JOIN CALCULUS

Roberto Bruni
Dipartimento di Informatica
Università di Pisa

Contents

- Introduction
- Join calculus + Examples
- Join and π

Join calculus vs. π calculus

- Join is essentially π with restrictions on communication patterns
 - Join combines restriction, reception and replication in a single receptor definition
 - not available separately
 - asynchronous calculus, continuation passing style
 - asynchrony forces one to create and send continuations
- Nevertheless, join and (asynchronous) π have the same expressive power
 - demonstrated by fully abstract encodings in each direction
 - (up to weak barbed congruence)

Motivation (back to 1995)

- Join calculus has been devised to bridge the gap between mathematical abstractions and distributed programming languages
 - process calculus presentation
 - basis for a practical programming language design

Join Calculus vs Petri Nets

- Join-calculus can be seen also as the natural higher order extension of Petri nets
 - places as ports / channels
 - tokens carry values
 - names of places are also admissible values
 - firing can generate fresh pieces of nets
 - new places
 - new transitions
Chemical Abstract Machine

- States are called solutions s
 - Multisets of molecules m_1, \ldots, m_n
 - Data and rules (reflexive CHAM)
- Evolution (chemical rules)
 - Heating / cooling \Rightarrow (reversible)
 - Structural equivalence

Example: Cell Abstraction

\[\text{get}(k) | \text{s}(v) \Rightarrow \text{k}(v) | \text{s}(v) \]

- A cell s contains the value v
- To get the value:
 - Send a message on port get
 - The parameter k is the return address, where the value v will be sent to
Example: Cell Abstraction

- A cell s contains the value v
- To set the value:
 - send a message on port set
 - the parameter m is the new value for s
 - k is the return address (for confirmation)

Example: Cell Abstraction

- The initial value in s is n
- But get, set and s are locally bound by `def`
 - get and set must be extruded, otherwise no one can use them
 - instead, s is kept private (encapsulation)

Example: Cell Abstraction

- `def get(k) | s(v) :: k(v) | s(v)`
- `set(m,k) | s(v) :: k(m) | s(m)`
- `in s(n) | <get,set>`

- get, set are extruded on public channel c
- But c should be known only by the owner of the cell...

Example: Cell Abstraction

- `def create(n,c) ::
 - `def get(k) | s(v) :: k(v) | s(v)`
 - `set(m,k) | s(v) :: k(m) | s(m)`
 - `in s(n) | <get,set>`

- A message to create triggers the outermost `def`:
 - Three fresh names for s, get and set are allocated
 - the initial value of s is the first parameter n
 - get and set are sent back to the second argument c
 - instead s will never be extruded
 - Invariant
 - in every configuration there is exactly one message on s

Join Calculus in One Slide

- Syntax
 - `P | Q` :: $0 | x(y) | def D in P | P|Q`
 - `P.D` :: $J\cdot P | D\cdot E$
 - `J\cdot x` :: x(y) | J\cdot K`

- Operational semantics (CHAM Style)
 - `P|Q` :: $P.Q$
 - `D.E` :: $D.E$
 - `D (range e_{wire}, event e_{wire})`
 - heating and cooling
 - `def D in P.J\cdot P` :: $J\cdot P, J\cdot E$

JOIN: An Example

- A process P
 - $P = z(x,z) :: def x(y) :: z(y,x) in x(y)$

- P as a solution
 - $z(x,z), w(y) :: z(y,w), w(y)$

- A reaction
 - $z(x,z), w(y) :: z(y,w), w(y)$
 - $z(x,z), w(x) :: z(y,w), z(v,w)$
Homework

- Guess the meaning of:
 - `def x(u) ▷ y(u) in P`
 - `def y(u) ▷ x(u) in def x(u) ▷ y(u) in P`
 - `def s() ▷ P ∧ s() ▷ Q in s()`
 - `def (c() ▷ P)c() in Q[c()]`

Example: Mailbox (sketched)

```latex
rb@gmail.it/from,subj,msg) | save() ▷ store/from,subj,msg) | save()
ch/fwd/email) | save() ▷ fwd/email
rb@gmail.it/from,subj,msg) | fwd/email)
ch/vacation/info) | save() ▷ vacation/info
rb@gmail.it/from,subj,msg) | vacation/info)
    inbox(get,next) ▷ store/from,subj,msg)
    def elget(k) ▷ elem(f,s,m,g,n) ▷ k(f,s,m) ▷ elem(f,s,m,t,n)
    ∧ elnext(k) ▷ elem(f,s,m,g,n) ▷ k(g,n)
    in inbox(elget,elnext) ▷ elem(from,subj,msg),get,next)
```

Continuation Passing Style I

- The form of definitions resembles very much
 - `let f(x)=E in E'` (typical of functional programming)
 - e.g. same scoping discipline
 - Asynchrony forces us to create and send continuations in join
 - e.g. encoding untyped λ-calculus
 - M sends the value of N on ν
 - a value is a process serving requests
 - a request must supply two names
 - x (channel for requests for the value of the argument)
 - w (to eventually return a value)

Continuation Passing Style II

- **Call-by-name**
 - `⟦x⟧_v = v(x)`
 - `⟦λx.M⟧_v = def k(x,w) ▷ [M]_w in ν(k)`
 - `⟦MN⟧_v = def M(y) ▷ ν_k [N]_k in ν(k)`
 - `⟦q(c) ▷ c(y,v) in [M]_q in [N]_p`
 - **Parallel call-by-value**
 - `⟦x⟧_v = ν(x)`
 - `⟦λx.M⟧_v = def k(x,w) ▷ [M]_w in ν(k)`
 - `⟦MN⟧_v = def q(c) ▷ c(y,v) in [M]_q [N]_p`

Call-by-Name

- Strategy: leftmost order, no reduction under λ
- Reductions are entirely sequential
- The image of the translation is exactly the deterministic subset of Join (no parallel composition, no conjunction)
 - `⟦x⟧_v = v(x)`
 - `⟦λx.M⟧_v = def k(x,w) ▷ [M]_w in ν(k)`
 - `⟦MN⟧_v = def M(y) ▷ [N]_y in ν(k)`
 - `⟦q(c) ▷ c(y,v) in [M]_q`
Call-by-Name: Example

- \[(\lambda x. M) N_1 = \text{def } y(p) : [N]_p\]
 \(\text{in def } q(c) \triangleright c(y,v) \text{ in } [\lambda x. M]_q\)
- \[(\lambda x. M) N_1 = \text{def } y(p) : [N]_p\]
 \(\text{in def } q(c) \triangleright c(y,v) \text{ in } [\lambda x. M]_q\)
- \[(\lambda x. M) N_1 \rightarrow \text{def } y(p) : [N]_p\]
 \(\text{in def } q(c) \triangleright c(y,v) \text{ in } [\lambda x. M]_q\)
- \[(\lambda x. M) N_1 \rightarrow \text{def } k(x,w) \triangleright [M]_w \text{ in } k(y,v)\]
- \[(\lambda x. M) N_1 \rightarrow \text{def } q(c) \triangleright c(y,v) \text{ in } [\lambda x. M]_q\]
 \(\text{in def } k(x,w) \triangleright [M]_w \text{ in } k(y,v)\)

Parallel Call-by-Value

- Strategy: again no reduction under \(\lambda v\), but in \((TU), T \land U\) can be evaluated in parallel
- Confluent, but non deterministic
- \([x]_v = v(x)\)
- \((\lambda x. M) = \text{def } k(x,w) \triangleright [M]_w \text{ in } v(k)\)
- \([MN]_v = \text{def } q(c)p(y) \triangleright c(y,v) \text{ in } [M]_q[N]_p\)

Call-by-Value: Example

- \[(\lambda x. M) N_1 = \text{def } q(c)p(y) \triangleright c(y,v) \text{ in } [\lambda x. M]_q \parallel [N]_p\]
- \[(\lambda x. M) N_1 = \text{def } q(c)p(y) \triangleright c(y,v) \text{ in } [N]_p \parallel \text{def } k(x,w) \triangleright [M]_w \text{ in } q(k)\]
- \[(\lambda x. M) N_1 \rightarrow \text{def } q(c)p(y) \triangleright c(y,v) \text{ in } p(z) \parallel \text{def } k(x,w) \triangleright [M]_w \text{ in } q(k)\]
- \[(\lambda x. M) N_1 \rightarrow \text{def } q(c)p(y) \triangleright c(y,v) \text{ in } k(z,v) \parallel \text{def } k(x,w) \triangleright [M]_w \text{ in } [M(z)]_k\]
- \[(\lambda x. M) N_1 \rightarrow \text{def } q(c)p(y) \triangleright c(y,v) \text{ in } \text{def } k(x,w) \triangleright [M]_w \text{ in } [M(z)]_k\]

Contents

- Introduction
- Join calculus + Examples
- Join and \(\pi\)

Core Join Calculus

- Syntax
 - a unique syntactic category
 \(P, Q ::= x(u) \mid \text{def } x(u)(v) \triangleright Q \mid P \parallel P; Q\)
- Operational semantics
 - CHAM Style
 - (but also LTS is defined)
 - The core join calculus has the same expressive power as the full join-calculus
 via a fully-abstract encoding.
Full abstraction

- Two process calculi with equivalences ≈₁ and ≈₂
- The first is more expressive than the second if we can find a fully abstract encoding [.]₂→₁
 - i.e. an encoding such that
 - P ≈₂ Q iff [P]₂→₁ ≈₁ [Q]₂→₁
- The two calculi have the same expressive power if each one is more expressive than the other
 - (If one is a sub-calculus of the other, then one implication is obvious)

What is Observable?

- Communication
 - on internal names (no)
 - on free names (yes)
- Internal steps
 - countable: strong semantics (no)
 - immaterial: weak semantics (yes)
- Equivalence
 - reflexive, symmetric and transitive (yes)
 - closed under contexts: congruence (yes)

Basic Observations

- Processes interact with the outside
 - by extruding names on free ports
 - by waiting for answers (via enclosed definitions)
- Processes are distinguished on the basis of their ability to emit messages on their free ports
 - weak asynchronous output barb ĳₗₙₖ
 - Pįₗₙₖ iff
 - x is a free name in P
 - and Ǝu such that P →ₓ Qₓ(u)

Remarks on Barbs

- Two processes P and Q such that
 - Ǝu with Pįₗₙₖ but ¬(Qįₗₙₖ)
 - cannot be reasonably identified!
- Barbs are just elementary experiments
 - barbs do not count reductions (ok)
 - barbs do not observe branching (uhm)
 - barbs do not observe message reception (uhm)

Closure Under Reductions

- Reductions are mute transitions
 - i.e. only trivial labels are present
 - P →P′ can be read as P →ε →P′
- In ordinary (strong) bisimulation
 - if P≡Q and P→P′, then ƎQ′≡P′ s.t. Q→Q′
 - (and vice versa)
 - In weak bisimulation
 - if P≡Q and P →* P′, then ƎQ′≡P′ s.t. Q→* Q′
 - (and vice versa)

Closure Under Contexts

- If P≡Q we expect that P and Q can be used interchangeably in any larger process
 - but P = a(b) and Q = a(c) look equivalent when taken in isolation
 - no reduction, a unique barb ĳₗₙₖ
 - however, they are not equivalent in the context
 - def a(x) : xₒ in [₁]
 - as in fact
 - def a(x) : xₒ in P → bₒ (i.e. def a(x) : xₒ in P ĳₗₙₖ)
 - def a(x) : xₒ in Q → cₒ (i.e. def a(x) : xₒ in Q ĳₗₙ₆)
The Observational Congruence

- We take the largest equivalence relation \(\equiv \) that is a refinement of output barbs
 - if \(P = Q \) then \((\forall x. P[x]_x = Q[x]_x) \)
 - is closed under weak reduction
 - if \(P = Q \) and \(P \rhd^* P' \), then \(\exists Q' = P' \) s.t. \(Q \rhd^* Q' \)
 - is a congruence w.r.t. definitions and parallel
 - if \(P = Q \) then \((\forall \Delta. \text{def } D \text{ in } P = \text{def } D \text{ in } Q) \)
 - if \(P = Q \) then \((\forall \Delta. P | R = Q | R) \)

Core Join vs Full Join

- Expressiveness-preserving simplification of syntax
 - recursive binding
 - shift binding variables from definition to reception
 - \(\text{def } j = Q \text{ in } P \implies \text{def } j(\text{def } i = Q_0 \text{ in } P_0) \text{ in } P(i \theta, j \theta) \)
 - where \(\theta \) is the vector of variables in \(f q(i \theta, j \theta) \)
 - complex definitions
 - \(n \)-way join patterns and multiple clauses connected by \(\wedge \) as sequences joining two atoms at most
 - polyadic messages
 - name tuples are communicated by using auxiliary private names

Asynchronous \(\pi \)

- Syntax
 - \(P, Q ::= x(u) | x(u).P | vu.P | !x(u).P | P|Q \)

- Abstract semantics
 - asynchronous barbed congruence
 - ex. \(x(u).x(u) = 0 \)
 - ex. equator \(EQ(x,y) = !x(u).y(u) | !y(v).x(v) \)
 - \(P(x/y) = Q(x/y) \) implies \(EQ(x,y) P = EQ(x,y) Q \)

Naïve Encoding: Join in \(\pi \)

- \([x(u)]_{x\in} = x(v) \)
- \([P|Q]_{x\in} = [P]_{x\in} | [Q]_{x\in} \)
- \([\text{def } x(u)]_{x\in} = \forall x.y.(x(u),y(v).[Q]_{x\in} | [P]_{x\in}) \)

- In the translation we lose
 - the symmetry between \(x \) and \(y \)
 - the atomicity of their joint reduction
 - it does not matter, because \(x \) and \(y \) are restricted

- Not closed under \(\pi \) contexts
 - if \(x \) or \(y \) are extruded, then new receptors could appear

Problems with Full Abstraction of Join in \(\pi \): Example

- Let \(P = [\text{def } x() \triangleright 0 \text{ in } a(x) | x()]_{x\in} \)
 - and \(Q = [\text{def } y() \triangleright 0 \text{ in } a(y)]_{y\in} \)
 - the two encoded processes are equivalent
 - \(P \) and \(Q \) are not

- Take the \(\pi \)-context \(va.(a(u).u().b() | [_]) \)
 - then \(va.(a(u).u().b() | P | b) \)
 - while \(\neg (va.(a(u).u().b() | Q | b) \cup b) \)
Naïve Encoding: \(\pi \) in Join

- Each \(\pi \)-channel \(x \) is simulated by two ports
 - \(x \) for output (where emitters send values)
 - \(x \) for input (the receiver defines a name \(k \) for its continuation and sends it as a reception offer on \(x \))
 - \([x(v)] \) \(\xrightarrow{\delta} \) \(x_k(\nu(x, v)) \)
 - \([x(u), x] \) \(\xrightarrow{k} \) \([x(\nu(x, v))] \)
 - \([x(u), x] \) \(\xrightarrow{k} \) \(x_k(v) \)
 - \([x(u), x] \) \(\xrightarrow{k} \) \([x(v)] \)

- Not closed under Join contexts!!!
 - problems with free names and input barbs

Problems with Full Abstraction of \(\pi \) in Join: Examples

- \([x(a) \mid x(b) \mid x(u).y(u)] \)
 - cannot reduce because there is no englobing \(v_x \)
 - exhibits a barb on \(x \) that reveals the presence of an input on \(x \)

Features (as distributed programming language)

- Extends a higher-order functional language
 - parallelism in expressions (fork calls)
 - parallelism in function patterns (join patterns)
 - jointly defined function provide the same capabilities as synchronous channels or concurrent objects
 - join patterns are more consistent with lexical scope
 - static binding of function calls to the code
 - as opposed to dynamic binding of messages to receptors

Polyphonic C# (C\(\omega \))

- Methods can be
 - synchronous
 - (caller is blocked)
 - asynchronous
 - (no result, caller can proceed almost immediately)

- Key feature
 - The same body (called a chord) can be associated with a set of asynchronous and (at most one) synchronous methods
 - A method can appear in the header of several chords
 - The body is executed only if all methods in its header have been called
Unbounded Size Buffer

```java
public class Buffer {
    public String get()
    & public async put(String s) {
        return s;
    }
}
```

One-Place Buffer

```java
public class OnePlaceBuffer {
    public OnePlaceBuffer() {
        empty();
    }
    public void put(String s)
    & private async empty() {
        return;
    }
    public String get()
    & private async contains(String s) {
        empty();
        return s;
    }
}
```

Reader-Writer Lock

```java
class ReaderWriter {
    ReaderWriter() {
        Idle();
    }
    void Exclusive()
    & private async Idle() {
        }
    void ReleaseExclusive() {
        Idle();
    }
    void Shared()
    & private async Idle() {
        S(1);
    }
    void Shared()
    & private async S(int n) {
        S(n+1);
    }
    void ReleaseShared()
    & private async S(int n) {
        if (n == 1) Idle(); else S(n-1);
    }
}
```

References

- The reflexive chemical abstract machine and the Join calculus (Proc. POPL’96, ACM, pp. 372-385)
- C. Fournet, G. Gonthier