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Service Oriented Computing (SOC)

Services

SOC is an emerging paradigm where
services are understood as

@ autonomous

@ platform-independent
computational entities that can be:

@ described

@ published

@ discovered
@ dynamically assembled

for developing massively distributed,
interoperable, evolvable systems.
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Service Oriented Computing (SOC)

e-Expectations

Services

SOC is an emerging paradigm where
services are understood as

@ autonomous

@ platform-independent
computational entities that can be:

@ described

@ published

@ discovered
@ dynamically assembled

for developing massively distributed,
interoperable, evolvable systems.
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Deadlock free SCC

Big companies put many efforts for
service delivery on a variety of
computing platforms.

Tomorrow, there will be a plethora of
new services for e-business, e-health,
e-government, e-* within the rapidly
evolving Information Society.

Semantic foundations?

Industrial consortia are developing
orchestration and choreography
languages, targeting the
standardization of Web Services and
XML-centric technologies for which
neat semantic foundations are
necessary.

v
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SENSORIA (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP). J
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Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

v

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

v
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The role of process calculi

Coordinating and combining services

A crucial role in the project is played by formalisms for service description
that can lay the mathematical basis for analysing and experimenting with
components interactions, and for combining services.

SENSORIA Work Package 2

We seek for a small set of primitives that might serve as a basis for
formalizing, programming and disciplining service oriented applications
over global computers.

SENSORIA core calculi

@ Signal Calculus: middleware level

@ SOCK, COWS: service level, correlation-based

@ SCC-family (SCC, SSCC, CC, CaSPiS): service level, session-based
@ cc-pi, lambda-req: SLA contract level
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Main Contribution

Define a type system for SCC to guarantee sound interaction

Proceedings

@ Syntax + LTS semantics (see Section 2)

@ Type system + subject reduction (see Section 3)

o Initial processes are deadlock free: We define a class of processes,
called initial, for which we can guarantee that a normal form is
reached with no pending session protocols unless infinitely many
services are invoked provoking divergence (see Theorem 2).

@ Simple examples

A

Talk
o Sketches of syntax and semantics
@ Intuitive idea and flashes of typing rules
@ Simple examples
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Related Work

@ Honda, Vasconcelos, Kubo + Gay, Hole + Kobayashi: starting point

@ Acciai, Boreale (Ugo Montanari's Festschrift): CaSPiS™, asymmetric
notion of progress

@ Dezani et al. (TGC'07): progress, no recursion

@ Lanese et al. (SEFM'07): SSCC orchestration is via streams instead
of pipelines

@ Bruni et al. (PLACES'08): use, dynamic multiparty sessions

@ Bonelli, Compagnoni 4+ Honda, Yoshida, Carbone: multiparty
asynchronous sessions
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© SCC in a Nutshell
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SCC Genesis

SCC [WS-FM 2006] sources of inspiration

@ 7 (names, communication): x(y).P, Xy.P, (vx)P
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SCC Genesis

SCC [WS-FM 2006] sources of inspiration

@ 7 (names, communication): x(y).P, Xy.P, (vx)P
@ 7/, structured communication (session types): a(k).P, a(k).P
roughly, think of a(k).P as (vk)ak.P

@ Orc (pipelining and pruning of activities):
(EAPLS(2008) | EATCS(2008)) > cfp > Email(rb@gmail.it, cfp)
Email (rb@gmail.it, cfp) where cfp :€ (EAPLS(2008) | EATCS(2008))

To keep in mind

We are dealing with conceptual abstractions: the syntax does not
necessarily expose implementation details. For example:

@ a session is a logical entity that can be implemented by an additional
sid parameter carried by all related messaging

@ all service instances (serving different requests) can be handled by one
service port
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SCC: General Principles

Service definitions: s.P

@ services expose their protocols
@ (persistent) services can handle multiple requests separately
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SCC: General Principles

Service definitions: s.P

@ services expose their protocols
@ (persistent) services can handle multiple requests separately

v

Service invocations: 5.P

@ service invocations expose their protocols

@ sequential composition via pipelining (4 la Orc)

\
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SCC: General Principles

Service definitions: s.P

@ services expose their protocols
@ (persistent) services can handle multiple requests separately
v
Service invocations: 5.P

@ service invocations expose their protocols

@ sequential composition via pipelining (4 la Orc)

@ seen as run-time syntax

@ service invocation spawns fresh session parties (locally to each partner)

@ sessions are: two-party (service-side + client-side) + private
@ interaction between session protocols: bi-directional
°

nested sessions: values can be returned outside sessions (one level up)
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Sketch of Multiple Sessions
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Sketch of Multiple Sessions

[+] r1] (=Lservice def]

______
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Sketch of Multiple Sessions

C | EFTYEYS)

Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC AMAST 2008



Sketch of Multiple Sessions

[+] r1| (=L service def] [ r3

E]-
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Sketch of Conversations

[+]

in.out.in

out.in.out
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Sketch of Nested Sessions

[+] rl

1] service call}

E rl
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Sketch of Nested Sessions

[+] rl

E rl

[+] r3
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Sketch of Nested Sessions

[+] rl

E rl
[#] r3

I=] service call}
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Sketch of Nested Sessions

[+] rl

rl
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Sketch of Return

[#] rl

[+] r3
4]

in.return.out — |
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SCC Raw Syntax

Names, Values, Polarities

m = s |r (name)
vi= b |s| x| f(¥) (value)
p:q = — | + (polarity)
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SCC Raw Syntax

Names, Values, Polarities

= s|r (name)
vi= bl s | x| f(¥) (value)
pyg = — | + (polarity)
P,Q := 0 nil)
| s.P v.Q service definition / invoke)
| (¥).P X).Q values output / tuple input)
| (h.P X0 (h)-Pi label selection / branching)

(ni
| (
| (
| (
| return v.P (return)
| if v=v'then Pelse Q (if-then-else)
| (vm)P (restriction)
| rP>P (sessmn)
| P>%>Q (pi
| Pl@Q (

parallel)

v
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SCC Structural Congruence

@ alpha-conversion
@ parallel composition
@ name restriction

@ garbage collection of terminated sessions
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SCC Structural Congruence

Standard axioms (assume m,y ¢ fn(Q) and r # m)

(vm)Q = (vm)(Q["/m])  (%).Q == (7)-Q[ /]
P>%x>Q=P>y>(Q[/x])

PI0O=P P|Q = Q|P (P|Q)IR = P|(QIR)

Ql((vm)P) = (vm)(Q|P) (vm)(vm")P = (vm')(vm)P
P> (vm)P = (vm)(rP > P) (vm)P)>%x> Q= (vm)(P > x> Q) )

Axioms for garbage collection of terminated sessions

0>%x>P=0 (PIQ)>x>R=(P>%x>R)|(Q >%X>R)

(rPr0)>%>R=rP>0 >(Q|;>0)=r>Q|ry >0

(vr)(rt>0/r >0)=0
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SCC Fragment

Main assumptions

Services are
@ persistent (not consumed after invocations)
@ top-level (not nested, not dynamically installed)
o stateless (returns not allowed on service side)
Sessions are

@ not interruptable (close-free fragment)

@ with non recursive communication protocols
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Example 1: Factorial

Service definition
fatt.(n).if (n = 0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n- x)
A fatt instance waits for a natural number n: if equal to zero then sends

back 1 to the client, otherwise issues an invocation to a fresh instance of

fatt with argument n — 1, waits for the response and passes the result x to
a pipe that sends back n - x to the client

v
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Example 1: Factorial

fatt.(n).if (n = 0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n- x)

A fatt instance waits for a natural number n: if equal to zero then sends
back 1 to the client, otherwise issues an invocation to a fresh instance of
fatt with argument n — 1, waits for the response and passes the result x to
a pipe that sends back n - x to the client

Service invocation

fatt.(3).(x) | fatt.(5).(x).return x
The first client passes the argument 3 to the service instance, then waits
for the response; the second client passes a different argument and returns
the computed result to the parent session. The protocols of the two clients
will run in separate sessions and will not interfere.
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Example 2: Room reservation

Service definition (with branching)

reserve. ( (single).(x).(code(x,""))
+ (double).(x, y).{code(x, y)) )

(where code : str x str — int is a function only available on service side)
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Example 2: Room reservation

Service definition (with branching)

reserve. ( (single).(x).(code(x,""))
+ (double).(x, y).{code(x, y)) )

(where code : str x str — int is a function only available on service side)

Service invocations (with selection)

reserve.(single).("Bob" ).(x).return x

reserve.(double).("Bob"”,"Leo").(y).return y

reserve.if (...)
then (single).("Bob").(x).return x
else (double).("Bob","Leo").(y).return y

v
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Example 3: Proxy service for load balancing

Service definition (with name passing and extrusion)

(va, b)( a.P
| b.P
| loadbalance.if (choose(a, b) = 1) then (a) else (b) )
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Example 3: Proxy service for load balancing

Service definition (with name passing and extrusion)

(va, b)( a.P
| b.P
| loadbalance.if (choose(a, b) = 1) then (a) else (b) )

Service invocation

(loadbalance.(z).return z) > x > Z.Q
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© A Type System for SCC
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Type judgements

Overall idea

@ Typevalues: TFv:S
@ Type a process as if part of a current session:

M- P U[T]

separating intra-session interaction T from upward interaction U
@ The type T of the protocol on one side of a session should be dual
w.r.t. the type T’ of its partner’s protocol (T = T')

Problems (and limitations)

(]

Some flexibility required w.r.t. branching and selection
Parallel composition of protocols

Replication due to pipelines

No delegation

Recursive invocation of services

)
)
)
)
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Type system basics

Syntax of types

S == [T] (session)

| B (basic data types)

T == end (no action)

| ?2(51,...,5n).T (input of a tuple)

| W(S1,-..,5n). T (output of a tuple)

| &{h:Ty,....0h: Ty} (external choice)

| ®f{h:T1,....0h: Th} (internal choice)

U == 1(5k.end (upward interaction)

Dual types

end = end 7(3)7_ = '(E)T &{/,' : T,'},' = @{/,‘ : T,},
!(;).T’ = 7(;)? @{/,‘ : T,'},' = &{/,' : T,},
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Type System Highlights: Services and Sessions

Services

(SERVICE)
s:Sks:S
(TDEF) (TiNv) o
=P:end[T] THs:[T] Fr=P:U[T] TEs:[T]
[+ s.P: end[end] ['+5.P :end[U]
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Type System Highlights: Services and Sessions

Services

(SERVICE)
s:Sks:S
(TDEF) (TiNv) o
=P:end[T] THs:[T] Fr=P:U[T] TEs:[T]
[+ s.P: end[end] ['+5.P :end[U]

(TsEs) (TSESI)
- P:U[T] [-P:U[T]

For:[T]F rt>P:end[U] C,r:[T]Fr~>P:end[U]
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Type System Highlights: Protocols

Input, output, and return

(TIN) (Tour)

rx:SFP:UT] F-P:U[T] THV:S

M (X).P: U[?(5).T] [ (¥).P: U[(S5).T]
(TRET)

rEP:U[T] TH?:5

[+ return ¥.P :I(S).U[T]
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Type System Highlights: Protocols

Input, output, and return

(TiN) (Tour) )
rx:SFP:UT] FEP:U[T] TH?:S
M (%).P: U[?(5).T] M (¥).P: U[(S).T]
(TRET)

r-P:U[T] THV:S

[+ return ¥.P :I(S).U[T]

Branching and Selection

(TBRANCH) (TCHOICE)

I C{1,...,n}Vie I.T - P;: U[T}] kel TFP:U[TL
M2 o (0).Pi: UL Ti}lies C - ().P:U[@{l; : Ti}iel
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Type System Highlights: Protocols

(TpPARL)
[P :1(5)".end[T] TF Q:!(5)".end[end]

[ P|Q :1(5)"" . end[T]
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Type System Highlights: Protocols

(TpPARL)
[P :1(5)".end[T] TF Q:!(5)".end[end]

[ P|Q :1(5)"" . end[T]

Conditional

(T1F)
r'Fvi:S ThEw:S THP:U[T] THQ:U[T]

I if vy = v» then P else Q : U[T]
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Main properties

Subject Congruence
fr'EP:U[T]and P=Q then T+ Q: U[T]

Subject reduction

o IfMr:SEP:U[T]and P 5 Qthen I, r:S'F Q: U[T]
o IfTFP:U[T]and P 5 Q then T F @ : U[T]

[* I - RN Q means that Q is reached by P after a communication or a selection within session r, with r a free name in P

@ P L Q means that Q is reached by P after interaction in a restricted session or after a service invocation
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Main result

P=(vs1)...(vsn)(s1.-Qu]--.|sn-Qn)

Deadlock free processes

P such that whenever P—25*Q either @ — or @ is in normal form.

As a technicality, we modify the LTS so to remove all (vr) produced by service invocations, introduce the label rv to observe

that a service invocation takes place inside session r and let w be any sequence of 7, r7 and r¢ steps.
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Main result

P=(vs1)...(vsn)(s1.-Qu]--.|sn-Qn)

Deadlock free processes

P such that whenever PL*Q either @ — or @ is in normal form.

As a technicality, we modify the LTS so to remove all (vr) produced by service invocations, introduce the label rv to observe

that a service invocation takes place inside session r and let w be any sequence of 7, r7 and r¢ steps.

Initial processes
@ (- P : end[end]
@ P does not contain session constructs

@ all service definitions are at the top level

Deadlock free

If P is an initial process, then it is deadlock free.
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Example: Factorial

Processes

F = fatt.(n).if (n=0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n- x)
P= fatt.(3).(x) | fatt.(5).(x).return x
Q= P>z> fatt.(z).(x)
Bruni, Mezzina (DIPISA, IMT LUCCA) Deadlock free SCC
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Example: Factorial

Processes

F

fatt.(n).if (n = 0)
then (1)
else (fatt.(n — 1).(x).return x) > x > (n - x)

= fatt.(3).(x) | fatt.(5).(x).return x

P
Q= P>z> fatt.(z).(x)

Types

I = fatt : [?(int).!(int)], — : int X int — int,- : int X int — int
I+ F : end[end]

I+ P : end[!(int).end]

I Q : end[end]

0 b+ (vfatt)(F|Q) : end[end]
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Outline

© Concluding Remarks
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Conclusion and Future Work

@ Original mix of several ingredients

@ Flexible and expressive

Type system

@ Strong result over a (reasonable) fragment of SCC

o Difficult to obtain by encoding SCC in other typed calculi

Ongoing work

@ Type inference
@ Subtyping

@ Recursive protocols and regular session types
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@ Strong result over a (reasonable) fragment of SCC

@ Difficult to obtain by encoding SCC in other typed calculi
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THANKS FOR THE ATTENTION! )
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