
Provably correct implementations of services

Roberto Bruni1 Rocco De Nicola2 Michele Loreti2

Leonardo G. Mezzina3

1Dipartimento di Informatica, Università di Pisa, Italy
2Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

3IMT Alti Studi Lucca, Italy

TGC 2008 — Barcelona, November, 3-4

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 1 / 27

Outline. . .

1 Motivations

2 SOAM: Service Oriented Abstract Machine

3 Implementing Service Calculi with SOAM

4 Concluding Remarks

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 2 / 27

Outline. . .

1 Motivations

2 SOAM: Service Oriented Abstract Machine

3 Implementing Service Calculi with SOAM

4 Concluding Remarks

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 3 / 27

Motivations. . .

The explosive growth of the Web has led to

the widespread use of communication centric applications, often
referred as Web Services;

the growth of a new computational paradigm known as Service
Oriented Computing (SOC).

Service Oriented Computing (SOC) is calling for novel computational
models and languages with primitives for client-server interaction,
orchestration and unexpected events handling

Important features of SOC are: compositionality,
context-independence, encapsulation and re-usability.

A number of formalisms have been defined to support the specification and
analysis of service oriented applications at the right level of abstraction

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 4 / 27

Motivations. . .

The explosive growth of the Web has led to

the widespread use of communication centric applications, often
referred as Web Services;

the growth of a new computational paradigm known as Service
Oriented Computing (SOC).

Service Oriented Computing (SOC) is calling for novel computational
models and languages with primitives for client-server interaction,
orchestration and unexpected events handling

Important features of SOC are: compositionality,
context-independence, encapsulation and re-usability.

A number of formalisms have been defined to support the specification and
analysis of service oriented applications at the right level of abstraction

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 4 / 27

Motivations. . .

The explosive growth of the Web has led to

the widespread use of communication centric applications, often
referred as Web Services;

the growth of a new computational paradigm known as Service
Oriented Computing (SOC).

Service Oriented Computing (SOC) is calling for novel computational
models and languages with primitives for client-server interaction,
orchestration and unexpected events handling

Important features of SOC are: compositionality,
context-independence, encapsulation and re-usability.

A number of formalisms have been defined to support the specification and
analysis of service oriented applications at the right level of abstraction

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 4 / 27

Motivations. . .

These formalisms are based on process algebras enriched with primitives
specific of service orientation:

operators for manipulating semi-structured data

mechanisms for describing safe client-service interactions

constructors for composing possibly unreliable services

techniques for query and discovery of services.

A key point for the usefulness of process calculi is the availability of tools
(types or logics) to specify, check and guarantee the correct behavior of
the considered services.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 5 / 27

Motivations. . .

These formalisms are based on process algebras enriched with primitives
specific of service orientation:

operators for manipulating semi-structured data

mechanisms for describing safe client-service interactions

constructors for composing possibly unreliable services

techniques for query and discovery of services.

A key point for the usefulness of process calculi is the availability of tools
(types or logics) to specify, check and guarantee the correct behavior of
the considered services.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 5 / 27

Motivations. . .

We have defined a Service Oriented Abstract Machine (SOAM). . .

equipped with a formal semantics

that can be used to implement the service specification formalisms.

The operational semantics of SOAM can be used as the basis for
guaranteeing that the properties that have been proved by reasoning on
the calculi-based specification are preserved by the actual implementations.

Three representative service-oriented calculi will be considered.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 6 / 27

Motivations. . .

We have defined a Service Oriented Abstract Machine (SOAM). . .

equipped with a formal semantics

that can be used to implement the service specification formalisms.

The operational semantics of SOAM can be used as the basis for
guaranteeing that the properties that have been proved by reasoning on
the calculi-based specification are preserved by the actual implementations.

Three representative service-oriented calculi will be considered.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 6 / 27

Motivations. . .

We have defined a Service Oriented Abstract Machine (SOAM). . .

equipped with a formal semantics

that can be used to implement the service specification formalisms.

The operational semantics of SOAM can be used as the basis for
guaranteeing that the properties that have been proved by reasoning on
the calculi-based specification are preserved by the actual implementations.

Three representative service-oriented calculi will be considered.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 6 / 27

Outline. . .

1 Motivations

2 SOAM: Service Oriented Abstract Machine

3 Implementing Service Calculi with SOAM

4 Concluding Remarks

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 7 / 27

SOAM: Service Oriented Abstract Machine

SOAM is based on the notion of queues:

model persistent, protected, communication lines;

permit inter-task communication;

are created on service invocation;

messages are retrieved by means of pattern matching;

can be either synchronous or asynchronous;

naturally corresponds to the concept of session.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 8 / 27

SOAM: Service Oriented Abstract Machine

SOAM network. . .

. . . can be:

〈σ ` C〉, a program C running with local store σ
I σ associates variable to values;

r : h, a queue r with associated a sequence of values h;

N|M, the parallel composition of two networks.

SOAM programs. . .

. . . are built from:

standard imperative commands (iteration, selection,. . .);

primitives for queues (creation, input and output);

service definitions and invocations.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 9 / 27

SOAM: Service Oriented Abstract Machine

SOAM network. . .

. . . can be:

〈σ ` C〉, a program C running with local store σ
I σ associates variable to values;

r : h, a queue r with associated a sequence of values h;

N|M, the parallel composition of two networks.

SOAM programs. . .

. . . are built from:

standard imperative commands (iteration, selection,. . .);

primitives for queues (creation, input and output);

service definitions and invocations.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 9 / 27

SOAM: Service Oriented Abstract Machine

Queue actions: out, in

(Mout)

σ(w) = r

〈σ ` out(w , ṽ); C〉|r : h→ 〈σ ` C〉|r : ṽ · h
(Min)

σ(w) = r match(σ, F̃k , ṽ) = ρ

〈σ ` in(w ,Σj∈J(F̃j .Cj)); D〉|r : h · ṽ · h′ → 〈σρ ` Ck ; D〉|r : h · h′

Queue creation: new

(MnewR)

r is fresh

〈σ ` new x ; C〉 → (νr)(〈σ[r/x] ` C〉|r : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 10 / 27

SOAM: Service Oriented Abstract Machine

Queue actions: out, in

(Mout)

σ(w) = r

〈σ ` out(w , ṽ); C〉|r : h→ 〈σ ` C〉|r : ṽ · h
(Min)

σ(w) = r match(σ, F̃k , ṽ) = ρ

〈σ ` in(w ,Σj∈J(F̃j .Cj)); D〉|r : h · ṽ · h′ → 〈σρ ` Ck ; D〉|r : h · h′

Queue creation: new

(MnewR)

r is fresh

〈σ ` new x ; C〉 → (νr)(〈σ[r/x] ` C〉|r : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 10 / 27

SOAM: Service Oriented Abstract Machine

Queue actions: out, in

(Mout)

σ(w) = r

〈σ ` out(w , ṽ); C〉|r : h→ 〈σ ` C〉|r : ṽ · h
(Min)

σ(w) = r match(σ, F̃k , ṽ) = ρ

〈σ ` in(w ,Σj∈J(F̃j .Cj)); D〉|r : h · ṽ · h′ → 〈σρ ` Ck ; D〉|r : h · h′

Queue creation: new

(MnewR)

r is fresh

〈σ ` new x ; C〉 → (νr)(〈σ[r/x] ` C〉|r : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 10 / 27

SOAM: Service Oriented Abstract Machine

Queue actions: out, in

(Mout)

σ(w) = r

〈σ ` out(w , ṽ); C〉|r : h→ 〈σ ` C〉|r : ṽ · h
(Min)

σ(w) = r match(σ, F̃k , ṽ) = ρ

〈σ ` in(w ,Σj∈J(F̃j .Cj)); D〉|r : h · ṽ · h′ → 〈σρ ` Ck ; D〉|r : h · h′

Queue creation: new

(MnewR)

r is fresh

〈σ ` new x ; C〉 → (νr)(〈σ[r/x] ` C〉|r : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 10 / 27

SOAM: Service Oriented Abstract Machine

Queue actions: out, in

(Mout)

σ(w) = r

〈σ ` out(w , ṽ); C〉|r : h→ 〈σ ` C〉|r : ṽ · h
(Min)

σ(w) = r match(σ, F̃k , ṽ) = ρ

〈σ ` in(w ,Σj∈J(F̃j .Cj)); D〉|r : h · ṽ · h′ → 〈σρ ` Ck ; D〉|r : h · h′

Queue creation: new

(MnewR)

r is fresh

〈σ ` new x ; C〉 → (νr)(〈σ[r/x] ` C〉|r : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 10 / 27

SOAM: Service Oriented Abstract Machine

Queue actions: out, in

(Mout)

σ(w) = r

〈σ ` out(w , ṽ); C〉|r : h→ 〈σ ` C〉|r : ṽ · h
(Min)

σ(w) = r match(σ, F̃k , ṽ) = ρ

〈σ ` in(w ,Σj∈J(F̃j .Cj)); D〉|r : h · ṽ · h′ → 〈σρ ` Ck ; D〉|r : h · h′

Queue creation: new

(MnewR)

r is fresh

〈σ ` new x ; C〉 → (νr)(〈σ[r/x] ` C〉|r : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 10 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Service invocations and definitions: invoke, offer

(Msynch)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ1 ` offer(a, 〈x1, y1〉,C1); D〉|
〈σ2 ` invoke(a, 〈x2, y2〉,C2); D′〉 →

〈σ1 ` D〉|〈σ2 ` D′〉|
(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1 ` C1〉|〈σ2ρ2 ` C2〉)

Task activation: fork

(Mfork)

r , r ′ fresh ρi = [r/xi][
r ′/yi]

〈σ ` fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)〉 → (νr)(νr ′)(〈σρ1 ` C1〉|
〈σρ2 ` C2〉|r : ∅|r ′ : ∅)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 11 / 27

SOAM: Service Oriented Abstract Machine

Syntax

C,D ::= skip (skip)
| new n (new)
| while e do C (while)
| if e then C else D (if-then-else)
| invoke(v , 〈x , y〉,C) (new session inv)
| offer(v , 〈x , y〉,C) (new session def)
| out(w , ṽ) (send)

| in(w ,Σj∈J(F̃j .Cj)) (receive)
| x := e (assignment)
| fork(〈x1, y1〉,C1, 〈x2, y2〉,C2) (fork and sync)
| C; D (sequencing)

N ::= O (empty net)
| 〈σ ` C〉 (running program)
| N|M (network composition)
| (νn)N (name restriction)
| r : h (session queue)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 12 / 27

Outline. . .

1 Motivations

2 SOAM: Service Oriented Abstract Machine

3 Implementing Service Calculi with SOAM

4 Concluding Remarks

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 13 / 27

Implementing Service Calculi with SOAM

Three service oriented calculi are considered:

Session Language (SL);

Calculus of Sessions and Pipelines (CaSPiS);

and Orc.

These calculi provide specific primitives for modelling SOC: sessions (SL
and CaSPiS), session delegation (SL), pipelining (Orc and CaSPiS),
session nesting and pattern matching (CaSPiS), and cancelation of
activities (Orc).

For each of the above calculi we provide:

a structural translation into the code of our abstract machine

the operational correspondence between a process and its encoding.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 14 / 27

Implementing Service Calculi with SOAM

Three service oriented calculi are considered:

Session Language (SL);

Calculus of Sessions and Pipelines (CaSPiS);

and Orc.

These calculi provide specific primitives for modelling SOC: sessions (SL
and CaSPiS), session delegation (SL), pipelining (Orc and CaSPiS),
session nesting and pattern matching (CaSPiS), and cancelation of
activities (Orc).

For each of the above calculi we provide:

a structural translation into the code of our abstract machine

the operational correspondence between a process and its encoding.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 14 / 27

Implementing Service Calculi with SOAM

Three service oriented calculi are considered:

Session Language (SL);

Calculus of Sessions and Pipelines (CaSPiS);

and Orc.

These calculi provide specific primitives for modelling SOC: sessions (SL
and CaSPiS), session delegation (SL), pipelining (Orc and CaSPiS),
session nesting and pattern matching (CaSPiS), and cancelation of
activities (Orc).

For each of the above calculi we provide:

a structural translation into the code of our abstract machine

the operational correspondence between a process and its encoding.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 14 / 27

Implementing Service Calculi with SOAM

Three service oriented calculi are considered:

Session Language (SL);

Calculus of Sessions and Pipelines (CaSPiS);

and Orc.

These calculi provide specific primitives for modelling SOC: sessions (SL
and CaSPiS), session delegation (SL), pipelining (Orc and CaSPiS),
session nesting and pattern matching (CaSPiS), and cancelation of
activities (Orc).

For each of the above calculi we provide:

a structural translation into the code of our abstract machine

the operational correspondence between a process and its encoding.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 14 / 27

Implementing Service Calculi with SOAM

Three service oriented calculi are considered:

Session Language (SL);

Calculus of Sessions and Pipelines (CaSPiS);

and Orc.

These calculi provide specific primitives for modelling SOC: sessions (SL
and CaSPiS), session delegation (SL), pipelining (Orc and CaSPiS),
session nesting and pattern matching (CaSPiS), and cancelation of
activities (Orc).

For each of the above calculi we provide:

a structural translation into the code of our abstract machine

the operational correspondence between a process and its encoding.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 14 / 27

Calculus of Services with Pipelines and Sessions

Overview:

CaSPiS (Calculus of Services with Pipelines and Sessions) is a core
calculus that relies on four three concepts:

1 service definition/invocation

2 bi-directional sessioning as a means for structuring client-service
interaction

3 pipelining as a means of composing services.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 15 / 27

Calculus of Services with Pipelines and Sessions

Overview:

CaSPiS (Calculus of Services with Pipelines and Sessions) is a core
calculus that relies on four three concepts:

1 service definition/invocation

2 bi-directional sessioning as a means for structuring client-service
interaction

3 pipelining as a means of composing services.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 15 / 27

Calculus of Services with Pipelines and Sessions

Overview:

CaSPiS (Calculus of Services with Pipelines and Sessions) is a core
calculus that relies on four three concepts:

1 service definition/invocation

2 bi-directional sessioning as a means for structuring client-service
interaction

3 pipelining as a means of composing services.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 15 / 27

Calculus of Services with Pipelines and Sessions

Overview:

CaSPiS (Calculus of Services with Pipelines and Sessions) is a core
calculus that relies on four three concepts:

1 service definition/invocation

2 bi-directional sessioning as a means for structuring client-service
interaction

3 pipelining as a means of composing services.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 15 / 27

CaSPiS in a nutshell. . .

Service definitions and invocations. . .

. . . are rendered respectively as s.P and s.Q:

s is a service name

P and Q implement the service and the client protocols

news.〈“news item”〉 | news.(?x)〈x〉↑Q

↓

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

We assume session be polarised to distinguish the two sides of a session
(r+, r−):

we let r+ = r− and r− = r+.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 16 / 27

CaSPiS in a nutshell. . .

Service definitions and invocations. . .

. . . are rendered respectively as s.P and s.Q:

s is a service name

P and Q implement the service and the client protocols

news.〈“news item”〉 | news.(?x)〈x〉↑Q

↓

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

We assume session be polarised to distinguish the two sides of a session
(r+, r−):

we let r+ = r− and r− = r+.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 16 / 27

CaSPiS in a nutshell. . .

Service definitions and invocations. . .

. . . are rendered respectively as s.P and s.Q:

s is a service name

P and Q implement the service and the client protocols

news.〈“news item”〉 | news.(?x)〈x〉↑Q

↓

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)
We assume session be polarised to distinguish the two sides of a session
(r+, r−):

we let r+ = r− and r− = r+.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 16 / 27

CaSPiS in a nutshell. . .

Service definitions and invocations. . .

. . . are rendered respectively as s.P and s.Q:

s is a service name

P and Q implement the service and the client protocols

news.〈“news item”〉 | news.(?x)〈x〉↑Q

↓

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

We assume session be polarised to distinguish the two sides of a session
(r+, r−):

we let r+ = r− and r− = r+.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 16 / 27

CaSPiS in a nutshell. . .

Service definitions and invocations. . .

. . . are rendered respectively as s.P and s.Q:

s is a service name

P and Q implement the service and the client protocols

news.〈“news item”〉 | news.(?x)〈x〉↑Q

↓

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

We assume session be polarised to distinguish the two sides of a session
(r+, r−):

we let r+ = r− and r− = r+.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 16 / 27

CaSPiS in a nutshell. . .

Service definitions and invocations. . .

. . . are rendered respectively as s.P and s.Q:

s is a service name

P and Q implement the service and the client protocols

news.〈“news item”〉 | news.(?x)〈x〉↑Q

↓

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)
We assume session be polarised to distinguish the two sides of a session
(r+, r−):

we let r+ = r− and r− = r+.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 16 / 27

CaSPiS in a nutshell. . .

Abstractions and concretions. . .

Processes at the two sides of a session can interact with each other by
means of:

concretions: 〈V 〉 sends value V over a session

abstractions: (F)P retrieves a value matching pattern F.

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

↓
(νr)

(
r+ . P | r− . 〈“news item”〉↑Q

)

Return. . .

Values can be returned outside a session to the enclosing environment
using the return operator, 〈 · 〉↑.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 17 / 27

CaSPiS in a nutshell. . .

Abstractions and concretions. . .

Processes at the two sides of a session can interact with each other by
means of:

concretions: 〈V 〉 sends value V over a session

abstractions: (F)P retrieves a value matching pattern F.

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

↓
(νr)

(
r+ . P | r− . 〈“news item”〉↑Q

)
Return. . .

Values can be returned outside a session to the enclosing environment
using the return operator, 〈 · 〉↑.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 17 / 27

CaSPiS in a nutshell. . .

Abstractions and concretions. . .

Processes at the two sides of a session can interact with each other by
means of:

concretions: 〈V 〉 sends value V over a session

abstractions: (F)P retrieves a value matching pattern F.

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)

↓
(νr)

(
r+ . P | r− . 〈“news item”〉↑Q

)
Return. . .

Values can be returned outside a session to the enclosing environment
using the return operator, 〈 · 〉↑.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 17 / 27

CaSPiS in a nutshell. . .

Abstractions and concretions. . .

Processes at the two sides of a session can interact with each other by
means of:

concretions: 〈V 〉 sends value V over a session

abstractions: (F)P retrieves a value matching pattern F.

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)
↓

(νr)
(
r+ . P | r− . 〈“news item”〉↑Q

)

Return. . .

Values can be returned outside a session to the enclosing environment
using the return operator, 〈 · 〉↑.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 17 / 27

CaSPiS in a nutshell. . .

Abstractions and concretions. . .

Processes at the two sides of a session can interact with each other by
means of:

concretions: 〈V 〉 sends value V over a session

abstractions: (F)P retrieves a value matching pattern F.

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)
↓

(νr)
(
r+ . P | r− . 〈“news item”〉↑Q

)
Return. . .

Values can be returned outside a session to the enclosing environment
using the return operator, 〈 · 〉↑.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 17 / 27

CaSPiS in a nutshell. . .

Abstractions and concretions. . .

Processes at the two sides of a session can interact with each other by
means of:

concretions: 〈V 〉 sends value V over a session

abstractions: (F)P retrieves a value matching pattern F.

(νr)
(
r+ . 〈“news item”〉 | r− . (?x)〈x〉↑Q

)
↓

(νr)
(
r+ . P | r− . 〈“news item”〉↑Q

)
Return. . .

Values can be returned outside a session to the enclosing environment
using the return operator, 〈 · 〉↑.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 17 / 27

CaSPiS in a nutshell. . .

Pipeline. . .

Values returned by a session can be used to start new activities. This is
achieved using the pipeline operator:

P > x̃ > Q .

A new instance of process Q is activated each time P emits a value.

r . 〈“news item”〉↑Q > z > emailMe.〈z〉

↓

r . Q > z > emailMe.〈z〉 | emailMe.〈“news item”〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 18 / 27

CaSPiS in a nutshell. . .

Pipeline. . .

Values returned by a session can be used to start new activities. This is
achieved using the pipeline operator:

P > x̃ > Q .

A new instance of process Q is activated each time P emits a value.

r . 〈“news item”〉↑Q > z > emailMe.〈z〉

↓

r . Q > z > emailMe.〈z〉 | emailMe.〈“news item”〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 18 / 27

CaSPiS in a nutshell. . .

Pipeline. . .

Values returned by a session can be used to start new activities. This is
achieved using the pipeline operator:

P > x̃ > Q .

A new instance of process Q is activated each time P emits a value.

r . 〈“news item”〉↑Q > z > emailMe.〈z〉

↓

r . Q > z > emailMe.〈z〉 | emailMe.〈“news item”〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 18 / 27

CaSPiS in a nutshell. . .

Pipeline. . .

Values returned by a session can be used to start new activities. This is
achieved using the pipeline operator:

P > x̃ > Q .

A new instance of process Q is activated each time P emits a value.

r . 〈“news item”〉↑Q > z > emailMe.〈z〉

↓

r . Q > z > emailMe.〈z〉 | emailMe.〈“news item”〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 18 / 27

CaSPiS in a nutshell. . .

Pipeline. . .

Values returned by a session can be used to start new activities. This is
achieved using the pipeline operator:

P > x̃ > Q .

A new instance of process Q is activated each time P emits a value.

r . 〈“news item”〉↑Q > z > emailMe.〈z〉

↓

r . Q > z > emailMe.〈z〉 | emailMe.〈“news item”〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 18 / 27

Encoding CaSPiS in SOAM

The translation of CaSPiS relies on of two functions:

net, that returns the SOAM network associated to a process P;

prg, that returns the static program associated to a process.

Function net takes the references to the three queues used for identifying:

the session used for retrieving input messages;

the session used for delivering output messages;

the session used for returning messages.

These queues are referenced in prg(P) by variables m−1 , m+
1 and m2.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 19 / 27

Encoding CaSPiS in SOAM

The translation of CaSPiS relies on of two functions:

net, that returns the SOAM network associated to a process P;

prg, that returns the static program associated to a process.

Function net takes the references to the three queues used for identifying:

the session used for retrieving input messages;

the session used for delivering output messages;

the session used for returning messages.

These queues are referenced in prg(P) by variables m−1 , m+
1 and m2.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 19 / 27

Encoding CaSPiS in SOAM

The translation of CaSPiS relies on of two functions:

net, that returns the SOAM network associated to a process P;

prg, that returns the static program associated to a process.

Function net takes the references to the three queues used for identifying:

the session used for retrieving input messages;

the session used for delivering output messages;

the session used for returning messages.

These queues are referenced in prg(P) by variables m−1 , m+
1 and m2.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 19 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Sessions:

A pair of queues (r+, r−) is associated to each session r :

net((νr)P, ri , ro , rr) = (νr+)(νr−)(net(P, ri , ro , rr)|r+ : ∅|r− : ∅)

Process executed within session rp retrieves messages from rp, sends
messages in rp and returns values to ro :

net(rp . P, ri , ro , rr) = net(P, rp, rp, ro)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 20 / 27

Encoding CaSPiS in SOAM

Service definition and invocation:

These are directly mapped to SOAM service synchronization
primitives where input and output queues are created after a
synchronisation, while the return is performed in the current out
queue:

net(a.P, ri , ro , rr) = 〈m2 7→ ro ` offer(a, 〈m+
1 ,m

−
1 〉, prg(P))〉

net(a.Q, ri , ro , rr) = 〈m2 7→ ro ` invoke(a, 〈m−1 ,m
+
1 〉, prg(Q))〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 21 / 27

Encoding CaSPiS in SOAM

Service definition and invocation:

These are directly mapped to SOAM service synchronization
primitives where input and output queues are created after a
synchronisation, while the return is performed in the current out
queue:

net(a.P, ri , ro , rr) = 〈m2 7→ ro ` offer(a, 〈m+
1 ,m

−
1 〉, prg(P))〉

net(a.Q, ri , ro , rr) = 〈m2 7→ ro ` invoke(a, 〈m−1 ,m
+
1 〉, prg(Q))〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 21 / 27

Encoding CaSPiS in SOAM

Service definition and invocation:

These are directly mapped to SOAM service synchronization
primitives where input and output queues are created after a
synchronisation, while the return is performed in the current out
queue:

net(a.P, ri , ro , rr) = 〈m2 7→ ro ` offer(a, 〈m+
1 ,m

−
1 〉, prg(P))〉

net(a.Q, ri , ro , rr) = 〈m2 7→ ro ` invoke(a, 〈m−1 ,m
+
1 〉, prg(Q))〉

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 21 / 27

Encoding CaSPiS in SOAM

Pipeline:

Values produced by P are stored in a fresh queue rt . A process
continuously retrieves values from rt and executes a copy of Q:

net(P > x̃ > Q, ri , ro , rr) =
(νrt)(net(P, ri , rt , rr)|rt : ∅
〈m+

1 7→ ro ,m
−
1 7→ ri ,m2 7→ rr `

while true do in(rt , (?̃x .fork(prg(Q), skip)))〉)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 22 / 27

Encoding CaSPiS in SOAM

Pipeline:

Values produced by P are stored in a fresh queue rt . A process
continuously retrieves values from rt and executes a copy of Q:

net(P > x̃ > Q, ri , ro , rr) =
(νrt)(net(P, ri , rt , rr)|rt : ∅
〈m+

1 7→ ro ,m
−
1 7→ ri ,m2 7→ rr `

while true do in(rt , (?̃x .fork(prg(Q), skip)))〉)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 22 / 27

Encoding CaSPiS in SOAM

Pipeline:

Values produced by P are stored in a fresh queue rt . A process
continuously retrieves values from rt and executes a copy of Q:

net(P > x̃ > Q, ri , ro , rr) =
(νrt)(net(P, ri , rt , rr)|rt : ∅
〈m+

1 7→ ro ,m
−
1 7→ ri ,m2 7→ rr `

while true do in(rt , (?̃x .fork(prg(Q), skip)))〉)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 22 / 27

Encoding CaSPiS in SOAM

Pipeline:

Values produced by P are stored in a fresh queue rt . A process
continuously retrieves values from rt and executes a copy of Q:

net(P > x̃ > Q, ri , ro , rr) =
(νrt)(net(P, ri , rt , rr)|rt : ∅
〈m+

1 7→ ro ,m
−
1 7→ ri ,m2 7→ rr `

while true do in(rt , (?̃x .fork(prg(Q), skip)))〉)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 22 / 27

Encoding CaSPiS in SOAM

Pipeline:

Values produced by P are stored in a fresh queue rt . A process
continuously retrieves values from rt and executes a copy of Q:

net(P > x̃ > Q, ri , ro , rr) =
(νrt)(net(P, ri , rt , rr)|rt : ∅
〈m+

1 7→ ro ,m
−
1 7→ ri ,m2 7→ rr `

while true do in(rt , (?̃x .fork(prg(Q), skip)))〉)

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 22 / 27

Encoding CaSPiS in SOAM

Theorem (Completeness)

If P→Q then net(P)→∗≡ net(Q).

Theorem (Correctness)

If net(P)→∗ M then either M ≡ net(Q ′) or there exists k > 0 s.t.
M→ . . .→︸ ︷︷ ︸

k

≡ net(Q ′) and P →∗ Q with Q ≡ Q ′.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 23 / 27

Encoding CaSPiS in SOAM

Theorem (Completeness)

If P→Q then net(P)→∗≡ net(Q).

Theorem (Correctness)

If net(P)→∗ M then either M ≡ net(Q ′) or there exists k > 0 s.t.
M→ . . .→︸ ︷︷ ︸

k

≡ net(Q ′) and P →∗ Q with Q ≡ Q ′.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 23 / 27

Encoding CaSPiS in SOAM

Theorem (Completeness)

If P→Q then net(P)→∗≡ net(Q).

Theorem (Correctness)

If net(P)→∗ M then either M ≡ net(Q ′) or there exists k > 0 s.t.
M→ . . .→︸ ︷︷ ︸

k

≡ net(Q ′) and P →∗ Q with Q ≡ Q ′.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 23 / 27

Outline. . .

1 Motivations

2 SOAM: Service Oriented Abstract Machine

3 Implementing Service Calculi with SOAM

4 Concluding Remarks

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 24 / 27

Conclusions. . .

We have introduced SOAM, a service oriented abstract machine that
can be used to implement service oriented calculi.

SOAM provides low-level primitives for programming service oriented
applications.

Queues are used for modelling persistent and protected
communication lines.

We have used the proposed machine to implement three very different
formalisms for service specification: the Session Language (SL),
CaSPiS, and Orc.

For all of them we have proved that the proposed implementation is
operationally correct (sound and complete).

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 25 / 27

Conclusions. . .

We have introduced SOAM, a service oriented abstract machine that
can be used to implement service oriented calculi.

SOAM provides low-level primitives for programming service oriented
applications.

Queues are used for modelling persistent and protected
communication lines.

We have used the proposed machine to implement three very different
formalisms for service specification: the Session Language (SL),
CaSPiS, and Orc.

For all of them we have proved that the proposed implementation is
operationally correct (sound and complete).

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 25 / 27

Future work. . .

We plan to investigate the extensions that are needed to deal with
more advanced features of service oriented computing such as

I controlled service closures,
I compensations,
I multiparty synchronization.

We plan to provide a complete prototype implementation of our
machine.

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 26 / 27

Thank You

M. Loreti (DSI@FI) Provably correct implementations of services TGC08 27 / 27

