Calculi for Service Oriented Computing

Roberto Bruni

Dipartimento di Informatica
Universita di Pisa

SFM-WS 2009
Bertinoro, Italy
June 1-6, 2009

Tales from joint work with:

Michele Boreale, Chiara Bodei, Linda Brodo, Rocco De Nicola,
Michele Loreti, Leonardo Mezzina, and several other colleagues

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 1/125

a Introduction

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 2/125

Service Oriented Computing (SOC)

Services

SOC is an emerging paradigm where
services are understood as

@ autonomous
@ platform-independent

computational entities that can be:

@ described
@ published
@ categorised
@ discovered
@ assembled

for developing massively distributed,
interoperable, evolvable systems.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 3/125

Service Oriented Computing (SOC)

=-Exposiations

SOC is an emerging paradigm where Big companies put many efforts in
services are understood as promoting service delivery on a variety
of computing platforms.

Tomorrow, there will be a plethora of
new services for e-government,

@ autonomous
@ platform-independent

computational entities that can be: e-business, and e-health, and others
) within the rapidly evolving Information
@ described Society.
@ published ’
@ categorised A crucial fact
@ discovered Industrial consortia are developing
@ assembled orchestration and choreography

languages, targeting the
standardisation of Web Services and
XML-centric technologies, but they lack
neat semantic foundations.

for developing massively distributed,
interoperable, evolvable systems.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 3/125

From WSDL to BPEL

Service descriptions

@ Machine-processable interface

@ WSDL: mere syntax + details

@ Behavioural information is needed for sound interaction
@ BPEL: structured workflow + links

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 4125

From WSDL to BPEL

Service descriptions

@ Machine-processable interface

@ WSDL: mere syntax + details

@ Behavioural information is needed for sound interaction
@ BPEL: structured workflow + links

The problem with BPEL

@ One “standard semantics™: informal, textual description

@ Many semantics: dozen of papers, usually dealing with BPEL
fragments

@ No semantics: no comparison between different formal models +
ambiguity in available BPEL engines

@ What is BPEL especially designed for?

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 4125

A Citation

From ACM Turing Award Winner Robin Milner

@ In Natural Sciences concepts arise from the urge to understand

observed phenomena
@ In Computer Science concepts arise as distillations of our design of

systems

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 5/125

A Citation

From ACM Turing Award Winner Robin Milner

@ In Natural Sciences concepts arise from the urge to understand
observed phenomena
@ In Computer Science concepts arise as distillations of our design of
systems)
Natural Sciences Computer Science
Biology Organisms Databases, Networks
Chemistry Molecules | Metaphors of programming
Physics Particles Primitives of programming

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 5/125

A Citation

From ACM Turing Award Winner Robin Milner

@ In Natural Sciences concepts arise from the urge to understand
observed phenomena
@ In Computer Science concepts arise as distillations of our design of
systems
Natural Sciences Computer Science
Biology Organisms Databases, Networks
Chemistry Molecules | Metaphors of programming
Physics Particles Primitives of programming

@ One possibility: understand BPEL
@ Another possibility: develop alternative metaphors, well-behaving by
design

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 5/125

Sensoria (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP). J

»

EdinBurgh DTU Lyngby

Leicester
LSS (ICL, UcL) - S&N Warsaw
7

FAST b
LMU Munich Budapest
POLIMi Trento
lecom
FirenzeBologna
Pisa

ISTI-CNR

. Lisbon:
ATX

Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

| 5\

Strategy

Integration of foundational theories, techniques, methods and tools in a pragmatic
software engineering approach.

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 6/125

http://www.sensoria-ist.eu

The Role of Process Calculi

Coordinating and combining services

A crucial role in the project is played by formalisms for service description
that can lay the mathematical basis for analysing and experimenting with
components interactions, and for combining services.

Sensoria workpackage 2

We seek for a small set of primitives that might serve as a basis for
formalising and programming service oriented applications over global
computers.

Sensoria core calculi

@ Signal Calculus: middleware level

@ SOCK, COWS: service level, correlation-based

@ SCC-family (SCC, SSCC, CC, CaSPiS): service level, session-based
@ cc-pi, lambda-req: SLA contract level

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 71125

Service Features

Some distinguishing aspects

@ Loose coupling and openness: services are developed separately

@ Dynamicity: services are discovered and put together

@ Stateless: long-running conversation must be tracked (correlation
sets, sessions)

@ Prevent misuses and locate flaws: interaction soundness should be
checkable at discovery time, before binding (e.g. type safety, absence
of deadlocks, client progress)

@ Scalable techniques: concurrency and interaction must be inevitably
addressed, causing combinatorial explosion in the analysis

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 8/125

Service Features

Some distinguishing aspects

@ Loose coupling and openness: services are developed separately

@ Dynamicity: services are discovered and put together

@ Stateless: long-running conversation must be tracked (correlation
sets, sessions)

@ Prevent misuses and locate flaws: interaction soundness should be
checkable at discovery time, before binding (e.g. type safety, absence
of deadlocks, client progress)

@ Scalable techniques: concurrency and interaction must be inevitably
addressed, causing combinatorial explosion in the analysis

Formal approaches

@ Ontologies (semantic web)

@ Logic-based (SRML)

@ Workflow models (e.g. automata, Petri nets)

@ Process calculi (abstract equivalences, type systems)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 8/125

Process Calculi Approach

Find the right level of abstraction

Need to balance between:

@ tractability (not by humans, by the machine)
understandability (by humans)

scalability

flexibility

expressiveness

usability

@ disciplined structuring

Can be used for

® 6 6 ¢ ¢

@ Specification
@ Prototyping
@ Description

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 9/125

This Talk

Genesis of CaSPiS

@ concurrent systems are difficult to handle
interaction (CCS)
passing references (r-calculus)

handling sessions
cancelling activities (Orc)

e 6 66 ¢ ¢

summing up (CaSPiS)

@ get used to process calculi

@ labelled transition systems vs reduction
@ play with simple puzzles

@ type systems

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 10/125

9 Concurrency Headaches

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 11/125

Concurrency

@ A sequential program has a single thread of control.

@ A concurrent program has multiple threads of control (it may perform
multiple computations in parallel and may control multiple external
activities which occur at the same time).

Communication
The concurrent threads exchange information via
@ indirect communication: the execution of concurrent processes
proceeds on one or more processors all of which access a shared
memory. Care is required to ensure exclusive access to shared
variables
@ direct communication: concurrent processes are executed by running
them on separate processors, threads communicate by exchanging
messages.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 13/125

A Simple Problem

Let f a (computationally expensive) function from integers to integers.

@ A positive zero for f is a positive integer n such that f(n) = 0
@ A negative zero for f is a negative integer z such that f(z) = 0

We want to write a program that terminates if and only if the total function f
has a positive or negative zero and proceeds indefinitely otherwise.

A Brilliant Idea

To speed up we decide to run in parallel two programs: one looking for a
positive zero and the other for a negative zero

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 15/125

Attempt 1

We write S1 that looks for a positive zero:

S1= found=false; n=0;
while(!found) { n++; found=(f(n)==0); }

By cut-and-paste from S1 we write S2 that looks for a negative zero:

S2= found=false; z=0;
while(!found) { z--; found=(£(z)==0); }

And we run S1 and S2 in parallel:

S1 || S2

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 17 /125

Attempt 1

We write S1 that looks for a positive zero:

S1= found=false; n=0;
while(!found) { n++; found=(f(n)==0); }

By cut-and-paste from S1 we write S2 that looks for a negative zero:

S2= found=false; z=0;
while(!found) { z--; found=(£(z)==0); }

And we run S1 and S2 in parallel:

S1 || S2

Let f have a positive zero and not a negative one.
If S1 terminates before S2 starts, the latter sets found to false and looks
indefinitely for the nonexisting zero.

-— -

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 17 /125

Attempt 2 (found is initialised only once)

The problem is due to the fact that found is initialised to false twice.)

found=false; (R1 || R2)
where
Rl= n=0; while(!found) { n++; found=(f(n)==0); }

R2= z=0; while(!found) { z--; found=(£(z)==0); }

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 19/125

Attempt 2 (found is initialised only once)

The problem is due to the fact that found is initialised to false twice.)

found=false; (R1 || R2)
where
Rl= n=0; while(!found) { n++; found=(f(n)==0); }

R2= z=0; while(!found) { z--; found=(£(z)==0); }

If f has (again) only a positive zero assume that:
@ R2is preempted when entering the while body (before z--)
@ R1 runs and finds a (positive) zero
@ R2 gets the CPU back

When R2 restarts it executes the while body and may set found to false.
The program then would not terminate because it would look for a non
existing negative zero.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 19/125

Attempt 3 (“unnecessary” assignments are removed)

The problem is due to the fact that found is set to false after it has already
been assigned true.

found=false; (T1 || T2)
where

Tl= n=0; while(!found) { n++; if (f(n)==0) found=true; }

T2= z=0; while(!found) { z--; if (£(z)==0) found=true; }

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 21/125

Attempt 3 (“unnecessary” assignments are removed)

The problem is due to the fact that found is set to false after it has already
been assigned true.

found=false; (T1 || T2)
where

Tl= n=0; while(!found) { n++; if (f(n)==0) found=true; }

T2= z=0; while(!found) { z--; if (£(z)==0) found=true; }

Let f have only a positive zero.
Assume that T2 gets the CPU to keep it until it terminates. Since this will
never happen, T1 will never get the chance to find its zero.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 21/125

Attempt 4 (token passing fairness)

The problem is due to non-fair scheduling policies.)

turn=1; found=false; (Ql || Q2)
where
Ql= n=0; while(!found) {
wait turn==1 then {
turn=2; n++; if (£{(n)==0) found=true; } }

Q2= z=0; while(!found) {
wait turn==2 then {
turn=1; z--; if (£(z)==0) found=true; } h

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 23/125

Attempt 4 (token passing fairness)

The problem is due to non-fair scheduling policies.)

turn=1; found=false; (Ql || Q2)
where
Ql= n=0; while(!found) {
wait turn==1 then {
turn=2; n++; if (£(n)==0) found=true; } }

Q2= z=0; while(!found) {
wait turn==2 then {
turn=1; z--; if (£(z)==0) found=true; } l

If Q1 finds a zero and stops when Q2 has already set turn to 1, Q2 would
be blocked by the wait command because the value of turn cannot be
changed.

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 23/125

Attempt 5 (pass the token before terminating

The program may not terminate, waiting for an impossible event.)

Is it a correct solution?

turn=1; found=false; ({P1l; turn=2;} || {P2; turn=1;})
where

Pl= n=0; while(!found) {
wait turn==1 then {
turn=2; n++;
if (£f(n)==0) found=true; } }

P2= z=0; while(!found) {
wait turn==2 then {
turn=1; z--;
if (£(z)==0) found=true; } }

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 25/125

Buyer / Seller Compatibility

o

)

>

3

[}
|
] |
| |
] |
] T
| | = 1
1 1 ! 1
] ——a H
] ©
| Send

. Y Invoice

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 26 /125

Buyer / Seller Compatibility

Receive Settle
N Invoice Invoice
) $
>
3
o
Receive
Products
3 T T
{3 1 3
Send Receive
E Invoice Payment
Ship
Products

Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009

27/125

Buyer / Seller Compatibility

Receive Settle
N Invoice Invoice
) 3
>
3
@
Receive
Products
3 - T T
| sl ok? |
N ™
Lt Lt
5
3 Receive Send Receive Ship
Order Invoice Payment Products

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 28/125

Buyer / Seller Compatibility

% Place Receive Receive Settle
o Order Invoice Products Invoice
1 —
Lt - 1}
| sl ok? |
il il
Lt Lt
5
3 Receive Send Receive Ship
Order Invoice Payment Products

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 29/125

e From Computation to Interaction (CCS)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 30/125

Elementary Action

Atomic (i.e., non-interruptable at the given level of granularity) abstract
step of a computation that is performed by a system to move from one
state to the other

@ in ordinary (sequential) models: reading from or writing on some kind
of (passive) storage device or invoking a procedure with actual
parameters.

@ in CCS: sort of handshake between two active, autonomous
processes (sending a message and receiving a message, exposing
some alternatives and picking one alternative, producing a resource
and consuming a resource)

@ Dual actions (co-activities): a and a, with a=a
@ Silent action: 7

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 31/125

CCS View

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 32/125

Calculus of Communicating Systems

A = a | a
a = A | T
= el @i.Pi | P1[P2 |

Semantics (SOS style)

)
(act) I

aj
Qi1 @i.Pi — P

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 33/125

Calculus of Communicating Systems

A = a | a
a = A | T
= Qier@i.Pi | Pi[Py | ..
Semantics (SOS style)
el
(ac) —L<1_
il
e @j.Pi — P;
a a
P; — P; P, — P,
(Ipar) ! . f (rpar) 2 2 ,
P1|P2—>P1|P2 P1|P2—>P1|P2
Calculi for SOC SFM-WS 2009 33/125

Roberto Bruni (PISA)

Calculus of Communicating Systems

A = a | a
a = A | T
= 2ier@i.Pi | PPz | .
Semantics (SOS style)
el
(ac) — 2=
]
Qi1 @i.Pi — P
a a
P; — P; P, — P,
(Ipar) L . f (rpar) 2 2 ,
P1|P2—>P1|P2 P1|P2—>P1|P2

p] 1
Pl_)Pi Pz—)Pé

(comm)

PP, < P} | P}

Calculi for SOC SFM-WS 2009 33/125

Roberto Bruni (PISA)

CCS: An Example

The unary sum is written a.P; the empty sum is written nil or O (inactive
process) and the trailing of nil is often omitted.

Buyer and Seller

B 2 ord.(prod|inv.pay)
S £ ord.inv.pay.prod

B|S -5 (prod|inv.pay) | inv.pay.prod

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 34/125

CCS: An Example

The unary sum is written a.P; the empty sum is written nil or O (inactive
process) and the trailing of nil is often omitted.

Buyer and Seller

B 2 ord.(prod|inv.pay)
S £ ord.inv.pay.prod

B|S -5 (prod|inv.pay) | inv.pay.prod
— (prod |pay) | pay.prod

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 34/125

CCS: An Example

The unary sum is written a.P; the empty sum is written nil or O (inactive
process) and the trailing of nil is often omitted.

Buyer and Seller

B 2 ord.(prod|inv.pay)
S £ ord.inv.pay.prod

B|S -5 (prod|inv.pay) | inv.pay.prod
— (prod |pay) | pay.prod
N (prod|0) | prod

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 34/125

CCS: An Example

The unary sum is written a.P; the empty sum is written nil or O (inactive
process) and the trailing of nil is often omitted.

Buyer and Seller

B 2 ord.(prod|inv.pay)
S £ ord.inv.pay.prod

BIS — (prod|inv.pay) | inv.pay.prod
— (prod|pay) | pay.prod
— (prod|0) | prod
—(0]0) | 0

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 34/125

CCS Processes as LTS

ord . v pay prod
B| S —— B | inv.pay.orod —— B | pay.prod ——> B | prod —— B | 0

_ T
ord

rd

ﬁl
inv

ord ord
pay prod

(prod|inv.pay) | S o

)y
(0linv.pay) | S inv
inv (prod|pay) | S
y
(Olpay) | S pay
(prod|0) | S

pay
rod i
ord

010) | § ——

— —__inv pay prod
(010) | inv.pay.prod —> (0|0) | pay.prod —> (0|0) | prod —> (0|0) | O

%

inv
prod

pay

ord

inv

prod

Roberto Bruni (PISA)

Calculi for SOC

SFM-WS 2009

35/125

CCS: Restriction

P n= Yie@i.Pi | PPy | (va)P |

Semantics (SOS style)

PL P a¢{aad)

(va)P - (va)P’

(res)

Buyer and Seller: Revisited

(vord)(vinv)(vpay)(vprod)(B | S)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 36 /125

CCS: Recursion 1

P

SigaiPi | PilP | (va)P | X | recX.P |

Semantics (SOS style)

X. Py %, p!
(rec) e Tix) P

recX.P — p’

Buyer and Seller: Revisited

S’ 2 recX.ord.inv.pay.prod.X
S” 2 recX.(ord.inv.pay.prod | X)
S & recX.ord.(inv.pay.prod | X)

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 371125

CCS: Recursion 2

A {Ad = Pq)
P = Yier@ilPi | PPz | (vaP | Ag |
Semantics (SOS style)

AjEPgeA Py P
(def) d d d_)

Ag — P’

Buyer and Seller: Revisited

Sa

ord.(inv.pay.prod | Sq)

Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009 38/125

CCS: Recursion 3

Syntax

P = Yiga.Pi | PPy | (vap | P |

Semantics (SOS style, controlled)

a A
P— P’ P— P P—>P2
(repl) ———— (rep2)
P, PP 1P Py P, |IP

Buyer and Seller: Revisited

S 2 lord.inv.pay.prod

\

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 39/125

CCS: Structural Congruence

Equivalent Processes

@ Do processes P and Q exhibit the same behaviour? (several notions
are possible)

@ Equivalence Relation: reflexive, symmetric and transitive

@ Can we use P and Q interchangeably in any larger context? (several
notions are possible)

@ Congruence: equivalence preserved by composition
@ Is P congruent to Q? (not necessarily decidable)
@ Is P (just) an evident rephrasing of Q? (structural congruence)

P+0=P P1+P=P,+P; P1+(P2+P3)E(P1+P2)+P3
P+P=P IP=P|IP
PI0O=P Pi|P2=P;|P; P11 (P2|P3) = (P11 P2)|P3

(va)o=0 (va)(vb)P = (vb)(va)P P |(va)Q = (va)(P | Q) if a ¢ act(P)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 40/ 125

CCS: Check Point

Answers these questions to proceed

© Would it be ok to let !(va)P = (va)!P?
@ Are the following Buyer and Seller ok?

B
S

ord.inv.prod.pay

> >

lord.inv.pay.prod

© Are the following Buyer and Seller ok?

B 2 ord.(prod|inv.pay)
S £ lord.(prod|inv.pay)

© How would you encode sequential composition P; Q?

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 41/125

@ Dynamic Communication Topology (pi-calculus)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 42 /125

Extending CCS 1

Value passing

Output actions can send data and input actions carry formal parameters to
be substituted with actual parameters when handshaking.

A problematic server

Let f involve some heavy scientific calculation.
S 2lin(x).out(f(x)) C = in(n).out(y).P
Some problem may arise if two or more clients are around:

S | in(1).out(y1).P1 | in(2).out(y>).P,

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 43/125

Extending CCS 1

Value passing

Output actions can send data and input actions carry formal parameters to
be substituted with actual parameters when handshaking.

A problematic server

Let f involve some heavy scientific calculation.
S 2lin(x).out(f(x)) C = in(n).out(y).P
Some problem may arise if two or more clients are around:

S | in(1).out(y1).P1 | in(2).out(y>).P,
5 S | ouk(f(1)) | out(yr).Py | in(2).0ut(y2).P;

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 43/125

Extending CCS 1

Value passing

Output actions can send data and input actions carry formal parameters to
be substituted with actual parameters when handshaking.

A problematic server

Let f involve some heavy scientific calculation.
S 2lin(x).out(f(x)) C = in(n).out(y).P
Some problem may arise if two or more clients are around:

S | in(1).out(y1).P1 | in(2).out(y>).P,
5 S | ouk(f(1)) | out(yr).Py | in(2).0ut(y2).P;
— S | QuK(f(1)) | OUKf(2)) | out(ys).Py | out(y2).P,

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 43/125

Extending CCS 1

Value passing

Output actions can send data and input actions carry formal parameters to
be substituted with actual parameters when handshaking.

A problematic server

Let f involve some heavy scientific calculation.
S 2lin(x).out(f(x)) C = in(n).out(y).P
Some problem may arise if two or more clients are around:

S | in(1).out(y1).P1 | in(2).out(y>).P,
5 S | ouk(f(1)) | out(yr).Py | in(2).0ut(y2).P;
— S | ouK(f(1)) | out(f(2)) | out(y1).Py | out(y).P;
= S | out(f(1)) | P{@)y) | out(y,).P,

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 43/125

Extending CCS 2

Name mobility
Ability to send and receive references to channels.

A proper server (and client)
S 2lin(k).k(x).k(f(x)) C = (vk)in(k).k(n).k(y).P
S 2lin(x, k).k(f(x)y C 2 (vk)in(n, k).k(y).P

Each client gets a separate reply:

S | (vko)in(L, ka).ki(y1)-P1 | (vk2)in(2, k2).kz(y2).P2

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 44125

Extending CCS 2

Name mobility
Ability to send and receive references to channels.

A proper server (and client)
S 2lin(k).k(x).k(f(x)) C = (vk)in(k).k(n).k(y).P
S 2lin(x, k).k(f(x)y C 2 (vk)in(n, k).k(y).P

Each client gets a separate reply:

S | (vk)in(L, ka).ka(y1)-P1 | (vka)in(2, ko).kz(y2)- P2
= (vk1)(vk2)(S | i”_<1, k1).ki(y1).P1 | in<_2, ko).k2(y2).P2)
5 (vkn)(vka)(S | Kg(f(L)) | ka(ya)-Py | in(2, ko).ka(y2).P2)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 44125

Extending CCS 2

Name mobility
Ability to send and receive references to channels.

A proper server (and client)
S 2lin(k).k(x).k(f(x)) C = (vk)in(k).k(n).k(y).P
S 2lin(x, k).k(f(x)y C 2 (vk)in(n, k).k(y).P

Each client gets a separate reply:

S | (vk)in(L, ka).ka(y1)-P1 | (vka)in(2, ko).kz(y2)- P2
= (vk1)(vk2)(S | in{1, ky).k1(y1).-P1 | in(2, ko).k2(y2).P2)
s (vk) (k2)(S | KidF(L)) | Ka(ya)-Py | T2, ka).ko(y2).P2)
s (vka)(k)(S | k(L)) | ka(f(2)) | ka(ya)-Pa | Ka(y2).P2)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 44125

Extending CCS 2

Name mobility

Ability to send and receive references to channels.

A proper server (and client)
S Ztin(k).k(x).k(f(x))
S 2lin(x, k).K(f(x))

Each client gets a separate reply

S | (vka)in(L, kn)-ka(y1).P1 | (vko)in(2, kp) Kz (v2).P2
= (vk1)(vk2)(S | in{1, ky).k1(y1).-P1 | in(2, ko).k2(y2).P2)
s (vk) (k2)(S | KidF(L)) | Ka(ya)-Py | T2, ka).ko(y2).P2)
s (vka)(k)(S | k(L)) | ka(f(2)) | ka(ya)-Pa | Ka(y2).P2)
5 (k) (vka)(S | k2(F(2)) | PT@Wpa) | ka(y2).Pa)

Roberto Bruni (PISA)

C £ (vk)in¢k).k(ny.k(y).P
C £ (vKk)in(n, k).k(y).P

Calculi for SOC SFM-WS 2009 44125

Extending CCS 2

Name mobility

Ability to send and receive references to channels.

A proper server (and client)
S Ztin(k).k(x).k(f(x))
S 2lin(x, k).K(f(x))

Each client gets a separate reply

S | (vka)in(L, kn)-ka(y1).P1 | (vko)in(2, kp) Kz (v2).P2
= (vk1)(vk2)(S | in{1, ky).k1(y1).-P1 | in(2, ko).k2(y2).P2)
s (vk) (k2)(S | KidF(L)) | Ka(ya)-Py | T2, ka).ko(y2).P2)
s (vka)(k)(S | k(L)) | ka(f(2)) | ka(ya)-Pa | Ka(y2).P2)
5 (k) (vka)(S | k2(F(2)) | PT@Wpa) | ka(y2).Pa)

5 (vki)(vka)(S | Py

Roberto Bruni (PISA)

C £ (vk)in¢k).k(ny.k(y).P
C £ (vKk)in(n, k).k(y).P

{fWpa} | Po{fR)y,)

Calculi for SOC SFM-WS 2009 44125

m-calculus View

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 45/ 125

m-calculus View

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 46 /125

About Links

The m-calculus has two basic entities

© processes (interacting through links)
@ names of links

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 471125

About Links

The n-calculus has two basic entities
© processes (interacting through links)

@ names of links

What is a link?
n-calculus is not prescriptive on this point.

© Hypertext links can be created, passed around, disappear.

@ Connections between cellular telephones and network bases.

© Memory can be allocated and de-allocated, with references passed
as parameters in method invocations.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 471125

About Links

The mr-calculus has two basic entities

© processes (interacting through links)
@ names of links

What is a link?
n-calculus is not prescriptive on this point.
© Hypertext links can be created, passed around, disappear.

@ Connections between cellular telephones and network bases.

© Memory can be allocated and de-allocated, with references passed
as parameters in method invocations.

Roughly, a link is determined by the sharing of names.
Action prefixes can be executed to change system connectivity over time.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 471125

Names can be:

@ channels

Q identifiers

@ values (data)
© objects

@ pointers

Q references

@ locations

@ encryption keys
Q ..

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 48 /125

Names can be: Names can:

@ channels be created and destroyed

Q identifiers sent them around to share

© values (data) information

Q objects acquired to communicate with
Q pointers previously unknown processes

used for evaluation or

© references N
communication

locations
o be tested to take decisions based

©Q encryption keys on their values

Q ..

used as private means of
communication, e.g. to share secret

© 0 06 6 O o660

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 48 /125

n-calculus: Syntax

(Processes) P == S sum

| P1|P> parallel composition
| (vx)P name restriction
| P replication

(Sums) S == 0 inactive process (nil)
| =n.P prefix
| S1+S, choice

(Prefixes) m == X(y) sends y on x

| x(2) substitutes for z the name received on x
| 7 internal action
|

[x = ylr matching: tests equality of x and y

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 49 /125

® [x = y]n.P is known as name matching:
it is equivalent to if x = y then z.P.

@ In x(2).P e (vz)P, the name z is boundin P (i.e., P is the scope of z).
@ A name that is not bound is called free.
@ fn(P) and bn(P) are the sets of all free, resp. bound, names of P.

@ We take processes up to alpha-conversion, which permits renaming
of a bound name with a fresh one (not already in use).

y & fn(P) y & fn(P)
x(2).P = x(y).(PYz}) (v2)P = (vy)(P{Y/z})

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 50/ 125

n-calculus: Structural Congruence

S+0=S S+S=5+S5; Sl+(32+33)5(31+32)+33
PIO=P P IP,=P,|P P1I (P21 Ps)=(P1|P2) | Ps

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 51/125

n-calculus: Structural Congruence

S+0=S S+S=5+S5; Sl+(32+33)5(31+32)+33
PIO=P Pi|P,=P,|P P11 (P21 Ps)=(PLIP) | Ps
S+S=S IP=P|!P [a =a]r.P=n.P

a ¢ fn(P)

(va)o=0 (va)(vb)P = (vb)(va)P

P|(va)Q = (va)(P | Q)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 51/125

n-calculus: Structural Congruence

S+0=S S+S=5+S5; Sl+(32+33)5(31+32)+33
PIO=P Pi|P,=P,|P P11 (P21 Ps)=(PLIP) | Ps
S+S=S IP=P|!P [a =a]r.P=n.P

a ¢ fn(P)

(va)o=0 (va)(vb)P = (vb)(va)P

P|(va)Q = (va)(P | Q)

By taking processes up to a suitable structural congruence we can:

© Write processes in a canonical form.

@ Represent all possible interactions with few rules.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 51/125

m-calculus: Reduction Semantics

Canonical Form
For each m-calculus process P there exist:
© a finite number of names xu, ..., Xk,
@ afinite number of sums Sy, ..., S, and
© a finite number of processes P4, ..., P, such that

P = (VX]_)...(VXk)(S]_|...|Sn|! P;|_||I Pm)

Reduction semantics: Axioms

o < o T
Reduction semantics focuses on internal moves P — Q only.

(Rtau) -
TP+S — P

(Rcom)

(X(Y).P1 + S1) | (X(2).P2 + S3) — P1{Zy}| P

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 52 /125

m-calculus: Reactive Contexts

Reduction semantics 1: Propagation Rules

T T
P, — P; P— P
(Rpar) L —1 (Rres) T)
Pl | P2 —_ PZ,L | P2 (VX)P — (VX)P’
T
P = ’ ’ = P/
(Rety P=Q @ =9 @
P— P

Reduction semantics 2: Reactive Contexts
Cl-1=10-1 | Cr-11P |)C-1
P=CIQl Q—Q CIQI=F

(Rctx) -
P— P’

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 53 /125

Pi-calculus: Check Point

Answers these questions to proceed

© Does it make sense (vy)x(y) = (vy)y(x) ?

@ Does it make sense (vx)(vy)x{y) = (vx)(vy)y{x) ?
© Does (vx)P = (vx)P’ imply P = P’?
@ Are the following Server and Client ok?

S Zlin(k).k(x).k(f(x)) C = (vk)(in¢k) | k(n) | k(y).P)
@ Are the following Server and Client ok?

S
C

lin(k).k(x).k(r).r{f(x))
(K)(vr)(in¢ky [k(ny.k(ry | r(y).P)

> 1>

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 54 /125

e Session Handling

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 55/125

Disciplining w-calculus

Are Names Used Properly?

n-calculus provides a rather sophisticated framework for interaction, but
with quite low-level primitives: as process size increases the confidence in
its design might decrease.

Type systems may help, but:

@ names are used to encode many different behavioural aspects in
terms of communication

@ certain names require static sorting (e.g. all names transmitted on x
must be integers, or that all names transmitted on y must be names
of channels where integers can be sent, or that z can only be used for
input)

@ certain names require dynamic annotations (e.g. protocol narrations
for the peers of a session, establishing that on channel z must first be
sent an integer, then be received a name of a channel where integers
can be sent)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 56 /125

Two Mugs Metaphor

More coffe in the milk or milk in the coffee?

@ take a spoon of coffee (black mug), put it in the milk (white) mug and stir
@ take a spoon of mixture coffee+milk, put it in the coffee mug and stir

@ in proportion, is there more milk (w.r.t. to coffee) in the black mug or coffee
(w.r.t. milk) in the white mug?

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 57 /125

Names for Sessions

A common pattern of interaction

@ P and Q establish a common fresh channel k to exchange data

@ k represents a session between P and Q

@ P assigns type T to k, which prescribes the series of actions that P
wants to perform along k with Q

@ Similarly, Q assigns type T’ to k

@ If T and T’ are sort of dual to each other (modulo subtyping), then k
is used in a type safe way

@ Delegation can be allowed (e.g. P can pass k to R and stop using it)

Q=a(k).Q" P=(k)ak).P

Note that k can be alpha-renamed in both P and Q.
Given this analogy we write P as a(k).P’.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 58 /125

Client Server Revisited

Remember the client server example:
lin(k).k(x).k(f(x)) (vk)in(k).k(n).k(y).P
Now it can be written as

lin(k).k(x).k(f(x)) in(k).k(n).k(y).P

@ Client perspective T: k is used to send an integer and then to receive
an integer

@ Server perspective T’: k is used to receive an integer and then to
send an integer

@ T and T’ are syntactically dual to each other

@ Channel in: is a channel used to transmit session keys of type T

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 59 /125

Session Acceptance and Request

@ Session acceptance (binder for k): a(k).P

@ Session request (binder for k): a(k).P

Reduction Semantics

(link) .
a(k).P|1a(k).0 > P|Q

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 60 /125

Intra-Session Communication

@ Input (binder for x): k?(x).P
@ Output: k!Iy).P

Reduction Semantics

(comm) -
k?2().P | k!{(y).Q — PY/x}| Q

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 61/125

Intra-Session Selection

@ Label branching: >}; k?;.P;
@ Label selection: k!¢.P

Reduction Semantics

jel

(lab) =
2ic1 K?6.Pi| k!(;.Q — P;| Q

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 62 /125

Delegation

@ Session receiving (binder for k”): k?((k’)).P
@ Session sending: k!{({k’)).P

Reduction Semantics

(pass) —
k2((x)).P 1 kI(k').Q — P{K'x}| Q
Note that after having sent k’ on k, process Q is no longer allowed to
mention K’.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 63 /125

One young, bright computer scientists is given the possibility to pass the
exam if she is able to play chess twice against the state-of-the-art
computer player available on the web, without loosing both games. She
has never played chess before. Which strategy can she take?

Assumptions

@ We assume the game protocol consists of sending and receiving the
list of moves made so far

@ The Al will compute its best move by exploiting some function next
applied on the history of moves.

@ Each game runs in its own session

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 64 /125

A Possible Solution

Computer Al

A
A

Chess
M(k)

recY. start(k). (Y| k?blackk!(next(e)).M(k) + k?white M(k))
recX. k?(m).k'{m :: next(m)).X

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 65/125

A Possible Solution

Computer Al

Chess
M(k)

recY. start(k). (Y| k?blackk!(next(e)).M(k) + k?white M(k))
recX. k?(m).k'{m :: next(m)).X

> 1>

Would you call it cheating?

The idea is essentially to let the computer Al play against itself.

Human
P(k1, k2)

start(ky).ki'black start(k,). k> 'white.P(kq, k»)
recXx. kl’?(m)kz ! <m>k2’?(n)k1 I(n).X

> 1>

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 65/125

G Cancellation (Orc)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 66 /125

Orchestration Calculus

Orc is an elegant language proposed by Cook and Misra as a basic
programming model for structured orchestration of services:

© The basic computational entities orchestrated by an Orc expression
are not just web services but, more generally, site names.

©

Site names can be passed as arguments in site call, thus allowing a
disciplined usage of name maobility.

©

Orc has quite original composition principles, including a form of
cancellation of activities

©

Try Orc (in your browser or after download):
http://orc.csres.utexas.edu/

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 67 /125

http://orc.csres.utexas.edu/

Orc relies on the basic notion of site, an abstraction amenable for:
© being invoked
@ publishing values

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 68 /125

Orc relies on the basic notion of site, an abstraction amenable for:
© being invoked
@ publishing values

Site calls
Site calls are the simplest Orc expressions:

@ A site call can be a RMI, a call to a monitor procedure, to a function or
to a web service.

@ Each invocation to a site s elicits at most one response value
published by s.

@ A site computation might itself start other orchestrations, store effects
locally and make (or not) such effects visible to clients.

@ Sites can be composed by means of few operators to form
expressions.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 68 /125

Orc Expressions

Orc neatly separates orchestration from computation:
@ Orc expressions can be considered like scripts to be invoked, e.g.,
within imperative programming languages
@ the syntax for assigning the result of an expression e to a variable z is
z€e
@ Orc expressions can involve wide-area computation over multiple
servers.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 69 /125

Orc Expressions

Orc neatly separates orchestration from computation:
@ Orc expressions can be considered like scripts to be invoked, e.g.,
within imperative programming languages
@ the syntax for assigning the result of an expression e to a variable z is
z€e
@ Orc expressions can involve wide-area computation over multiple
servers.

Contrary to site calls, an expression can, in principle, publish any number
of response values

The assignment symbol :€ (due to Hoare) in z :c e makes explicit that e
can return zero or more results, one of which is assigned to z.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 69 /125

Orc Composition Principles

Three ways to build expressions

© ordinary parallel composition f|g, called symmetric parallel (e.g., the
parallel of two site calls can produce zero, one or two values)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 70/125

Orc Composition Principles

Three ways to build expressions

© ordinary parallel composition f|g, called symmetric parallel (e.g., the
parallel of two site calls can produce zero, one or two values)

@ sequencing f > x > g: a fresh copy g[v/x] of g is executed on any
value v published by f (i.e., a pipeline is established from f to g).

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 70/125

Orc Composition Principles

Three ways to build expressions

© ordinary parallel composition f|g, called symmetric parallel (e.g., the
parallel of two site calls can produce zero, one or two values)

@ sequencing f > x > g: a fresh copy g[v/x] of g is executed on any
value v published by f (i.e., a pipeline is established from f to g).

@ asymmetric parallel composition f where x :€ g: f and g start in
parallel, but all sub-expressions of f that depend on the value of x
must wait for g to publish a value. When g produces a value it is
assigned to x and that side of the orchestration is cancelled (i.e., it
allows lazy evaluation, selection and pruning).

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 70/125

Orc Composition Principles

Three ways to build expressions

© ordinary parallel composition f|g, called symmetric parallel (e.g., the
parallel of two site calls can produce zero, one or two values)

@ sequencing f > x > g: a fresh copy g[v/x] of g is executed on any
value v published by f (i.e., a pipeline is established from f to g).

@ asymmetric parallel composition f where x :€ g: f and g start in
parallel, but all sub-expressions of f that depend on the value of x
must wait for g to publish a value. When g produces a value it is
assigned to x and that side of the orchestration is cancelled (i.e., it
allows lazy evaluation, selection and pruning).

Sequencing and asymmetric parallel composition, take inspiration from
universal and existential quantification, respectively.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 70/125

(Expressions) e, f,g == 0 nil

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 71/125

(Expressions) e, f,g == 0 nil
| M{p1,...,Pn) site call

(Parameters) p,q,r == X variable
| ¢ constant
| M site

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 71/125

(Expressions) e, f,g == 0 nil
| M{p1,...,Pn) site call
| f>x>g sequencing
| flg symmetric parallel
I

gwhere x e f asymmetric parallel

(Parameters) p,q,r == X variable
| ¢ constant
| M site

@ x is bound (with scope g) in f > x > g and g where x e f
@ the free variables of an expression e are denoted by fv(e)

@ if x ¢ fv(g) we abbreviate f > x > g by writing f > g

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 71/125

(Expressions) e, f,g == 0 nil
| M{p1,...,Pn) site call
| f>x>g sequencing
| flg symmetric parallel
| gwherex:ef asymmetric parallel
| E{p1,...,Pn) expression call
(Definitions) D = E(X1,...,Xn) A f expression definition
(Parameters) p,q,r = X variable
| ¢ constant
| M site
@ x is bound (with scope g) in f > x > g and g where x e f
@ the free variables of an expression e are denoted by fv(e)
@ if x ¢ fv(g) we abbreviate f > x > g by writing f > g

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 71/125

Orc Semantics: Actions

The operational semantics of Orc is given by a Labelled Transition
Systems defined in the SOS style

Transition Labels
@ M(G, k) denotes a site call

@ k7?c denotes a site response
@ !c denotes a locally published value
@ 7 denotes an internal action

The abstract semantics considered in the literature are trace equivalence
and strong bisimilarity

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 721125

Orc Semantics: Site Call

k globally fresh

M((_:' P (SiteCall)
M(B) =257 2k

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Site Call

k globally fresh

M((_:' P (SiteCall)
M(B) =257 2k

—5e— (SiteRet)
7k — let(c)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Site Call

Two special auxiliary sites are let(xy, ..., Xn) and Signal. J
k globally fresh
VD) (SiteCally —— ey
M(G) — 2% let{c)y — 0
—5e— (SiteRet) , (Signal)
%%k — let{c) Signal — 0

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Site Call

Two special auxiliary sites are let(xy, ..., Xn) and Signal.

k globally fresh

YT (SiteCall) ——— (Ley
M(B) —=5" 2k let(c) —> 0
— o (SiteRey) , (Signal)
%%k — let{c) Signal — 0

Getting the latest news of date d from CNN

CNN(3J 2006,k
CNN(3June2006) < CH1§2006K)

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Site Call

Two special auxiliary sites are let(xy, ..., Xn) and Signal.

k globally fresh

(SiteCall) (Let)

= - 1~

M@y " o let(c) -5 0
—— G (SiteRe) , (Signal)

%%k — let{c) Signal — 0

Getting the latest news of date d from CNN

CNN(3June2006,k) k?GiantAfricanLizardsInvadeFlorida
CNN(3June2006) — 2k —

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Site Call

Two special auxiliary sites are let(xy, ..., Xn) and Signal.

k globally fresh

(SiteCall) (Let)

= - 1~

M@y " o let(c) -5 0
—— G (SiteRe) , (Signal)

%%k — let{c) Signal — 0

Getting the latest news of date d from CNN

CNN(3June2006,k) k?GiantAfricanLizardsInvadeFlorida
CNN(3June2006) — 2k —

. . . . |GiantAfricanLizardsInvadeFlorida
let{GiantAfricanLizardsInvadeFlorida) —

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Site Call

Two special auxiliary sites are let(xy, ..., Xn) and Signal.

k globally fresh

YT (SiteCall) T (et
M(B) —=5" 2k let(c) —> 0
— o (SiteRey) ——— (Signal)
%%k — let{c) Signal — 0

Getting the latest news of date d from CNN

CNN(3June2006,k) k?GiantAfricanLizardsInvadeFlorida
CNN(3June2006) — 2k —

let{GiantAfricanLizardsInvadeFlorida)
z :€ CNN(d) — z = GiantAfricanLizardsInvadeFlorida

|GiantAfricanLizardsInvadeFlorida
—

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 731125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Getting news from CNN and BBC

CNN(3June2006) | BBC(3June2006) <7 me2008kem)

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Getting news from CNN and BBC

CNN(3June2006) | BBC(3June2006) <7 me2008kem)

BBC(3June2006,k
e | BBC(3June2006) oo B IR0 Kesc)

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Getting news from CNN and BBC

CNN(3June2006) | BBC(3June2006) <7 me2008kem)

BBC(3June2006,k
e | BBC(3June2006) oo B IR0 Kesc)

5 s ksgc ?GiantUsaTouristsinvadeMadagascar
?kenn | Pkese =

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Getting news from CNN and BBC

CNN(3June2006) | BBC(3June2006) <7 me2008kem)

BBC(3June2006,kgpc)
ke | BBC(3June2006) —
ksgc ?GiantUsaTouristsinvadeMadagascar
?kenn | PKeee =

. . kenn ?GiantAfricanLizardsinvadeFlorida
2kenn | let(GiantUsaTouristsinvadeMadagascar) -

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Getting news from CNN and BBC

CNN(3June2006) | BBC(3June2006) <7 me2008kem)

BBC(3June2006,k
e | BBC(3June2006) oo B IR0 Kesc)

5 s ksgc ?GiantUsaTouristsinvadeMadagascar
?kenn | Pkese =

?kenn | let{GiantUsaTouristsInvadeMadagascar)
. . . | GiantAfricanLizardslnvadeFlorid,
let{GiantAfrican...) | let{GiantUsa...) A zarssinvaderibriaa

kenn ?GiantAfricanLizardsinvadeFlorida
—

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Parallel Composition

H ’ M ,
g—4g f— f
—__ (Symlefy —_ (SymRight)
glf —g'|f glf—glf

Getting news from CNN and BBC

CNN(3June2006) | BBC(3June2006) <7 me2008kem)

BBC(3June2006,k
e | BBC(3June2006) oo B IR0 Kesc)

ksgc ?GiantUsaTouristsinvadeMadagascar
?kenn | PKeee —
. . kenn ?GiantAfricanLizardsinvadeFlorida
?kenn | let{GiantUsaTouristsInvadeMadagascar) —

. . . |GiantAfricanLizardsinvadeFlorida
let{GiantAfrican...) | let{GiantUsa...) —

z :€ CNN(d) | BBC(d) — z = GiantAfricanLizardslnvadeFlorida

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 741125

Orc Semantics: Sequential Composition

f25 ¢ u#le F5F
m (Seq) = (SeqPipe)
f>x>g—f>x>g f>x>g— (Ff>x>g)|g[c/x]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 751125

Orc Semantics: Sequential Composition

f25 ¢ u#le F5F
m (Seq) = (SeqPipe)
f>x>g—f>x>g f>x>g— (Ff>x>g)|g[c/x]

Getting all news from CNN and BBC by emaill

(CNN(d) | BBC{d)) > n > Email{rb@gmail.it, n)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 751125

Orc Semantics: Sequential Composition

f25 ¢ u#le F5F
m (Seq) = (SeqPipe)
f>x>g—f>x>g f>x>g— (Ff>x>g)|g[c/x]

Getting all news from CNN and BBC by emaill

(CNN(dy| BBC(dY) > n > Emaikrb@gmail.it, ny < osc) BB fsec)

) o kgpc ?GiantUsaTouristsinvadeMadagascar
(?kenn | ?ksse) > n > Email(rb@gmail.it, n) —

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 751125

Orc Semantics: Sequential Composition

f25 ¢ u#le F5F
m (Seq) = (SeqPipe)
f>x>g—f>x>g f>x>g— (Ff>x>g)|g[c/x]

Getting all news from CNN and BBC by emaill

(CNN(dy| BBC(dY) > n > Emaikrb@gmail.it, ny < osc) BB fsec)

) o kgpc ?GiantUsaTouristsinvadeMadagascar
(?kenn | ?ksse) > n > Email(rb@gmail.it, n) —

(?kenn | let{GiantUsa...)) > n > Email{rb@gmail.it, ny —

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 751125

Orc Semantics: Sequential Composition

f25 ¢ u#le F5F
m (Seq) = (SeqPipe)
f>x>g—f>x>g f>x>g— (Ff>x>g)|g[c/x]

Getting all news from CNN and BBC by emaill

(CNN(dy| BBC(dY) > n > Emaikrb@gmail.it, ny < osc) BB fsec)

) o kgpc ?GiantUsaTouristsinvadeMadagascar
(?kenn | ?ksse) > n > Email(rb@gmail.it, n) —

(?kenn | let{GiantUsa...)) > n > Email{rb@gmail.it, ny —

(?kcnn | 0) > n > Email{rb@gmail.it, ny | Email(rb@gmail.it, GiantUsa...)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 751125

Orc Semantics: Sequential Composition

f25 ¢ u#le F5F
m (Seq) = (SeqPipe)
f>x>g—f>x>g f>x>g— (Ff>x>g)|g[c/x]

Getting all news from CNN and BBC by emaill

(CNN(dy| BBC(dY) > n > Emaikrb@gmail.it, ny < osc) BB fsec)

) o kgpc ?GiantUsaTouristsinvadeMadagascar
(?kenn | ?ksse) > n > Email(rb@gmail.it, n) —

(?kenn | let{GiantUsa...)) > n > Email{rb@gmail.it, ny —

(?kcnn | 0) > n > Email{rb@gmail.it, ny | Email(rb@gmail.it, GiantUsa...)

kenn ?GiantAfricanLizardsinvadeFlorida — t
—>

—> (0|0) > n > Emailirb@gmail.it, n) |
Email{rb@gmail.it, GiantUsa...) | Email(rb@gmail.it, GiantAfrican...)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 751125

Orc Semantics: Asymmetric Parallel Composition

” /
g—4g
m (AL)
g where x :e f — ¢’ where x :e f
f2 ¢ u#le F25F
m (AR.) - (A.P)
g where x :e f — gwhere x ;e f’ g where x :€ f — g[c/x]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 761125

Orc Semantics: Asymmetric Parallel Composition

” /
g—4g
m (AL)
g where x :e f — ¢’ where x :e f
f2 ¢ u#le F25F
m (AR.) - (A.P)
g where x :e f — gwhere x ;e f’ g where x :€ f — g[c/x]

Getting one news from CNN and BBC by email

Email{rb@gmail.it, ny where n :€ (CNN{d) | BBC{d))

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 761125

Orc Semantics: Asymmetric Parallel Composition

” /
g—4g
m (AL)
g where x :e f — ¢’ where x :e f
f2 ¢ u#le F25F
m (AR.) - (A.P)
g where x :e f — gwhere x ;e f’ g where x :€ f — g[c/x]

Getting one news from CNN and BBC by email

Email(rb@gmail.it, ny where n :e (CNN(d) | BBC(d)) <\""Lyom) B0 Aeec)

' il.i Kesc2GiantUsa..
Emailrb@gmail.it, ny where n :€ (keny | Kese) 0 —

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 761125

Orc Semantics: Asymmetric Parallel Composition

” /
g—4g
m (AL)
g where x :e f — ¢’ where x :e f
fLF p#lc F25F
m (AR.) - (A.P)
g where x :e f — gwhere x ;e f’ g where x :€ f — g[c/x]

Getting one news from CNN and BBC by email

Email(rb@gmail.it, ny where n :e (CNN(d) | BBC(dY) " iekom) B8C(Ksc)

. . kegc ?GiantUsa...
Emailrb@gmail.it, ny where n :€ (%kenn | 2Kese) - —

Emailrb@gmail.it, ny where n :€ (?kenn | let{GiantUsa...)) LN

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 761125

Orc Semantics: Asymmetric Parallel Composition

” /
g—4g
m (AL)
g where x :e f — ¢’ where x :e f
f2 ¢ u#le F25F
m (AR.) - (A.P)
g where x :e f — gwhere x ;e f’ g where x :€ f — g[c/x]

Getting one news from CNN and BBC by email

Email(rb@gmail.it, ny where n :e (CNN(d) | BBC(d)) <\""Lyom) B0 Aeec)

Kesc?GiantUsa...
Emailrb@gmail.it, ny where n :€ (%kenn | 2Kese) - —

Emailrb@gmail.it, ny where n :€ (?kenn | let{GiantUsa...)) =

Email{rb@gmail.it, GiantUsaTouristsInvadeMadagascar)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 761125

Orc Semantics (in one slide)

k globally fresh fLp u#lc
T (SiteCall) 7 (Seq)
M(C) —~ 2%k f>x>g—f>x>g
lc
f—f
— o (SiteRet) = (SeqgPipe)
?%k — let{(c) f>x>g— (f>x>g)|glc/x]
e i’ ” i’
g—4g g—4g
— (SymLeft) 7 (AsymLeft)
glf —g|f g where x :e f — g’ where x :e f
N f5 7 pslc
— (SymRight) 7 (AsymRight)
glf—gl|f g where x :e f — gwhere x :e f
E(R)AF F-Sf
— (Def) = (AsymPrune)
E(p) — f[B/X] g where x :e f — g[c/x]
—— (Ley —;— (Signal)
let(c) — O Signal — 0

Fork-Join Parallelism and Synchronisation

Weather Forecast Example

CityDate A (let{x,y) where x :€ GoogleLocate) where y :c€ GoogleDate

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 781125

Fork-Join Parallelism and Synchronisation

Weather Forecast Example

(let(x, y) where x :€ GoogleLocate) where y :€ GoogleDate
CityDate > x > CnnWeather{x)

CityDate
WForecast

> >

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 781125

Fork-Join Parallelism and Synchronisation

Weather Forecast Example

(let(x, y) where x :€ GoogleLocate) where y :€ GoogleDate
CityDate > x > CnnWeather{x)

CityDate
WForecast

> >

z :€ WForecast — z = 11°C/22°C - PatrtiallyCloudy

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 781125

Fork-Join Parallelism and Synchronisation

Weather Forecast Example

CityDate A (let{x,y) where x :€ GoogleLocate) where y :c€ GoogleDate
WForecast A CityDate > x > CnnWeather(x)

z :€ WForecast — z = 11°C/22°C - PatrtiallyCloudy

Generalised synchronisation

Sync(l\7l) A let(x)) >> ... >> let(x,) >> Signal
where x; :€ My

where x, :€ M,

Ma, ..., M, are executed in parallel, but the signal is emitted only after having the
response from every M;).

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 781125

Fork-Join Parallelism and Synchronisation

Weather Forecast Example

CityDate A (let{x,y) where x :€ GoogleLocate) where y :c€ GoogleDate
WForecast A CityDate > x > CnnWeather(x)

z :€ WForecast — z = 11°C/22°C - PatrtiallyCloudy

Generalised synchronisation

Sync(l\7l) A let(x)) >> ... >> let(x,) >> Signal
where x; :€ My

where x, :€ M,
Ma, ..., M, are executed in parallel, but the signal is emitted only after having the
response from every M;). Or equivalently:

Sync(l\7l) A let(xy, ..., Xn) >> Signal
where x; :€ My --- where x, :€ M,

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 781125

Conditional Expressions

If(b) replies with a signal if b is trueand it remains silent if b is false

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 791125

Conditional Expressions

If(b) replies with a signal if b is trueand it remains silent if b is false

Fibonacci numbers

FibPair(x) A (If(x=0) >> let(1,0))|
(If{x! = 0) >> FibPair(x — 1) > (y, z) > let(y + z,y))

Fib(x) A FibPair(x) > (y, z) > let(y)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 791125

Conditional Expressions

If(b) replies with a signal if b is trueand it remains silent if b is false

Fibonacci numbers

FibPair(x) A (If(x=0) >> let(1,0))|
(If{x! = 0) >> FibPair(x — 1) > (y, z) > let(y + z,y))

Fib(x) A FibPair(x) > (y, z) > let(y)

Cond(b,S,T) A (Ib) >> S)|(I~b) > T)

AP+B.Q A Cond{(b,P,Q)whereb :c (A >> let(true))

| B >> let(false)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 791125

Orc Check Point

© Explain the difference between
Z1(x) A (If{(x =0) >> let(0))

and
Z2(x) A let(0) where y :€ If(x = 0)

@ A classic problem in non-strict evaluation is the so-called parallel-or.
Suppose there are two sites S; and S, that publish some booleans.
Write an Orc expression ParOR that publishes the value false only if
both sites return false, the value true as soon as either site returns
true, and otherwise it never publishes a value. In the solution it can be
assumed:

o the existence of a site If(b) that receives a boolean value and returns
true if b is true, and otherwise it does not respond;

o the existence of a site Or(by, by) that return the inclusive logical
disjunction of the two booleans received as arguments.

Note that ParOr must publish one result, at most.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 80/125

a CaSPiS (close-free + graceful closure)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 81/125

CaSPiS Genesis

Sources of inspiration

SCC [WS-FM 2006] was inspired by:

@ 1 (names, communication): x(y).P, xy.P, (vx)P

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 82/125

CaSPiS Genesis

Sources of inspiration
SCC [WS-FM 2006] was inspired by:

@ 1 (names, communication): x(y).P, xy.P, (vx)P

@ Orc (pipelining and pruning of activities):
(EAPLS{2008) | EATCS(2008)) > cfp > Email{rb@gmail.it, cfo)
Email{rb@gmail.it, cfp) where cfp :€ (EAPLS{2008) | EATCS({2008))

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 82/125

CaSPiS Genesis

Sources of inspiration
SCC [WS-FM 2006] was inspired by:

@ 1 (names, communication): x(y).P, xy.P, (vx)P

@ Orc (pipelining and pruning of activities):
(EAPLS{2008) | EATCS(2008)) > cfp > Email{rb@gmail.it, cfo)
Email{rb@gmail.it, cfp) where cfp :€ (EAPLS{2008) | EATCS({2008))

@ 7/, session types (primitives for sessions): a(k).P, a(k).P
(roughly, think of a(k).P as (vk)ak.P)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 82/125

CaSPiS Genesis

Sources of inspiration
SCC [WS-FM 2006] was inspired by:

@ 1 (names, communication): x(y).P, xy.P, (vx)P
@ Orc (pipelining and pruning of activities):
(EAPLS{2008) | EATCS(2008)) > cfp > Email{rb@gmail.it, cfo)
Email{rb@gmail.it, cfp) where cfp :€ (EAPLS{2008) | EATCS({2008))
@ 7/, session types (primitives for sessions): a(k).P, a(k).P
(roughly, think of a(k).P as (vk)ak.P)
CaSPiS [FMOODS 2008] is inspired by SCC and:

@ webs, cjoin, Sagas (primitives for LRT and compensations)
@ KLAIM (pattern matching)

All source were relevant to the SOC paradigm, but so far
@ not available in a single calculus
@ yet to be amalgamated in some disciplined way

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 82/125

Sessions in CaSPiS

@ reduce flexibility (only disciplined way to interact)

@ handle sessions in a transparent way (only as run-time syntax)
@ channel names disappear (server names used instead)
@ handle unexpected behaviours

Client Server Revisited

Remember the client server example:

S 2lin(k).k(x).k(f(x)) € = in(k).k(n).k(y).P

In CaSPiS it can be written

S Slin(X)f(x)y C = in(1) ()P

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 83/125

Sketch of Multiple Sessions

I=] service caIIJ

——————— ______

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 84 /125

Sketch of Multiple Sessions

[+ r1] (=L service def]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 85/125

Sketch of Multiple Sessions

[+ r1| (=L service def]

lE

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 86 /125

Sketch of Multiple Sessions

T e o

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 87 /125

Sketch of Conversations

[+ r1| (=L service def]

in.out.in

in.out.in

[+

out.in.out out | in.out

out | in | out

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 88 /125

Sketch of Conversations

in.out.in

in.out.in

[+

out.in.out out | in.out

out | in | out

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 89/125

Sketch of Nested Sessions

[

rl

Roberto Bruni (PISA)

Calculi for SOC

SFM-WS 2009

90/125

Sketch of Nested Sessions

[+] r3

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 91/125

Sketch of Nested Sessions

I=] service caIIJ

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 92 /125

Sketch of Nested Sessions

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 93 /125

in.return.out — |

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 94 /125

CaSPiS: General Principles

Service definitions: s.P

@ services expose their protocols
@ services can be deployed dynamically, shut down and updated
@ services can handle multiple requests separately

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 95/125

CaSPiS: General Principles

Service definitions: s.P

@ services expose their protocols

@ services can be deployed dynamically, shut down and updated
@ services can handle multiple requests separately)
@ service invocations expose their protocols

@ sequential composition via pipelining (& la Orc)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 95/125

CaSPiS: General Principles

Service definitions: s.P

@ services expose their protocols
@ services can be deployed dynamically, shut down and updated
@ services can handle multiple requests separately

Service invocations: S.P

@ service invocations expose their protocols
@ sequential composition via pipelining (& la Orc)

Sessions: r > P (run-time syntax)

@ service invocation spawns fresh session parties (locally to each partner)
@ sessions are: two-party (service-side + client-side) + private

@ interaction between session protocols: bi-directional

@ nested sessions: values can be returned outside sessions (one level up)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 95/125

CaSPiS Syntax

Prefixes, Values, Patterns

T

(F)

(V)

(W'

u | f(V)

ul 2 | f(F)

Abstraction
Concretion
Return

Value (f € X)

Pattern (f €)

Roberto Bruni (PISA)

Calculi for SOC

SFM-WS 2009

96 /125

CaSPiS Syntax

Prefixes, Values, Patterns

r = (F) Abstraction

| (V) Concretion

| (wy! Return
Vo= u | f(V) Value (f € %)
F = wul| ? | f(F) Pattern(feX)

Processes

P,Q = YyniP; Guarded Sum | T(k) Signal
| sk.P Service Definition | r>g P Session
| Sk.P Service Invocation | » P Terminated Session
| P>0Q Pipeline | P]Q Parallel Composition
| close Close | (vn)P Restriction
| k-P Listener | P Replication

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 96 /125

Structural Congruence (Close Free Fragment)

Structural axioms

PO = P vn0 = 0
PIO = OQ|P (vn)(vm)P = (vm)(vn)P
(PIQ)IR = PIQIR) (WmP)>Q = (n)(P>Q) ifng¢fn(Q)
P = PP (vmP)|IQ = (n)(P|Q) if n ¢ fn(Q)
r-(n)P = (vn)(r> P) ifr#n

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 97 /125

Structural Congruence (Close Free Fragment)

Structural axioms

PIO = P (vm0 = ©
PIO = OQ|P (vn)(vm)P = (vm)(vn)P
(PIQ)IR = PIQIR) (vnmP)>Q = (n)(P>Q) ifngfn(Q)
P = P|IP (vn)P)I@ = (vn)(P|Q) if n ¢ fn(Q)
r-(n)P = (vn)(r> P) ifr#n

Reactive contexts

@ Dynamic operators: service definition s.[-] and invocation s.[-]|, prefix
7l - 1, left-sided pipeline P > [-] and replication ! -]
@ Static context C[[-]: its hole does not occur under a dynamic operator
@ Session-immune SJ -] its hole does not occur under a session
@ Pipeline-immune P[-]: if its hole does not occur under a right-sided pipeline

Roughly, S[-] does not “intercept” abstraction and return prefixes, and P[-] does
not “intercept” concretion prefixes.

v
Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 97 /125

Reduction Semantics 1

Opening a session

r freshfor C[-,-],P,Q
Cl[s.P,5.01 — (vClr>P,r> Q]

(sync)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 98 /125

Reduction Semantics 1

Opening a session

r freshfor C[-,-1,P, Q
Cl[s.P,5.01 — (vClr>P,r> Q]

(sync)

Intra-session communication

o = match(F, V)
Cr(V)P + 3 miP;, (F)Q + 3, 7Qi 1 — Cr[P, Q|
where C,[-, -] is a context of the form C[[r>P[-1,r> S[-11

(Ssync)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 98 /125

Reduction Semantics 1

Opening a session

r freshfor C[-,-1,P, Q
Cl[s.P,5.01 — (vClr>P,r> Q]

(sync)

Intra-session communication

o = match(F, V)
Cr(V)P + 3 miP;, (F)Q + 3, 7Qi 1 — Cr[P, Q|
where C,[-, -] is a context of the form C[[r>P[-1,r> S[-11

(Ssync)

o = match(F, V)
Crlln> $il (WP + X 7iPi 1, (F)Q + X, mQi] S Clln>Si[P1, Qo]

v

(SRsync)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 98 /125

Reduction Semantics 2

Pipeline orchestration

Q=S[(FQ’ + 2imQil o= match(F, V)

CIPL(V)P +X;miPi]1> Q] — CIS[Q'c1I(PLPT> Q)1

Q=S[(FQ’+ X;mQil o = match(F, V)

CIPLre> $1i[(V)'P + %;mPi 11> Q1 — CIS[Qo 1l r>Si[P11> Q)1

Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009

99 /125

Example 1: Digital Documents

Isign.(?x)(vE)(K{x, t})
@ signis a (replicated and thus persistent) service
@ a sign instance waits for a digital document x, generates a fresh
nonce t and then sends back both the document and the nonce
signed with a key K

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 100/ 125

Example 1: Digital Documents

Service definition
Isign.(?x)(vE)(K{x, t})
@ signis a (replicated and thus persistent) service

@ a sign instance waits for a digital document x, generates a fresh
nonce t and then sends back both the document and the nonce
signed with a key K

Service invocation

sign.(plan)(?y)(y)!

@ a client of sign

@ it passes the argument plan to the service, then waits for the signed
response from the server and returns this value outside the session
as a result

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 100/ 125

Example 1: Digital Documents

A run

Isign.(?x)(vt){K{x, t})
Isign.(?2x)(vt)(K{x, t})
Isign.(?x)(vt){K{x, t})
Isign.(?x)(vt){K{x, t})

|) (r e () (KX, t])
| (vr, t)(r > (K{plan, t})
| (vr,t)(r>0

| sign.(plan)(?y)(y)'
| r > (plan)(?y)(y)")
| re> (')

| r> (K{plan, t})!)

Roberto Bruni (PISA)

Calculi for SOC

SFM-WS 2009

101/125

Example 1: Digital Documents

A run

Isign.(2x)(VE)(K (X, t}) | sign.(plan)(?y)(y)'
Lsign.(2X) (VXK X,) | (v)(r> () E)(K{x, t}) | re (plan)(?y)(y)")
Isign. (20K (x. 1)) | (r,)(re (Kiplan,t)y [re> ()W)T)
Isign.(?x)(vt){K{x, t}) | (vr,t)(r>0 | r>(K{plan, t})T)

Sessions for separation

(sign.(plany)(A)y)! | sign.(plan,)(?y)(y)")
The protocols of the two clients will run in separate sessions and will not interfere.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 101/125

Example 1: Digital Documents

A run
sign.(2x) (vE)(K{x, t}) | sign.(plany(?y)(y)'
Isign.(2)(vE)(K{x, t}y | (vr)(r> (2X)(IXK X, t)) | r> (plany(?y)(»)T)
Isign.(2X)(vt)(K{x, t)) | (vr,)(r>(K{plan,t}y | re> (2)T)
Isign.(2X)(vE)(K{x,t}) | (vr,t)(r>0 | r>(K{plan, t})T)

Sessions for separation

('sign(plany)(y)(y)! | sign.(plan)(y)y)!)
The protocols of the two clients will run in separate sessions and will not interfere.

Pipelines for composition
(sign.(plan,)(y)y)! | sign(plam,)()(y)') > (?2)store.(z)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 101/125

Example 2: Common Patterns of Interaction

s.(?) s(V)

Request response

S SVH(RrKnT

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 102 /125

Example 2: Common Patterns of Interaction

s.(?) s(V)

Request response

S SVH(RrKnT

m-calculus channels

a(x).P 2 a.(2)x)!"> ()P av.P2a(vy-)!> (-)P

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 102 /125

Example 2: Common Patterns of Interaction

s.(?) s(V)

Request response

S SVH(RrKnT

m-calculus channels

a(x).P 2 a.(2)x)!"> ()P av.P2a(vy-)!> (-)P

Proxy (service name passing)

Iproxy.(?s, 2x)s.001(2y)(y)T

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 102 /125

Example 3: Selection

select Fy,...,F, from P £ (vs) (s.(Fl)....(F,,)(F‘?,...,F,;?>T |§.P)
where F,.‘? denotes the value V; obtained from F; by replacing each ?x with x

select Fy,...,F,from Pin Q 2 select Fy,...,F, from P > (F1,...,F)0

Select first two CfP

select ?x, ?y from (EAPLS | EATCS | TYPES) in emailMe.(x, y)
where

S 2 S1(2x)(x)!

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 103 /125

Typed Variant

Main assumptions
Services are
@ persistent (not consumed after invocations)
@ top-level (not nested, not dynamically installed)
@ stateless (no top-level return on service side)
Sessions are
@ not interruptable (close-free fragment)
@ with non recursive communication protocols
Interaction:
@ no pattern matching
@ simplified pipeline (P > x > Q, i.e. P > (?x)Q)
@ conditional

@ branching and selection

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 104 /125

Example 1: Factorial

Service definition
fatt.(?n)if (n = 0)
then (1)
else (fatt.(n — 1)(?X).(x)") > x > (n- x)
A fatt instance waits for a natural number n: if equal to zero then sends

back 1 to the client, otherwise issues a (nested) invocation to a fresh

instance of fatt with argument n — 1, waits for the response and passes the
result x to a pipe that sends back n - x to the client

V.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 105/ 125

Example 1: Factorial

Service definition

fatt.(?n)if (n = 0)
then (1)
else (fatt.(n — 1)(?%).(x)T) > x > (n - x)

A fatt instance waits for a natural number n: if equal to zero then sends
back 1 to the client, otherwise issues a (nested) invocation to a fresh
instance of fatt with argument n — 1, waits for the response and passes the
result x to a pipe that sends back n - x to the client

Service invocation

fatt.(3)(?x) | fatt.(5)(2x)(x)!
The first client passes the argument 3 to the service instance, then waits
for the response; the second client passes a different argument and
returns the computed result to the parent session. The protocols of the
two clients will run in fresh, separated sessions and will not interfere.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 105/ 125

Example 2: Room reservation

Service definition (with branching)

reserve.((single)(?x){code(x, "))
+ (double)(?x, %).({code(x. y)))

(where code : str x str — int is a function only available on service side)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 106 /125

Example 2: Room reservation

Service definition (with branching)

reserve.((single)(?x){code(x, "))
+ (double)(?x, %).({code(x. y)))

(where code : str x str — int is a function only available on service side)

Service invocations (with selection)

reserve.(single)(" Bob” Y(?2x)(x)!
reserve.(double)(” Bob”,” Leo” (?y){y)'

reserve.if (...)
then (single){” Bob”)(?x).(x)"
else (double){" Bob”,” Leo”)(?y){y)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 106 /125

Example 3: Proxy service for load balancing

Service definition (with name passing and extrusion)

(va, b)(a.p
| b.P
| loadbalance.if (choose(a, b) = 1) then (a) else (b))

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 107 / 125

Example 3: Proxy service for load balancing

Service definition (with name passing and extrusion)

(va, b)(a.p
| b.P
| loadbalance.if (choose(a, b) = 1) then (a) else (b))

Service invocation

(loadbalance(?z)(z)") > x > Z.Q

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 107 / 125

Type judgements

Overall idea

@ Typevalues: T'+v: S
@ Type a process as if part of a current session:

T+P:U[T]

separating intra-session interaction T from upward interaction U

@ The type T of the protocol on one side of a session should be
compatible w.r.t. the type T’ of its partner’s protocol

@ In case of nested sessions, the U typed upward interaction will
contribute to the type of its “father” session

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 108/ 125

Sketch of Typing

A
)

_/Y

Some issues and limitations

Some flexibility required w.r.t. branching and selection

@ Some care needed in parallel composition of protocols

@ Some care needed in dealing with the replication due to pipelines
@ Recursive invocation of services is possible
)
)

(]

No form of delegation allowed
Mobility of service names

v

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 109/ 125

Type system basics

Syntax of types

u

[T]

B

end

?(S1,...,Sn).T
I(S1,...,S).T
&{Il . Tl,...,ln o
S&{h i T1,..., I Tp}
I(S)k.end

(session)
(basic data types)
(no action)
(input of a tuple)
(output of a tuple)
(external choice)
(internal choice)
(upward interaction)

Dual types

end = end ?28).T = YS).T & T} = ol T
!(é).T' = 7(§)? el Ti}i = &{l: ?,},
Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 110/ 125

Type System Highlights: Services and Sessions

Services

(Service)
I''s:S+s:S
CrP:end[T] Trs:[T] CrQ:U[T] Trs:[T]
(Tdef) (Tinv)
I'+ s.P: end[end] I'+5.Q: end[U]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 111/125

Type System Highlights: Services and Sessions

Services

(Service)

I''s:S+s:S

CrP:end[T] Trs:[T] CrQ:U[T] Trs:[T]
(Tdef) (Tinv)
I'+ s.P: end[end] I'+s.Q: end[U]

Sessions

TrP:UT] I'rQ:U[T]
(Tses) (Tsesl)
L,r:[T]+r">P:endU] L,r:[T]+r »Q:endU]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 111/125

Type System Highlights: Protocols

Input, output, and return

[LX:SrP:UT] CrFP:U[T] TrV:S

— (Tin) — (Tout)

[r(?2X)P : U[?(S).T] [+(V)P : U[!(S).T]
CrFP:U[T] TrV:S

(Tret)

T+ (WP :I(S).U[T]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 112 /125

Type System Highlights: Protocols

Input, output, and return

[LX:SrP:UT] CrFP:U[T] TrV:S

— (Tin) — (Tout)

[r(?2X)P : U[?(S).T] [+(V)P : U[!(S).T]
CrFP:U[T] TrV:S

(Tret)

T+ (WP :I(S).U[T]

Branching and Selection

Ic{l,....n}Yiel.T+Pj: U[T] kel TrP:U[TK
(Tbranch) (TChoice)
CrED (6P - UL&AL : Tidlies L H (P UG : Tiiel]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 112 /125

CaSPiS Check Point

A honest customer

AT . . .
HC = buy (itemy)(ord(?Xcode, itemy, ?Xpricek)xpa)/(xcode, Itemy, Xprice, , NAME, cc))

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 113/125

CaSPiS Check Point

A honest customer

AT . . .
HC = buy (itemy)(ord(?Xcode, itemy, ?Xpricek)xpa)/(xcode, Itemy, Xprice, , NAME, cc))

e-shop server and database

ESHOP 2 (vprice)(D|S)
D = lprice. 3 (item;){price;))
S £ Ibuy. 3, (item;)(vcode)(OF;| PF;)
OF; = price.{item;) (PXprice,){0rd(code, itemy, Xprice,))'
PF;, = (cancel)0 + (pay(code, item;, ?Yprice,» 2Yname, ?Yec)) PAY

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 113/125

CaSPiS Check Point

A honest customer

AT . . .
HC = buy (itemy)(ord(?Xcode, item, ?Xpricek)xpay(xcode, Itemy, Xprice, , NAME, cc))

e-shop server and database

ESHOP 2 (vprice)(D|S)
D = lprice. 3 (item;){price;))
S £ Ibuy. 3, (item;)(vcode)(OF;| PF;)
OF; = price.{item;) (PXprice,){0rd(code, itemy, Xprice,))'
PF;, = (cancel)0 + (pay(code, item;, ?Yprice,» 2Yname, ?Yec)) PAY

Malicious user: how to redesign ESHOP?

MC = buy .(item.)(ord(?Xcode, iteMi, Xprice,)){PaY(Xcode, itemy, 5cents, name, cc))

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 113/125

CaSPiS: Advanced Principles

Service definitions: s¢.P, k - P

@ services expose their protocols + generic termination handlers
@ services can be deployed dynamically, shut down and updated
@ services can handle multiple requests separately

Service invocations: sx.P, k - P

@ service invocations expose their protocols + specific termination handlers

@ sequential composition via pipelining (& la Orc)

Session termination: r >, P, close, » P, T(k)

@ local session termination: autonomous + on partner’s request
@ the local closure of a session activates partner’s handler (if any)

@ session termination cancels all locally nested processes (including service
definitions) + informs their partners

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 114 /125

Termination Handlers

Step 1: Exchanging information about handlers

Sk, -Qlsk,.P can evolve to (vr)(r >k, Qlr >, P)

Step 2: Closing own session

r> (close |P) can evolve to t(k)| » P

Step 3: Propagate closure to nested sessions

for example: » P|Q =» P|» Q and » (r>¢ P) S P|t(k)

Step 4: Inform handlers
t(k)| k- P can evolve to P

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 115/125

Termination Handlers

Step 1: Exchanging information about handlers

Sk, -Qlsk,.P can evolve to (vr)(r >k, Qlr >, P)

Step 2: Closing own session

r > (close | P) can evolve to (k)| » P

Step 3: Propagate closure to nested sessions

for example: » P|Q =» P|» Q and » (r>¢ P) S P|t(k)

Step 4: Inform handlers
t(k)| k- P can evolve to P

Default closing policy
(vk1)Sk,-(Pilky - close) and (vkz)sy,.(Palk - close)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 115/125

CaSPiS Semantics Revisited

Structural Congruence

rew (F(kIP) = t(K)Irow P >r>cP = »rm>y» P e P =
FKIP)>Q = TKIP>Q) »P>Q) = (P)>Q »0 = 0
» ()P = (w)»P »PIQ = »P»Q »tk) = 1k

Reduction Semantics

r freshfor C[-,-],P, Q
ClL Sk, -P.5k,.Q 1 — (v)CLr >, P rog, Q1

(sync)

(Send) =
Clr>k S[close 11 — C[T(k)| » S[OT1

(Tend)

Cl» (r>x P)1 — CI» P 1(K) 1

(Tsync)

Clt(k) |k -P1 - CLP]

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 116/ 125

Graceful Termination Property

Balanced process
A process where session-sides that balance with each other in pairs.

Any session-free process is balanced, and in the close-free fragment it
reduces only to balanced processes

Unbalanced processes
Termination of one side may lead to unbalanced terms.

Graceful termination (of session-sides)

Any possibly unbalanced term reachable from a balanced term can get
balanced in a finite number of reductions.

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 117 /125

A Last Example: All Sides are Active

News = I(vk)collecty. (k- close | (vkl)ANSAk1 ()01 | kg - (closet(k)))
| (vka)BBCy, ((2x)00) | ko -(close[t(k)))
| (vks)CNNi ()T | kg (closelt(k))))

JAA\

(Client)

News
W

[\ I\ JE)

[\ ‘ [JE)

(ANSA) (BBC) (CNN)
Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009 118/125

A Last Example: BBC-side Terminates

A

News = I(vk)collecty. (k- close | (vkl)ANSAk1 ()01 | kg - (closet(k)))
| (vka)BBCy, ((2x)00)T | ko -(close[t(k)))
| (vks)CNNg ()T | ks (closelt(k))))

JAA\

(Client)

News
n e

[\ 2 JE)

[\ JE)

(ANSA) (BBC) (CNN)
Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009 119/125

A Last Example: BBC-partner-side Terminates

A

News = I(vk)collecty. (k- close | (vkl)ANSAk1 ()01 | kg - (closet(k)))
| (vka)BBCy, ((2x)00)T | ko -(close[t(k)))
| (vks)CNNg ()T | ks (closelt(k))))

JAA\

(Client)

News
n e

[\ JE)

[\ JE)

(ANSA) (BBC) (CNN)
Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009 120/125

A Last Example: News-side is Triggered to Terminate

A

News = I(vk)collecty. (k- close | (vkl)ANSAkl.(!('?x)(x)T | kq - (close[t(k)))
| (vkg)BBCy, (1(2X)(x)T | ko -(close[t(k)))
| (ks)CNNgy ()07 | kg - (close[t(k))))
JAA\
(Client)
(News)
[\ JE)
[\ JE)
(ANSA) (BBC) (CNN)
Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009 121/125

A Last Example: Client- and Nested-sides Terminate

A

News = I(vk)collecty. (k- close | (vkl)ANSAk1 ()01 | kg - (closet(k)))

| (vka)BBCy, ((2x)00)T | ko -(close[t(k)))

| (vks)CNNg ()T | ks (closelt(k))))

(Client)
(News)
[\ JE)
(ANSA) (BBC) (CNN)
Roberto Bruni (PISA) Calculi for SOC

SFM-WS 2009

122 /125

A Last Example: ANSA/CNN-sides Terminate

A

News = I(vk)collecty. (k- close | (vkl)ANSAk1 ()01 | kg - (closet(k)))
| (vka)BBCy, ((2x)00)T | ko -(close[t(k)))
| (vks)CNNg ()T | ks (closelt(k))))
(Client)
(News)
(ANSA) (BBC) (CNN)

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 123/125

@ Concluding Remarks

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 124 /125

Conclusion and Future Work

CaSPiS

@ Original mix of several ingredients
@ Flexible and expressive
@ Sound operational properties and type systems

@ Only proposal, up to our knowledge, able to guarantee a disciplined
termination of nested sessions.

Ongoing and future work

@ Prototype implementations

Type inference (see Leonardo Mezzina’s PhD Thesis)
Hierarchical graph models

)
)
@ Abstract equivalences
@ Delegation

)

Multiparty sessions

Roberto Bruni (PISA) Calculi for SOC SFM-WS 2009 125/ 125

Conclusion and Future Work

CaSPiS

@ Original mix of several ingredients
@ Flexible and expressive
@ Sound operational properties and type systems

@ Only proposal, up to our knowledge, able to guarantee a disciplined
termination of nested sessions.

Ongoing and future work

@ Prototype implementations

Type inference (see Leonardo Mezzina’s PhD Thesis)
Hierarchical graph models

Delegation

)
)
@ Abstract equivalences
)
)

Multiparty sessions

THANKS FOR THE ATTENTION!

	Introduction
	Concurrency Headaches
	From Computation to Interaction (CCS)
	Dynamic Communication Topology (pi-calculus)
	Session Handling
	Cancellation (Orc)
	CaSPiS (close-free + graceful closure)
	Concluding Remarks

