Ten Virtues of Structured Graphs

(or why structured graphs can be better than flat ones)

Roberto Bruni

also based on join work with F. Gadducci, A. Lluch-Lafuente, U. Montanari, E. Tuosto

Department of Computer Science, University of Pisa
bruni@di.unipi.it

Research supported by
VSO
March 28-29, 2009, GT-VMT'09, York, UK

Ten Virtues of Structured Graphs (GT-VMT’09) 1/45

bruni@di.unipi.it

Introduction

Outline

Introduction

Ten Virtues of Structured Graphs (GT-VMT’09) 2/45

Introduction

GT-VMT 2009

» Graph-based techniques
» formal semantics, concurrency, logics, verification, tools
» Visual modelling

» project planning, network management, traffic control,
business processes, software architectures, www site design,
and many more...

» Modern software and Sensoria project (service-oriented
computing)

» key issues such as scalability, representation distance,
open-endedness, dynamicity, distribution

» within specification, design, validation and verification phases

Ten Virtues of Structured Graphs (GT-VMT’09) 3/45

Introduction

Sensoria Poster Collage (http://www.sensoria-ist.eu)

Software Engineering for Service-Oriented Overlay Computers www.sensoria-ist.eu

develops

semantically well-founded languages, novel
theories, methods and tools for constructing
and analysing the new generation of high-
quality service-oriented systems

offers

model-driven approach for service-

oriented software engineering

modelling of service-oriented systems

analysis of behaviour, security and quality

= of service properties

I nteg rates suite of tools and techniques for
deploying service-oriented systems

foundational theories, techniques, and reengineering legacy software into

methods with pragmatic software engineering services

researches case studies

in automotive, finance, telecommunications and

linguistic primitives for modelling and
programming service-oriented systems
qualitative and quantitative analysis
methods for global services

development and deployment LiSt Of partners

techniques for systems services

and e-learning domains

Coordinator: Prof. Dr. Martin Wirsing, Ludwig-Maximilians-Universitst Minchen, Germany
Universita di Trento | University of Leicester | Warsaw University | TU Denmark at Lyngby | Universita di Pisa
[F] Urniversith i Firenze | Universits diBologra | 1TI Pisa | Universidad de Lisboa | Univarsity of Edinburh | ATX
Telecom Italia Lab | Imperial College London | FAST GmbH | Budapest University of Technology and Economics
Information Society S&N AG | University College London | Politecnico di Milano

Ten Virtues of Structured Graphs (GT-VMT’09) 4/45

http://www.sensoria-ist.eu

Introduction

All That Graphs

ro [ms [ma [ms | ma | ns | ns | mo | ms | o

no || a1 ap as a4

m as | a6 | dr ag d9 | 410
ny || an a2 ai3 ai4 | 415
n3 || 816 | 917 | 418 | 419 | 420 | @21 | @22 | a23 az4
Ny ans a2e azy | dog
ng azg | a3 as31 | a3 as3
N 34 a3s

ny d36 | 437 a3g

ng d39 a40 a4l | a42 a43
Ng || 844 | @45 | a46 a47 | d48

Ten Virtues of Structured Graphs (GT-VMT’09) 5/45

Introduction

All That Graphs

— <graphml xsi ti tup:/igra g or p ywork /graphml/1.0/yg ">

<key for="node" id="d0" yfiles.type="nodegraphics"/>

<key attr.name="description" attr.type="string" for="node" id="d1"/>

<key for=

dge" id="d2" yfiles.type="edgegraphics/>

<key attr.name="description” attr.type="string" for="cdge"

<key for="graphml" id="d4" yfiles.type="resources"/>

- <graph ed gedefault="directed" id="G" dges="18" des="18" der="free">

— <node id="n0">

- <y:ShapeNode>

<y:Geometry height="30.0" width="47.
<y:Fill color="#FFCC00" transparent="false" >
#000000" type="line" width:
<y:NodeLabel alignment="center" autoSizePolicy="content" fontFamily="Arial Black" fontSize="12" fontStyle="plain" hasBackgroundColor="falsc" hasLineColor="falsc"
6.482421875"

<y:BorderStyle colo L0

height="17.962890625" modeIName="internal” modelPosition="c" textColor="#000000" visible="truc" width="34,03515625" x=

¥="6.0185546875">2hub</y:N odeLabel>
<y:Shape type="roundrectangle’ />
<ly:ShapeNode>
<data>
<data ke A1

</node>

— <nodeid="n1">

Ten Virtues of Structured Graphs (GT-VMT’09) 5/45

Introduction

All That Graphs

Our choice

act

Ten Virtues of Structured Graphs (GT-VMT’09) 5/45

Introduction

A Scenario: Software Architectures as Graphs

» D. Garlan & D. Perry, 1995

» “... the structure of the components of a program / system,
their interrelationship, and principles and guidelines governing
their design and evolution over time."

» components (and connectors) as hyper-edges
» (here represented as boxes of various shapes)
» ports (and roles) as tentacles
» (here represented as arrows)
» attachments as nodes
> (here represented as smaller circles)

» connectors and attachments are sometimes omitted

Ten Virtues of Structured Graphs (GT-VMT’09) 6/45

Introduction

Why “Spaghetti” Graphs are Considered Harmful

» When GT applied to large case studies, graphs better be
structured in order to be comprehensible
» Analogies with structured programming and type theory
» it is helpful to use graphs that are conveniently formatted and
annotated
» discard / ignore non-conformant graphs
» Analogies with process calculi

» containment and links (as in bigraphs)
» dynamics and reconfiguration via inductive, conditional rewrite
rules

Ten Virtues of Structured Graphs (GT-VMT’09) 7/45

Introduction

Our proposal

» From graphs to hierarchical hypergraphs
» certain hyperdeges can contain hypergraphs that can be
hierarchical themselves
> arbitrary depth of nesting
» ADR (Architectural Design Rewriting)
» graphs + their blueprint (like binaries 4+ source templates)
» exploit blueprint for applying formal methods
> please visit http://www.albertolluch.com/research/adr
to know more

Ten Virtues of Structured Graphs (GT-VMT’09) 8/45

http://www.albertolluch.com/research/adr

Styles for Visual Support

Outline

Styles for Visual Support

Ten Virtues of Structured Graphs (GT-VMT’09) 9/45

Styles for Visual Support

Visualization can Support Formal Methods

,11:28_earendi @

5 soications piaces system (Y@ E N
0066

5 SPIN CONTROL 4.3.0 - 22 June 2007
{ .| e | view. | . | Hob [— [P
1o GIFClent, sy ecer, Cientl. T ensoart [0 g 2
i)

un wanspon(D, taTransport{o] «

U GIOPAGENI 1, 1AGeNtUL 1], toSenvarl 1], oAgentL 1], TransportU[1])
[un persport, orarpart 1, whgent ()
un Serv
{
{

b2, wAgent(2],

Fsm Giopciient 0oe|

@JJ ‘
E
f ine 295 1

o i fuest o meg TROTTREE ey msg mhdrrepy_status,msg.mh
) dRodireqidl-=1) (_lnosio)
2

i
e &Y s zbops

. femmeotion THTD. 1.0
e B (Tnpor O] /ﬂﬁqmﬁ\mmﬁm“nema o D/""“é
lssecannect
T e e i
< d e

queue 2 ((1oClentll))

queuie 20 (i TransportL[2)) =

Saveim | varout Cear | cose

Ten Virtues of Structured Graphs (GT-VMT’09) 10/45

Styles for Visual Support

Architectural Styles

» |EEE standard 1471

>

. a set of patterns or rules for creating one or more
architectures in a consistent fashion.”

» Style = Vocabulary + Rules

>

vV vV VY VY VY

Used to construct and document
Used to describe / explain

Used to understand

Used to validate

Used for conformance check
Used to reason about

To be reused

Ten Virtues of Structured Graphs (GT-VMT’09) 11/45

Styles for Visual Support

Can you spot some “regularity” ?

Ten Virtues of Structured Graphs (GT-VMT’09) 12/45

Styles for Visual Support

Graph Re-drawing

And now?

SEEnY

Ten Virtues of Structured Graphs (GT-VMT’09) 13/45

Another try?

Styles for Visual Support

Another Graph Re-drawing

Can you describe its “shape” (or style)?

Ten Virtues of Structured Graphs (GT-VMT’09) 15/45

Styles for Visual Support

Styles from Productions

> Legenda: titled boxes as non-terminals, ordinary boxes as

terminals
(=1 Pipeline
=1 Pipeline
o~o—>|:|—>c»—o
ol [=Pipeline [=/Pipeline _IN
1 [SPipeline 2 : 2 1 [=Pipeline 2 L [Spipeline (= Pipeline 2
o—> —>0 - o—»‘:}—»o o—> —>0 - o—> —>0—> o

» Several readings are possible:
> Refinement
» Types (Pipeline) and ops (station and cat(-), based on
hyperedge replacement)
> station :— Pipeline
> cat : Pipeline X Pipeline — Pipeline

» Abstraction
Ten Virtues of Structured Graphs (GT-VMT’09) 16/45

Styles for Visual Support

Types for Pipelines, Rings and Stars

[=] Pipeline = i

=Pipeline | =|
[= |peme; [=| Pipeline o oL

[=] Pipeline
&——0—4:'—)070
[S
B Star
l [=l'Star =] Star

o o O~
|=l'star

[=| Pipeline |

Ten Virtues of Structured Graphs (GT-VMT’09) 17/45

Styles for Visual Support

Types and Ops for Pipelines, Rings and Stars

=1 cat : Pipeline Pipeline —> Pipeline = it & Sy = P\pel\nei

BPlpe\me: [=I Pipeline 00 O—

-—0

[=] station : -> Pipeline

&,,0_,:'_,0,0

[=I par : Star Star —> Star

Q, [-Ifstar [=] cast :Ring -> Star

o RaNE
|=lfStar

\
\

[=| Pipeline |

Ten Virtues of Structured Graphs (GT-VMT’09) 18/45

Styles for Visual Support

Simplified Memberships (for Pipelines and Stars)

[=] cat : Pipeline Pipeline —> Pipeline =

net : Star -> Pipeline
[=IPipeline : [=| Pipeline i

o> —>0-—-0 o-— o

= star

s
o o—s[[TF—so—o

E| par : Star Star —> Star

[=] node : Pipeline > Star

o |- Star

<E Star

/[=] Pipeline

Ten Virtues of Structured Graphs (GT-VMT’09) 19/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

I[=] Pipeline

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

= Pipeline

=]l Star

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

= Pipeline

(=] Star

L =l Star

Al

t:<‘:E Star

S
|

i
2k

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

=] Pipeline

o—- —»0-—---0

- T /.é\ Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

Pipeline

Star

Star

Star

= A

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with

Pipeline
o
=
g

“Blueprint”)

-—o0

Star
= Star.

N\, 3

N E Pipeline /

N o o S/

S [=Pipeline [=] Pipeline /
Star

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

Pipeline

Star

0-----0
Star

Pipeline
\ \ =] Pipeline
2] Star
|
o8 |

ire

[=] Pipeline

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

An Example of Derivation (with “Blueprint™)

= Pipeline
O 0-—--0
=] Star
= Star
_
i %\
Sl Pipeline — 5
A B Pipeline 7

- Jf L] ’D_’“f’g,,,«/

A
\

é Star

\
|
: A

Ten Virtues of Structured Graphs (GT-VMT’09) 20/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

= Pipeline

Can 0--—0
E Star
i ‘\\
I
|

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

= Pipeline

Can 0--—0
E Star

NS -]
N
N
v B
\
\ i) 0“—::[
|
\
4
\
\
\
\
i
\
\
4
\
\
\
\
\
\

6@

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

[=] Pipeline

b —>»0-——0
=i Star

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

[=] Pipeline

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

= Pipeline

"

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Simplified Typing and Drawing (“Flattening”)

The corresponding proof term is

net (par (cast (node (cat (station,
cat (station, station)))),
cast (node (station))

)
)

Or just

net (par (node (cat (station,station,station)),
node (station)))

Note that nodes need not be mentioned

Ten Virtues of Structured Graphs (GT-VMT’09) 21/45

Styles for Visual Support

Another Example: Workflows

Activities composable in series and in parallel (fork & join):
disconnected activity and cyclic parts are not allowed

[3 par:PROC PROC —> PROC

= PrOC

[=I act : —> PROC 0< >"} -—0

O——— "FRO

[=1 seq: PROC PROC -> PROCE

PROC

—)-o——o

Ten Virtues of Structured Graphs (GT-VMT’09) 22/45

Styles for Visual Support

Another Example: Workflows

Is this a well-formed workflow?

Ten Virtues of Structured Graphs (GT-VMT’09) 22/45

Styles for Visual Support

Another Example: Workflows

Activities composable in series and in parallel (fork & join):
disconnected activity and cyclic parts are not allowed

=] par:PROC PROC -> PROC

I[=] act : —> PROC ; .
= PROC

&——o+@
o >(>o

=] seq : PROCPROC -> PROC:

= PrREE =
E —>o—alT PROC_,o o

Ten Virtues of Structured Graphs (GT-VMT’09) 22/45

Styles for Visual Support

Another Example: Workflows

Is this a well-formed workflow?

Ten Virtues of Structured Graphs (GT-VMT’09) 22/45

Styles for Visual Support

Six Virtues of Structured Graphs

» Requirements
» Type graphs are ok (and synergic to our approach) but limited
» Additional logic languages often needed
» We can account for many patterns in a natural way

Ten Virtues of Structured Graphs (GT-VMT’09) 23/45

Styles for Visual Support

Six Virtues of Structured Graphs

» Requirements
» Type graphs are ok (and synergic to our approach) but limited
» Additional logic languages often needed
» We can account for many patterns in a natural way
» Parsing and browsing
» Large graphs are hard to “understand” and navigate
» Their blueprint (if any available) helps quite a lot

Ten Virtues of Structured Graphs (GT-VMT’09) 23/45

Styles for Visual Support

Six Virtues of Structured Graphs

» Requirements
» Type graphs are ok (and synergic to our approach) but limited
» Additional logic languages often needed
» We can account for many patterns in a natural way
» Parsing and browsing
» Large graphs are hard to “understand” and navigate
» Their blueprint (if any available) helps quite a lot
» Model Construction and Model conformance
» Conformance is guaranteed by construction
» Otherwise hard to recover from scratch (proof-carrying graphs)

Ten Virtues of Structured Graphs (GT-VMT’09) 23/45

Styles for Visual Support

Six Virtues of Structured Graphs

» Requirements
» Type graphs are ok (and synergic to our approach) but limited
» Additional logic languages often needed
» We can account for many patterns in a natural way
» Parsing and browsing
» Large graphs are hard to “understand” and navigate
» Their blueprint (if any available) helps quite a lot
» Model Construction and Model conformance
» Conformance is guaranteed by construction
» Otherwise hard to recover from scratch (proof-carrying graphs)
» Compositionality and Abstraction & Refinement
> Interfaces are needed to constrain composition, but hard to
recover in flat graphs
» The hierarchical approach makes them available at any level
> Different levels of granularity can be considered
Ten Virtues of Structured Graphs (GT-VMT’09) 23/45

Dynamics

Outline

Dynamics

Ten Virtues of Structured Graphs (GT-VMT’09) 24/45

Dynamics

Style-Preserving Reconfiguration

» A reconfiguration is a change in an architecture
> static? e.g. for deployment on different platforms,
improvements, updates, upgrades, model-driven transformation
> partially specified? e.g. some components are not known at
design time, except for their types
> run-time? e.g. triggered by security policies, load balancing,
mobility, QoS assurance, components joining and leaving the
system, dynamic binding, wrapping, self-* architectures
» Style-preservation is relevant
» from well-formed graphs to well-formed graphs (but possibly
with different shapes)
» Examples
» reverse all actions in a pipeline, serialize a workflow, star to
ring transformation, migrate all clients of a server, close all
sub-sessions upon termination of their parents
Ten Virtues of Structured Graphs (GT-VMT’09) 25/45

Dynamics

How to Write Reconfiguration Rules

» Using graph transformation
> direct manipulation of flat graphs

v

v

v

applicable in non well-formed graphs

well-formedness of results must be proved

in the flat case: rules manipulate components (many steps
required)

in the hierarchical case: rules manipulate groups of
components (one step can suffice)

» Exploiting structured graphs

>

>

rules manipulate well-formedness proofs

inductive localization of the least part of the proof where the
change is needed

style-preserving by construction

Ten Virtues of Structured Graphs (GT-VMT’09) 26/45

Dynamics

An Example: 3hub Network

Network hubs have three degrees of connectivity and connections
are driven by the style (only allowed: some sort of reversed

pyramids)
= 3hub : —> 3NET
.- oo [=] 3NET
T
| 1
© o
= 3link : 3NET 3NET 3NET -> 3NET

—|WSNET =
ol = . [=] 3NET

0—0
i = SNET_,é

Ten Virtues of Structured Graphs (GT-VMT’09) 27/45

Dynamics

An Example: 3hub Network

A valid 3hubs network

[3huo }

Ten Virtues of Structured Graphs (GT-VMT’09) 27/45

Dynamics

An Example: 3hub Network

A valid 3hubs network? or maybe not?

3hub

Ten Virtues of Structured Graphs (GT-VMT’09) 27/45

Dynamics

An Example: 3hub Network

A valid 3hubs network? or maybe not?

3hub 3hub

Ten Virtues of Structured Graphs (GT-VMT’09) 27/45

Dynamics

An Example: 2hub Network

Network hubs have just two degrees of connectivity and
connections are driven by the style (only allowed: rings)

o———o——i-—o

= 2link : 2MET 2MET —> 2NET

s I
= L »oe T NETL Lo o

I[=] 2MNET

| i
I
o Ten Virtues of Structured Graphs (GT-VMT’09) 28/45

Dynamics

An Example: 2hub Network

A valid 2hubs network

Ten Virtues of Structured Graphs (GT-VMT’09) 28/45

Dynamics

An Example: From 3hub Networks to 2hub Networks

» Under certain circumstances, it is required to reconfigure any
valid 3hub network to a valid 2hub network
» the whole network must be reconfigured (not just part of it)
» total number of hubs is unchanged
» 2hubs must form a ring
> Idea:

» exploit blueprint, not the flat graph

» reconfiguration is defined inductively on the structure of the
network

» exploit conditional rewrite rules

Ten Virtues of Structured Graphs (GT-VMT’09) 29/45

Dynamics

An Example: From 3hub Networks to 2hub Networks

Reconfigure a single 3hub (note that type is changed: some sort of
transduction, context must be adapted)

1=l 3hub : —> 3NET

3t02 =] 2hub : -> 2NET

o—o—{T}—>o—o

Ten Virtues of Structured Graphs (GT-VMT’09) 29/45

Dynamics

An Example: From 3hub Networks to 2hub Networks

Reconfigure the link structure (a transduction, again)

= x1 3t02 = y1 = x

>0 3 3toz [=] 2

5 I
—_—0 O —0 — Q€— —>»0

B x3 o 2 [=] v3 °

= 3link : 3NET 3NET 3MET —> 3NET [=] 2link : 2MET 2NET —> 2NET:

ol 8 | B X2, e E| 2link
= vl E ¥2

Ly o0 —>o0-—o
E x3 |
i SR |

[}

Ten Virtues of Structured Graphs (GT-VMT’09) 29/45

Dynamics

An Example: From 3hub Networks to 2hub Networks

Reconfigure the whole network (note that type is preserved, rewrite
is silent, applicable in any larger context)

[=] 7 o 3to2 [=] y o

[=] y:

|
I
I
o]
Ten Virtues of Structured Graphs (GT-VMT’09) 29/45

1= X
L,g) —
o

Dynamics

An Example: Rewrite Rules for Network Transformation

3hub 22 ohub

3to2 3to2 3to2
X1 ——Y1 X2 ——=Y2 X3 —Y3

31link(xt, X2, x3) =23 21ink(yy, 21ink(ys, y2))

3to2
X—)

3net(x) — 2net(y)

Ten Virtues of Structured Graphs (GT-VMT’09) 30/45

Dynamics

Three More Virtues of Structured Graphs

» Reconfiguration and Evolution

» (flat) graph transformation requires ad-hoc studies and
techniques (e.g., negative application conditions, interfaces,
atomicity issues), augmenting the representation distance
(high expertize, technology transfer more difficult)

» structured graph rewrites can be more handy and efficient (e.g.
graph matching not necessarily required)

> style preservation: to be proved vs guaranteed by proofs

» concurrency? special cases (edge to edge rules)?

Ten Virtues of Structured Graphs (GT-VMT’09) 31/45

Dynamics

Three More Virtues of Structured Graphs

» Reconfiguration and Evolution
» (flat) graph transformation requires ad-hoc studies and
techniques (e.g., negative application conditions, interfaces,
atomicity issues), augmenting the representation distance
(high expertize, technology transfer more difficult)
» structured graph rewrites can be more handy and efficient (e.g.
graph matching not necessarily required)
> style preservation: to be proved vs guaranteed by proofs
» concurrency? special cases (edge to edge rules)?
» Graphical encoding
» seamless grouping of item through the hierarchy (e.g. for
representing nested sessions, transactions, scopes)
> in the case of process calculi, facilitated by suitable graph
algebras (see next part of the talk)
» Encoding properties (soundness, completness) shown by
structural induction Ten Virtues of Structured Graphs (GT-VMT'09) 31/45

Outline

ADR

Ten Virtues of Structured Graphs (GT-VMT’09) 32/45

ADR in a Nutshell

» ADR formulas:

>

>

ADR = Designs + Term Rewriting
Designs = Typed Hierarchical Graphs (with Interfaces)

» ADR ingredients:

>

vV VvV vV Y VY VY

Sorts: Vocabulary, Types (edge and node labels)

Values: Designs (hierarchical graphs with interfaces)
Operations: Graph-grammar-like rules

Terms: proofs of construction

Terms (with variables): partial Designs, partial proofs
Axioms: properties of operations

Membership predicates: additional style rules

Rewrite rules: behaviour, reconfigurations

Rewrite strategies: style conformance, style analysis, etc.

Ten Virtues of Structured Graphs (GT-VMT’09) 33/45

A Flexible Unifyig Framework for Design, Execution,
Reconfiguration

> Not necessarily in the spirit of universal models:
» node as names + hyper-edge as ops + parallel composition +
name fusion + name hiding = any graph can be obtained
» node as names + hyper-edge as ops + type annotation +

tailored constructors = only well-formed designs are described
» Some other ADR features:

» Membership equational theory (e.g. ACI1, subsorting,
overloading)

» Flattening axioms (e.g. not all operators are hierarchic)
» Some ADR caveats:

» different proof terms for the same graph are possible
» constraints not fully integrated yet
» concurrency aspects not addressed yet

Ten Virtues of Structured Graphs (GT-VMT’09) 34/45

Maude Prototype for ADR

= Basic Modules: =] Other Scenarios
E |[=] Spam Filter Scenario

Symbolic Modules
Design-Interpreted Modules

Maps, Sets, Lists, etc

I[=] Other ADR Algebras
I[=] AIgJabra of Hierarchical Designs

[Graphs, Graph Morphisms, etc }

I[=] Exporting Modules |

Hiearchical Designs

designs2dot] [designs2gml

Ten Virtues of Structured Graphs (GT-VMT’09) 35/45

Maude Prototype for ADR

» Why Maude?

>

vV vy vy VvYyy

built-in membership equational theories (e.g. to support style
conformance check)

conditional rewrite rules supported

standard encoding of LTS

built-in search strategies (e.g. to support model finding)
built-in LTL model-checker

defineable logic languages (within the same framework): e.g.
graph logics (Courcelle’s MSO), modal logics, spatial logics

Ten Virtues of Structured Graphs (GT-VMT’09) 35/45

ADR Case Studies

Leg-o-motive

@ Case Study
-~-<-!——>-4—!—+ . ..N.
-
NEtWOEEN [elient | » ¢—[comnector | » ¢—{server
| Topologies ;

— [client | — o Architectural
i .- j Styles
b [}

“Service Modelling
Languages

Process
Algebras

Ten Virtues of Structured Graphs (GT-VMT’09) 36/45

An Example: From Process Calculi to Graphs

The syntax of process calculi (with name handling)

P.Q ::= ¥;ymP; Guarded Sum

| s.P

| 5.P

| r>P

P>
| Plo

| (va)P
| 1P

Service Definition
Service Invocation
SeSSIO Algebraic form:
Plp6ll] - grammar

- structural congruence
Pal‘allCl \/UllllJUlJll.lUll
Restriction

Replication

Ten Virtues of Structured Graphs (GT-VMT’09) 37/45

An Example: From Process Calculi to Graphs

Terms as graphs

Ten Virtues of Structured Graphs (GT-VMT’09) 37/45

An Example: From Process Calculi to Graphs

The syntax of graphs

Definition 22 (bigraph) A bigraph over the signature K takes the form G' = (V, etrl, GT,GM) : T~ J

where: T = {m, X) and J = (n,Y) are its innasond autar intorfaaar_ooch combining a width (a finite

?dlm Definition 7 (hypergr: tuples’ isms). A hypergraph G is

and 3 @ triple (E¢. Na.tq) suc sets 1es, N¢ is the set of nodes,
’

CEo —
Definition 2.1 (Grapl nt has form T = G where: |

1. T C N is a finite set of names (the free nodes of the graph);
2. G is a graph term generated by the grammar

Gu=L(kx) | GIG | vwG | nil

and t¢ : S s the

morphisms, etc. of

Sfun

where X is a tuple of names, L € L, rank(L) = |x| and y is a name.

Ten Virtues of Structured Graphs (GT-VMT’09) 37/45

An Example: From Process Calculi to Graphs

Encoding can become cumbersome

L(va)Plir = {H‘PJJF

if a & fn(P)

(idy @ veidp) o [P{°/a}ll{eywr otherwise

LP[ellr =1PlIr = lQlr

loljr =0, ®0p [@.Pllr = (out

[0lx =1XX [PlQlx = [Plx A [CQ]:
[z2.P]x = get™ o [P]x [zz.P]x = ser

(Pa) '} = n1den (14" */a
(P QI = par,, ([P, [QIR)
[O]fl =nil,

a(®).P|r = (ing.

@idr) o LP{* /o Hleyur

operations are
parametric,
complex,
ad hoc)
) gy — 2ttt M h)

[M + N5, = choice, (M]3, [N]3)

Ten Virtues of Structured Graphs (GT-VMT’09) 37/45

ADR

A Re-usable Graph Algebra for Process Calculi

Components as edges /(X), types as design labels L.

(designs) D
(graphs) G == 0| x | I(X) | G|G | (vx)G

Ten Virtues of Structured Graphs (GT-VMT’09) 38/45

ADR

A Re-usable Graph Algebra for Process Calculi

Components as edges /(X), types as design labels L.

(designs) D = Lg[G]
(graphs) G = 0 | x | (%) | GIG | ()G | D)

Ten Virtues of Structured Graphs (GT-VMT’09) 38/45

ADR

A Re-usable Graph Algebra for Process Calculi

Components as edges /(X), types as design labels L.

(designs) D = Lg[G]
(graphs) G = 0 | x | (%) | GIG | ()G | D)

> In L[G], the nodes X in G are bound by the interface (as
arguments), the other free names of G are global.

Ten Virtues of Structured Graphs (GT-VMT’09) 38/45

ADR

A Re-usable Graph Algebra for Process Calculi

Components as edges /(X), types as design labels L.
(designs) D = Lg[G]
(graphs) G = 0 | x | I(}) | GIG | ()G | D(7)

> In L[G], the nodes X in G are bound by the interface (as
arguments), the other free names of G are global.
> We write Ly [G{¥/%}] as a shorthand for Lg[G](y)

Ten Virtues of Structured Graphs (GT-VMT’09) 38/45

ADR

A Re-usable Graph Algebra for Process Calculi

Components as edges /(X), types as design labels L.

(designs) D = Lg[G]
(graphs) G = 0 | x | (%) | GIG | ()G | D)

> In L[G], the nodes X in G are bound by the interface (as
arguments), the other free names of G are global.

> We write Ly [G{¥/%}] as a shorthand for Lg[G](y)

> A flattening axiom for some inessential design label L takes
the form L;G(y) = G{V/¢} (but G{¥/5} has still type L)

Ten Virtues of Structured Graphs (GT-VMT’09) 38/45

ADR

A Re-usable Graph Algebra for Process Calculi

Components as edges /(X), types as design labels L.

(designs) D = Lg[G]
(graphs) G = 0 | x | (%) | GIG | ()G | D)

> In L[G], the nodes X in G are bound by the interface (as
arguments), the other free names of G are global.

> We write Ly [G{¥/%}] as a shorthand for Lg[G](y)

> A flattening axiom for some inessential design label L takes
the form L;G(y) = G{V/¢} (but G{¥/5} has still type L)

» Structural equivalence as graph isomorphism

Ten Virtues of Structured Graphs (GT-VMT’09) 38/45

ADR

Some Sketches of Encoding

m-calculus in ADR (P process type, G guarded sums type)

[(mx)Q] = Ppl(»)[Q](p)]
[N+M] = Gp[[N]{p) [IM](p)]
[QRIR] = P[[QUp | [RI(P)]

Ten Virtues of Structured Graphs (GT-VMT’09) 39/45

ADR

Some Sketches of Encoding

m-calculus in ADR (P process type, G guarded sums type)

[(vx)Q] = Po[(vx)[Q](p)]

[N+M] = Gy[[N]{p) | [M]{p)]

[QIR] = Po[[QI{p | [R]{p)]
CaSPiS in ADR (P process type, S session type)

[QIR] = Ppiordp | ilolr|[QIpionr) [[RIpior)]
[[5+‘>Q]] PP,I'YOJ[" | o | S<p’,>[|IQ]]<p7S+,si,r>]]
[s">Q] = Ppiosli| o] SpnllQNps ,s",n)]]

Ten Virtues of Structured Graphs (GT-VMT’09) 39/45

Visualization: adr2graphs (Early Prototype)

Please have a try at http://www.albertolluch.com/adr2graphs
a simple visualisator of term-like specifications

choose the input mnguagel | pi-calculus w | choose the ouput format: |formal hierarchical graph v |

enter a term [(nu *secret* . “gossiper” ! *secret) | "gossiper” 7 "message | [encode |

message out

gossiper secret

b @

gossiper Ten Virtues of Structured Graphs (GT-VMT’09) 40/45

http://www.albertolluch.com/adr2graphs

One Last Virtue of Structured Graphs

» Logical specification and verification

>

>

>

ad-hoc spatial logics: from “general” to “derived” modalities
formulas closer to visualization (easier to use)

types as properties: a property P demonstrated by structural
induction on type T show that all graphs of type T satisfy P.
re-use existing (efficient) tools whenever possible

Ten Virtues of Structured Graphs (GT-VMT’09) 41/45

Concluding Remarks

Outline

Concluding Remarks

Ten Virtues of Structured Graphs (GT-VMT’09) 42/45

Concluding Remarks

Where ADR can help

» Design of software architectures
» drop & bind components + check + correct: tedious, error
prone
» bounded FO/SAT (Alloy): performant, but trial & error, no
hint, no guidance
» Guaranteed reconfiguration
» prove theorems on GT: ad-hoc, manual, limited re-use
» model checking on GT: validate a particular instance,
scalability issues, undecidable in general
» monitor & repair: no guarantees
» Usability
» other integrated environment require acquaintance with many
different languages and theories

Ten Virtues of Structured Graphs (GT-VMT’09) 43/45

Concluding Remarks

Related work

» Ordinary GT:

> nice theory of concurrency, but structure must be encoded
somehow in flat graphs,
» problems with grouping and atomicity

» Hierarchical graphs:
» main difference relies on interfaces

» Alloy:
> highly specialized SAT solver, but Maude is more flexible

Ten Virtues of Structured Graphs (GT-VMT’09) 44/45

Concluding Remarks

End of Talk

Ten Virtues of Structured Graphs (GT-VMT’09) 45/45

Concluding Remarks

End of Talk (Graphs Powered by yEd)

Ten Virtues of Structured Graphs (GT-VMT’09) 45/45

	Introduction
	Styles for Visual Support
	Dynamics
	ADR
	Concluding Remarks

