic in
the symbolic bisimulation game, while it is decided once and forever for ∼univ).

5 Symbolic Trace Semantics

Bisimilarity relates states that have “the same” branching structure. Often this
feature is not directly relevant to the abstract view of the system, provided that
the states can perform “the same” sequences of transitions. To this purpose,
trace semantics—following the terminology introduced in [23]—are sometimes
preferred to bisimilarity. In this section we define a hierarchy of symbolic trace
semantics.

A variety of different (decorated) trace semantics has been studied in the
literature (e.g., ready traces, failure traces, completed traces, accepting traces,
see [2] for an overview), each relying on particular interleaved sequences of ac-
tions and state predicates. Here we just consider the basic case of finite traces
(hereafter simply called traces), where finite sequences of actions are observed.

Given a component p ∈ P, a trace of p is a finite sequence ς = a1a2 · · · an ∈
Λ∗ such that there exist n components p1, . . . , pn with p→a1p1→a2 · · ·→an

pn

(abbreviated p→ςpn or just p→ς). The trace language of p is the set L(p) =
{ς ∈ Λ∗ | p→ς}. Two components p and q are trace equivalent, written p � q,
if L(p) = L(q). Quite obviously, for all components p, q ∈ P, if p ∼ q then
p � q (but the converse implication does not hold in general). As in the case of
bisimilarity, the natural way of lifting trace equivalence to coordinators consists
of comparing all their closed instances, defining C[X] �univ D[X] iff for all
p ∈ P, C[p] � D[p].

A different notion of trace equivalence for coordinators is readily obtained if
an sts for the calculus is available. In fact, symbolic traces can be straightfor-
wardly defined as sequences of (formula,action)-pairs.

Definition 7 (�strict). A symbolic trace of a coordinator C[X] in an sts S is a
finite sequence ζ = 〈ϕ1, a1〉〈ϕ2, a2〉 · · · 〈ϕm, am〉 ∈ (Φ×Λ)∗, where Φ is the set of
formulae in LPC, such that there exist m coordinators C1[X1], . . . , Cm[Xm] with
C[X] {ϕ1} 		

a1C1[X1] {ϕ2} 		
a2 · · · {ϕm} 		

am
Cm[Xm], (abbreviated C[X]→ζCm[Xm]

or just C[X]→ζ). The strict trace language of C[X] is the set L(C[X]) = {ζ ∈
(Φ × Λ)∗ | C[X]→ζ}. Two coordinators C[X] and D[X] are strict trace equiva-
lent, written C[X] �strict D[X], if L(C[X]) = L(D[X]).

We have ∼strict⇒�strict (see Theorem 2 at the end of the current section),
and the inclusion is proper, as shown by the next example.

Example 4. Consider the calculus scm, a restriction-free version of the ambient
calculus [11] with asynchronous ccs-like communication, whose set of processes
P is defined in Fig. 4. The parallel operator | is associative and commutative,
with 0 the identity, a, b, ... are channels and n,m, ... ambient names. The opera-
tional semantics of scm, defined by sos rules, states that, in the ambient calculus
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P ::= 0 | ā | a.P | open n.P | in n.P | out n.P | n[P ] | P |P

ϕ ::= X | � . ϕ | 0 | α.ϕ | n[ϕ] | ϕ1|ϕ2

n[P ] | open n.Q → P |Q (open)
n[P ]|m[in n.Q|R] → n[P |m[Q|R]]

(in)

n[P |m[out n.Q|R]] → n[P ]|m[Q|R]
(out)

n[a.P |ā|Q] → n[P |Q]
(comm)

P → Q

P |R → Q|R (par)
P → Q

n[P ] → n[Q]
(amb)

Fig. 4. Syntax, associated logic and operational semantics of scm

style, processes can move in, move out and open environments, and also asyn-
chronously communicate within them. Being Λ = {τ}, transition labels are not
relevant and are omitted, i.e., we write → and {ϕ} 		 in place of →τ and {ϕ} 		

τ .
Figure 4 also shows the formulae ϕ of the associated logic LSCM, where X is a
process variable, n an ambient name and α ∈ {a, ā, open n, in n, out n}. Since
transitions are unlabelled, the modal operator does not mention any action.

Let us consider C[X] = m[a.(a.0|b.0)|X] and D[X] = m[a.0|a.b.0|X], and
the sts generated by ProgA(scm) (see § 2). It holds C[X] �∼strict D[X], since,
for instance, the transition C[X] {ā|Y } 		 C ′[Y ] = m[a.0|b.0|Y ] could only be
simulated by the transition D[X] {ā|Y } 		 D′[Y ] = m[a.b.0|Y ], but C ′[Y ] �∼strict

D′[Y ] (since D′[X] can not simulate C ′[X] {b̄|Z} 		 m[a.0|Z]). On the other hand,
C[X] �strict D[X]. In fact, either C[X] {ā|Y1} 		 C1[Y1] {ā|Y2} 		 C2[Y2] {b̄|Y3} 		 m[Y3]
or C[X] {ā|Y1} 		 C1[Y1] {b̄|Y2} 		 C3[Y2] {ā|Y3} 		 m[Y3], for obvious C1[Y1], C2[Y2] and
C3[Y2], and hence, missing the label components, the language L(C[X]) is

{λ , ā|Y1 , ā|Y1 ā|Y2 , ā|Y1 b̄|Y2 } ∪ {ā|Y1 ā|Y2 b̄|Y3 , ā|Y1 b̄|Y2 ā|Y3} ·L(m[Y3]),

where “·” is language concatenation and λ is the empty trace. The language
L(D[X]) is the same as L(C[X]).

An alternative notion of symbolic trace can be introduced by noting that
formulae ϕ and ψ labelling two consecutive transitions can be composed by
replacing the variable occurring in ϕ with the formula ψ.

Definition 8 (Tight Traces). Let ζ = 〈ϕ1, a1〉〈ϕ2, a2〉 · · · 〈ϕm, am〉 ∈ (Φ ×
Λ)∗ be a symbolic trace of a coordinator C[X]. The corresponding tight
trace is the pair comp(ζ) = (ϕ, a1a2 · · · am) ∈ Φ × Λ∗, where ϕ =
ϕ1[ϕ2[. . . [ϕm/Xm−1] . . . /X2]/X1].

Tight traces can now be used to better approximate �univ.

Definition 9 (�stight). The strict tight trace language of C[X] is C(C[X]) =
{ρ ∈ Φ×Λ∗ | ∃ζ ∈ L(C[X]). ρ = comp(ζ)}. Two coordinators C[X] and D[X] are
strict tight trace equivalent, written C[X] �stight D[X], if C(C[X]) = C(D[X]).
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Since comp(.) is a function, �strict ⇒ �stight (Theorem 2). As shown by the
next example the inclusion is proper (since different symbolic traces can give
rise to the same tight trace).

Example 5. Consider the calculus foo, defined over the unsorted signature Σ =
{a, f(.), g(.), h(.), l(.), k(.)}, with the rules:

f(h(X))→ah(X) g(l(X))→al(X)
h(X)→bX l(h(X))→bX

f(X)→ak(X) g(l(h(X)))→ak(X)

From the symbolic transitions below, generated by ProgA(foo), it is easy
to see that f(X) ��strict g(l(X)), while f(X) �stight g(l(X)) (the traces
〈h(Y ), a〉〈Z, b〉 and 〈Y, a〉〈h(Z), b〉 collapse in the tight trace 〈h(Z), a b〉).

f(X) {h(Y )} 		
a h(Y ) {Z} 		

b Z . . . f(X) {Y } 		
ak(Y )

g(l(X)) {Y } 		
a l(Y ) {h(Z)} 		

b Z . . . g(l(X)) {h(Y )} 		
ak(Y )

As it happens for bisimilarity, the requirement of exact match between the
formulae observed in a trace can be relaxed for spatial formulae.

Definition 10 (Saturated Trace). A saturated trace of C1[X1] is a finite
sequence ζ = 〈ϕ1, a1〉〈ϕ2, a2〉 · · · 〈ϕm, am〉 ∈ (Φ × Λ)∗, such that there exist m
coordinators C2[X2], ..., Cm+1[Xm+1] and m spatial formulae ψ1, ..., ψm with:

1. Ci[Xi] {ϕ′
i} 		

ai
C ′

i[Yi],
2. Ci[Xi] = C ′

i−1[ψi−1],
3. ϕi = ϕ′

i[ψi/Yi],

for all i ∈ [1,m]. The saturated trace language of C[X] is the set S(C[X]) of its
saturated traces.

A saturated trace in S is basically a symbolic trace in the sts obtained from
S by adding for each symbolic transition C[X] {ϕ} 		

aC ′[Y ] all of its instances,
i.e., a transition C[X] {ϕ[ψ/Y ]} 		

aC ′[ψ] for any spatial formula ψ.

Definition 11 (
��large). C[X] and D[X] are large trace pre-equivalent, written

C[X]
��largeD[X] if L(C[X]) ⊆ S(D[X]) and L(D[X]) ⊆ S(C[X]). Large trace

equivalence �large is the transitive closure of
��large.

Analogously to large bisimilarity, large trace pre-equivalence
��large might not

be transitive. Hence its transitive closure is considered to obtain an equivalence.
Finally, to overcome syntactic redundancy, a notion of symbolic trace equiv-

alence can be defined exploiting irredundant transition (see Definition 5).

Definition 12 (
��irred). Let I(C[X]) be the subset of L(C[X]) containing traces

composed by irredundant transitions only. Two coordinators C[X] and D[X] are
irredundant trace pre-equivalent, written C[X]

��irredD[X] if I(C[X]) ⊆ L(D[X])
and I(D[X]) ⊆ L(C[X]). Irredundant trace equivalence �irred is the transitive
closure of

��irred.
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The “tight” versions of
��large and

��irred can be defined as in the case of the
strict equivalence, by resorting to the corresponding tight trace languages (see
Definition 8). This leads to the trace pre-equivalences

��ltight and
��itight refined

by the original ones, i.e., such that
��large ⊆ ��ltight and

��irred ⊆ ��itight.
The theorem below clarifies all the relationships between all bisimilarities

and trace semantics introduced so far. As expected, each kind of bisimilarity is
finer than the corresponding trace semantics. The diamond involving the strict,
large, irredundant and universal relations also holds for trace semantics.

Theorem 2. Given any sound and complete sts for a process calculus PC, the
relationships indicated in Fig. 1(b) hold, where arrows represent subset inclusion.

6 Concluding Remarks

We introduced in [5] a methodology for reasoning about the operational and
abstract semantics of open systems, viewed as coordinators in suitable process
calculi, with focus on bisimilarity. Here, we have analysed how redundancy in sts
may influence the quality of the approximation of universal bisimilarity ∼univ,
and we have provided a hierarchy of symbolic bisimilarities (Fig. 1(a)), where
alternative equivalences for approximating ∼univ are proposed and studied. The
approach has been extended to non-branching semantics, and, correspondingly,
a hierarchy of symbolic equivalences (Fig. 1(b)) has been established.

As a matter of future investigation, we plan to develop the treatment of names
and name restriction in order to deal with open systems where fresh or secret
resources are a main concern. In particular, the notion of sts and the underly-
ing process logic should be extended to deal with a logical notion of freshness,
possibly taking inspiration from [9, 10]. The higher-order unification mechanism
of λ-Prolog [28] could provide a convenient framework for the construction of
the sts.

In the setting of name-based calculi, the openness of a system can involve not
only process variables, but also communication on shared channels. This view is
not in conflict with our approach, but it rather suggests an appealing direction
for the future development of our work. Also for value-passing and name-based
calculi, transition labels are typically structured. As shown in [22], this fact
can be profitably used in a symbolic approach to define tractable behavioural
equivalences, and, although labels can always be seen as a plain set, we plan to
extend our symbolic approach to cope with structured transition labels.

Symbolic equivalences are intended as means for providing tractable approx-
imations of corresponding equivalences defined by universal quantification over
the set of components. Hence, on the applicative side, we expect some outcomes
in the direction of the automated verification of open systems. Specifically, we
are developing software tools, which, exploiting the Prolog program associated
to an sos specification, support the automated verification of symbolic equiva-
lences. A first prototype tool, called sea (Symbolic Equivalence Analyzer), has
been developed in [30].
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Pursuing further the Prolog-based algorithmic construction of stss, we plan
to investigate the use of meta Logic Programming for the programmable def-
inition of transitions, and thus more specific (automated) reasoning over the
structure of a pc. Moreover, also abductive Logic Programming is worth being
considered for hypothetical, assumption-based reasoning about formulae, e.g.,
“under which assumptions the process P | X can evolve so as to satisfy a given
property?”, which is typically relevant in open and dynamic system engineer-
ing [4, 3].

Related Work. The notion of sts has been influenced by several related for-
malisms. Symbolic approaches to behavioural equivalences can be found in [22,
34], while the idea of using spatial logic formulae as an elegant mathematical
tool for combining structural and behavioural constraints has been separately
proposed in [12, 18]. Many different kinds of labelled transition systems for coor-
dinators have been previously proposed in the literature (e.g., structured tran-
sition systems [15], context systems [25], tile logic [20], conditional transition
systems [32]). Roughly, the distinguishing feature of our approach is the greater
generality of symbolic transition labels which account for spatial constraints over
unspecified components.

In case of ltss with a unique label τ (that can be regarded as reduction
semantics), our approach seems to share some analogies with narrowing tech-
niques used in rewrite systems, and it would be interesting to formally compare
the two approaches. For a CCS fragment, early studies about terms with vari-
ables [21, 27] have shown that the presence of symbolic actions can be helpful in
proving the completeness of axioms for bisimilarity. This work could be inspiring
for addressing analogous issues in other calculi.

Some close relations exist also with the work on modal transition systems [24],
where both transitions that must be performed and transitions which are only
possible can be specified. Consequently the syntax of the calculus is extended
with two kind of prefix operators �a.() and ♦a.(). We recall also the logical pro-
cess calculus of [14], which mixes ccs and a form of µ-calculus, to allow the logical
specification of some components of the system. Our process logic exhibits some
similarities both with the calculus underlying modal transition systems and with
the logical process calculus. However, the purpose of the mentioned formalisms
is to provide a loose specification of a system, where some components are char-
acterised by means of logical formulae. Instead, in our case open systems are
modelled within the original calculus and the sts fully describe their semantics
by using the logic to characterise synthetically their possible transitions.

Process calculi have been traditionally used for cryptographic protocol verifi-
cation, exploiting symbolic semantics for dealing with the infiniteness of the at-
tacker models (typically due to the unconstrained generative power of intruders),
see e.g. [1, 13] and especially the unification-based approach [7]. Such similarities
suggest possible applications of our framework to security-oriented calculi.

The problem of the universal quantification over components in the defini-
tion of behavioural equivalences for open systems has its dual counterpart in
the contextual closure needed when the bisimilarity on components ∼ is not a



16 P. Baldan, A. Bracciali, and R. Bruni

congruence and one defines the largest congruence � contained in ∼, by letting
p � q if for all contexts C[.], C[p] ∼ C[q]. To avoid universal quantification on
contexts, several authors (see [36, 26, 35]) propose a symbolic transition system
for components whose labels are the “minimal” contexts needed by the com-
ponent in order to evolve. Understanding to which extent this duality can be
pursued and exploited is an interesting direction for future research.
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