Types and deadlock freedom in a

calculus of services, sessions and pipelines

Roberto Bruni® Leonardo Gaetano Mezzina?

IDipartimento di Informatica
Universita di Pisa

2IMT Lucca
Instute for Advanced Studies

AMAST 2008
Urbana-Champaign, IL, USA
28-31 July 2008

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 1/40

@ Introduction & Motivation
© SCC in a Nutshell
© A Type System for SCC

© Concluding Remarks

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 2 /40

Outline

@ Introduction & Motivation

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 3 /40

Service Oriented Computing (SOC)

Services

SOC is an emerging paradigm where
services are understood as

@ autonomous

@ platform-independent
computational entities that can be:

@ described

@ published

@ discovered
@ dynamically assembled

for developing massively distributed,
interoperable, evolvable systems.

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 4 /40

Service Oriented Computing (SOC)

e-Expectations

Services

SOC is an emerging paradigm where
services are understood as

@ autonomous

@ platform-independent
computational entities that can be:

@ described

@ published

@ discovered
@ dynamically assembled

for developing massively distributed,
interoperable, evolvable systems.

| \

Bruni, Mezzina (DIPISA, IMT LUCCA)

Deadlock free SCC

Big companies put many efforts for
service delivery on a variety of
computing platforms.

Tomorrow, there will be a plethora of
new services for e-business, e-health,
e-government, e-* within the rapidly
evolving Information Society.

Semantic foundations?

Industrial consortia are developing
orchestration and choreography
languages, targeting the
standardization of Web Services and
XML-centric technologies for which
neat semantic foundations are
necessary.

v

AMAST 2008 4 /40

SENSORIA (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP). J

=

& Edinburgh DTU Lynigby,
Leicester
L8S(cL uc) - seN Warsaw
ENSORE- R
j 4_;-"“"‘"{ POLIMI Trento bt

com
FirenzeBologna
Pisa
ISTI-CNR

Software, Engineering)forSenvicez@riented

Lisbon
ATX

i o~
o
%

Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

v

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

v

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 5/ 40

http://www.sensoria-ist.eu

The role of process calculi

Coordinating and combining services

A crucial role in the project is played by formalisms for service description
that can lay the mathematical basis for analysing and experimenting with
components interactions, and for combining services.

SENSORIA Work Package 2

We seek for a small set of primitives that might serve as a basis for
formalizing, programming and disciplining service oriented applications
over global computers.

SENSORIA core calculi

@ Signal Calculus: middleware level

@ SOCK, COWS: service level, correlation-based

@ SCC-family (SCC, SSCC, CC, CaSPiS): service level, session-based
@ cc-pi, lambda-req: SLA contract level

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 6 / 40

Main Contribution

Define a type system for SCC to guarantee sound interaction

Proceedings

@ Syntax + LTS semantics (see Section 2)

@ Type system + subject reduction (see Section 3)

o Initial processes are deadlock free: We define a class of processes,
called initial, for which we can guarantee that a normal form is
reached with no pending session protocols unless infinitely many
services are invoked provoking divergence (see Theorem 2).

@ Simple examples

A

Talk
o Sketches of syntax and semantics
@ Intuitive idea and flashes of typing rules
@ Simple examples

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 7 /40

Related Work

@ Honda, Vasconcelos, Kubo + Gay, Hole + Kobayashi: starting point

@ Acciai, Boreale (Ugo Montanari's Festschrift): CaSPiS™, asymmetric
notion of progress

@ Dezani et al. (TGC'07): progress, no recursion

@ Lanese et al. (SEFM'07): SSCC orchestration is via streams instead
of pipelines

@ Bruni et al. (PLACES'08): use, dynamic multiparty sessions

@ Bonelli, Compagnoni 4+ Honda, Yoshida, Carbone: multiparty
asynchronous sessions

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 8 /40

Outline

© SCC in a Nutshell

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 9 /40

SCC Genesis

SCC [WS-FM 2006] sources of inspiration

@ 7 (names, communication): x(y).P, Xy.P, (vx)P

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 10 / 40

SCC Genesis

SCC [WS-FM 2006] sources of inspiration

@ 7 (names, communication): x(y).P, Xy.P, (vx)P

@ 7/, structured communication (session types): a(k).P, a(k).P
roughly, think of a(k).P as (vk)ak.P

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 10 / 40

SCC Genesis

SCC [WS-FM 2006] sources of inspiration

@ 7 (names, communication): x(y).P, Xy.P, (vx)P

@ 7/, structured communication (session types): a(k).P, a(k).P
roughly, think of 3(k).P as (vk)ak.P

@ Orc (pipelining and pruning of activities):
(EAPLS(2008) | EATCS(2008)) > cfp > Email(rb@gmail.it, cfp)
Email (rb@gmail.it, cfp) where cfp :€ (EAPLS(2008) | EATCS(2008))

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 10 / 40

SCC Genesis

SCC [WS-FM 2006] sources of inspiration

@ 7 (names, communication): x(y).P, Xy.P, (vx)P
@ 7/, structured communication (session types): a(k).P, a(k).P
roughly, think of a(k).P as (vk)ak.P

@ Orc (pipelining and pruning of activities):
(EAPLS(2008) | EATCS(2008)) > cfp > Email(rb@gmail.it, cfp)
Email (rb@gmail.it, cfp) where cfp :€ (EAPLS(2008) | EATCS(2008))

To keep in mind

We are dealing with conceptual abstractions: the syntax does not
necessarily expose implementation details. For example:

@ a session is a logical entity that can be implemented by an additional
sid parameter carried by all related messaging

@ all service instances (serving different requests) can be handled by one
service port

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 10 / 40

SCC: General Principles

Service definitions: s.P

@ services expose their protocols
@ (persistent) services can handle multiple requests separately

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 11/ 40

SCC: General Principles

Service definitions: s.P

@ services expose their protocols
@ (persistent) services can handle multiple requests separately

v

Service invocations: 5.P

@ service invocations expose their protocols

@ sequential composition via pipelining (4 la Orc)

\

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 11/ 40

SCC: General Principles

Service definitions: s.P

@ services expose their protocols
@ (persistent) services can handle multiple requests separately
v
Service invocations: 5.P

@ service invocations expose their protocols

@ sequential composition via pipelining (4 la Orc)

@ seen as run-time syntax

@ service invocation spawns fresh session parties (locally to each partner)

@ sessions are: two-party (service-side + client-side) + private
@ interaction between session protocols: bi-directional
°

nested sessions: values can be returned outside sessions (one level up)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 11/ 40

Sketch of Multiple Sessions

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 12 / 40

Sketch of Multiple Sessions

[+] r1] (=Lservice def]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 13 / 40

Sketch of Multiple Sessions

C | EFTYEYS)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008

Sketch of Multiple Sessions

[+] r1| (=L service def] [r3

E]-

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 15 / 40

Sketch of Conversations

[+]

in.out.in

out.in.out

Bruni, Mezzina (DIPISA, IMT LUCCA)

in.out.in

out | in | out

Deadlock free SCC

in.out.in

[+]

out | in.out

AMAST 2008 16 / 40

Sketch of Conversations

[+]

in.out.in

in.out.in

out.in.out

out | in | out

in.out.in

[+]

out | in.out

Bruni, Mezzina (DIPISA, IMT LUCCA)

Deadlock free SCC

AMAST 2008 17 / 40

Sketch of Nested Sessions

[+] rl

1] service call}

E rl

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008

Sketch of Nested Sessions

[+] rl

E rl

[+] r3

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 19 / 40

Sketch of Nested Sessions

[+] rl

E rl
[#] r3

I=] service call}

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 20 / 40

Sketch of Nested Sessions

[+] rl

rl

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 21 / 40

Sketch of Return

[#] rl

[+] r3
4]

in.return.out — |

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 22 / 40

SCC Raw Syntax

Names, Values, Polarities

m = s |r (name)
vi= b |s| x| f(¥) (value)
p:q = — | + (polarity)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 23 / 40

SCC Raw Syntax

Names, Values, Polarities

= s|r (name)
vi= bl s | x| f(¥) (value)
pyg = — | + (polarity)
P,Q := 0 nil)
| s.P v.Q service definition / invoke)
| (¥).P X).Q values output / tuple input)
| (h.P X0 (h)-Pi label selection / branching)

(ni
| (
| (
| (
| return v.P (return)
| if v=v'then Pelse Q (if-then-else)
| (vm)P (restriction)
| rP>P (sessmn)
| P>%>Q (pi
| Pl@Q (

parallel)

v

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 23 / 40

SCC Structural Congruence

@ alpha-conversion
@ parallel composition
@ name restriction

@ garbage collection of terminated sessions

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 24 / 40

SCC Structural Congruence

Standard axioms (assume m,y ¢ fn(Q) and r # m)

(vm)Q = (vm)(Q["/m]) (%).Q == (7)-Q[/]
P>%x>Q=P>y>(Q[/x])

PI0O=P P|Q = Q|P (P|Q)IR = P|(QIR)

Ql((vm)P) = (vm)(Q|P) (vm)(vm")P = (vm')(vm)P
P> (vm)P = (vm)(rP > P) (vm)P)>%x> Q= (vm)(P > x> Q))

Axioms for garbage collection of terminated sessions

0>%x>P=0 (PIQ)>x>R=(P>%x>R)|(Q >%X>R)

(rPr0)>%>R=rP>0 >(Q|;>0)=r>Q|ry >0

(vr)(rt>0/r >0)=0

ezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 25 / 40

SCC Fragment

Main assumptions

Services are
@ persistent (not consumed after invocations)
@ top-level (not nested, not dynamically installed)
o stateless (returns not allowed on service side)
Sessions are

@ not interruptable (close-free fragment)

@ with non recursive communication protocols

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 26 / 40

Example 1: Factorial

Service definition
fatt.(n).if (n = 0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n- x)
A fatt instance waits for a natural number n: if equal to zero then sends

back 1 to the client, otherwise issues an invocation to a fresh instance of

fatt with argument n — 1, waits for the response and passes the result x to
a pipe that sends back n - x to the client

v

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 27 / 40

Example 1: Factorial

fatt.(n).if (n = 0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n- x)

A fatt instance waits for a natural number n: if equal to zero then sends
back 1 to the client, otherwise issues an invocation to a fresh instance of
fatt with argument n — 1, waits for the response and passes the result x to
a pipe that sends back n - x to the client

Service invocation

fatt.(3).(x) | fatt.(5).(x).return x
The first client passes the argument 3 to the service instance, then waits
for the response; the second client passes a different argument and returns
the computed result to the parent session. The protocols of the two clients
will run in separate sessions and will not interfere.

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 27 / 40

Example 2: Room reservation

Service definition (with branching)

reserve. ((single).(x).(code(x,""))
+ (double).(x, y).{code(x, y)))

(where code : str x str — int is a function only available on service side)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 28 / 40

Example 2: Room reservation

Service definition (with branching)

reserve. ((single).(x).(code(x,""))
+ (double).(x, y).{code(x, y)))

(where code : str x str — int is a function only available on service side)

Service invocations (with selection)

reserve.(single).("Bob").(x).return x

reserve.(double).("Bob"”,"Leo").(y).return y

reserve.if (...)
then (single).("Bob").(x).return x
else (double).("Bob","Leo").(y).return y

v

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 28 / 40

Example 3: Proxy service for load balancing

Service definition (with name passing and extrusion)

(va, b)(a.P
| b.P
| loadbalance.if (choose(a, b) = 1) then (a) else (b))

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 29 / 40

Example 3: Proxy service for load balancing

Service definition (with name passing and extrusion)

(va, b)(a.P
| b.P
| loadbalance.if (choose(a, b) = 1) then (a) else (b))

Service invocation

(loadbalance.(z).return z) > x > Z.Q

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 29 / 40

© A Type System for SCC

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 30 / 40

Type judgements

Overall idea

@ Typevalues: TFv:S
@ Type a process as if part of a current session:

M- P U[T]

separating intra-session interaction T from upward interaction U
@ The type T of the protocol on one side of a session should be dual
w.r.t. the type T’ of its partner’s protocol (T = T')

Problems (and limitations)

(]

Some flexibility required w.r.t. branching and selection
Parallel composition of protocols

Replication due to pipelines

No delegation

Recursive invocation of services

)
)
)
)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 31 /40

Type system basics

Syntax of types

S == [T] (session)

| B (basic data types)

T == end (no action)

| ?2(51,...,5n).T (input of a tuple)

| W(S1,-..,5n). T (output of a tuple)

| &{h:Ty,....0h: Ty} (external choice)

| ®f{h:T1,....0h: Th} (internal choice)

U == 1(5k.end (upward interaction)

Dual types

end = end 7(3)7_ = '(E)T &{/,' : T,'},' = @{/,‘ : T,},
!(;).T’ = 7(;)? @{/,‘ : T,'},' = &{/,' : T,},

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 32 /40

Type System Highlights: Services and Sessions

Services

(SERVICE)
s:Sks:S
(TDEF) (TiNv) o
=P:end[T] THs:[T] Fr=P:U[T] TEs:[T]
[+ s.P: end[end] ['+5.P :end[U]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 33 /40

Type System Highlights: Services and Sessions

Services

(SERVICE)
s:Sks:S
(TDEF) (TiNv) o
=P:end[T] THs:[T] Fr=P:U[T] TEs:[T]
[+ s.P: end[end] ['+5.P :end[U]

(TsEs) (TSESI)
- P:U[T] [-P:U[T]

For:[T]F rt>P:end[U] C,r:[T]Fr~>P:end[U]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 33 /40

Type System Highlights: Protocols

Input, output, and return

(TIN) (Tour)

rx:SFP:UT] F-P:U[T] THV:S

M (X).P: U[?(5).T] [(¥).P: U[(S5).T]
(TRET)

rEP:U[T] TH?:5

[+ return ¥.P :I(S).U[T]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 34 / 40

Type System Highlights: Protocols

Input, output, and return

(TiN) (Tour))
rx:SFP:UT] FEP:U[T] TH?:S
M (%).P: U[?(5).T] M (¥).P: U[(S).T]
(TRET)

r-P:U[T] THV:S

[+ return ¥.P :I(S).U[T]

Branching and Selection

(TBRANCH) (TCHOICE)

I C{1,...,n}Vie I.T - P;: U[T}] kel TFP:U[TL
M2 o (0).Pi: UL Ti}lies C - ().P:U[@{l; : Ti}iel

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 34 / 40

Type System Highlights: Protocols

(TpPARL)
[P :1(5)".end[T] TF Q:!(5)".end[end]

[P|Q :1(5)"" . end[T]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 35 /40

Type System Highlights: Protocols

(TpPARL)
[P :1(5)".end[T] TF Q:!(5)".end[end]

[P|Q :1(5)"" . end[T]

Conditional

(T1F)
r'Fvi:S ThEw:S THP:U[T] THQ:U[T]

I if vy = v» then P else Q : U[T]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 35 /40

Main properties

Subject Congruence
fr'EP:U[T]and P=Q then T+ Q: U[T]

Subject reduction

o IfMr:SEP:U[T]and P 5 Qthen I, r:S'F Q: U[T]
o IfTFP:U[T]and P 5 Q then T F @ : U[T]

[* I - RN Q means that Q is reached by P after a communication or a selection within session r, with r a free name in P

@ P L Q means that Q is reached by P after interaction in a restricted session or after a service invocation

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 36 / 40

Main result

P=(vs1)...(vsn)(s1.-Qu]--.|sn-Qn)

Deadlock free processes

P such that whenever P—25*Q either @ — or @ is in normal form.

As a technicality, we modify the LTS so to remove all (vr) produced by service invocations, introduce the label rv to observe

that a service invocation takes place inside session r and let w be any sequence of 7, r7 and r¢ steps.

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 37 / 40

Main result

P=(vs1)...(vsn)(s1.-Qu]--.|sn-Qn)

Deadlock free processes

P such that whenever PL*Q either @ — or @ is in normal form.

As a technicality, we modify the LTS so to remove all (vr) produced by service invocations, introduce the label rv to observe

that a service invocation takes place inside session r and let w be any sequence of 7, r7 and r¢ steps.

Initial processes
@ (- P : end[end]
@ P does not contain session constructs

@ all service definitions are at the top level

Deadlock free

If P is an initial process, then it is deadlock free.

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 37 / 40

Example: Factorial

Processes

F = fatt.(n).if (n=0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n- x)
P= fatt.(3).(x) | fatt.(5).(x).return x
Q= P>z> fatt.(z).(x)
Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC

AMAST 2008 38 / 40

Example: Factorial

Processes

F

fatt.(n).if (n = 0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n - x)

= fatt.(3).(x) | fatt.(5).(x).return x

P
Q= P>z> fatt.(z).(x)

Types

I = fatt : [?(int).!(int)], — : int X int — int,- : int X int — int
I+ F : end[end]

I+ P : end[!(int).end]

I Q : end[end]

0 b+ (vfatt)(F|Q) : end[end]

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 38 / 40

Outline

© Concluding Remarks

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 39 / 40

Conclusion and Future Work

@ Original mix of several ingredients

@ Flexible and expressive

Type system

@ Strong result over a (reasonable) fragment of SCC

o Difficult to obtain by encoding SCC in other typed calculi

Ongoing work

@ Type inference
@ Subtyping

@ Recursive protocols and regular session types

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 40 / 40

Conclusion and Future Work

@ Original mix of several ingredients

@ Flexible and expressive

Type system

@ Strong result over a (reasonable) fragment of SCC

@ Difficult to obtain by encoding SCC in other typed calculi

Ongoing work

@ Type inference
@ Subtyping

@ Recursive protocols and regular session types

THANKS FOR THE ATTENTION!)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008 40 / 40

	Introduction & Motivation
	SCC in a Nutshell
	A Type System for SCC
	Concluding Remarks

