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s Motivations: graphical modeling of process calculi (& other)
s A graph algebra as “intermediate language”
s Axiomatization of NR-graphs (graphs + nesting and restriction)
s Example: Encoding Ambient Calculus processes

s This works for the static part of several calculi
s Extending the general approach to dynamics

s Encoding NR-graphs into Term Graphs: soundness,

completeness and surjectivity on well-scoped term graphs
s Encoding Ambient Calculus rules as Term Graph rules

s \What remains to be done... 2



Motivations: Graphs are everywhere

Use of diagrams / graphs is pervasive to Computer Science
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Graph-based approaches

Some key features of graph-based approaches

help to convey ideas visually
ability to represent in a direct way relevant topological features

to make "links", "connection", "separation”, ... explicit

ability to model systems at the “right” level of abstraction
representing systems “up to isomorphism”

irrelevant details can be omitted (e.g. names of states in
Finite State Automata, names of bound variables)

important body of theory available
Graph transformation approaches
* DPO, SPO, SHR, ...
Theory of parallelism/concurrency, unfolding, ...
Verification and analysis techniques
Tools available



Encoding process calculi and the like:
From algebraic to graph-based syntax

Algebraic

> Terms elements
alb

» Operations vocabulary
Jo WX W—W

» Axioms equivalence
x|y=ylx

» Rewrite rules dynamics
a—D>Db

Goal: sound and complete encoding:
gven terms t and s,
[[t]] isisomorphicto [[s]]
iff
t and s are congruent

Graph-based
» Graphs (diagrams)
flat, hierarchical, etc.

» Graph compositions
Union, tensor, etc.

» Homomorphisms
isomorphism, etc.

» [ransformation rules

o ———




Main complication: the representation gap

Definition 15 (processes). Lot & be oo set of names, A process P ois o ferm

enerated by Hhe syntos
Pou= 10 A ()P | PP
M M+M | AP

Definition 15 {processes). Let i be o set of names. A process 7 s o term

urvere da, & £ et f'lll"-l' ll-'-'l'

grammar, structural
congruence, etc.

where a,b & ¢

very different syntax!

Definition 22 (bigraph) adjacency matrlx? P = Vet GT.GM) T T
where: I = {m, X} and t u p |ES SEtS ch combining a wideh (a finite
' 1

nridi e _ . v

| Definition 7 . wphisms ). A hypergraph & is

each _ ) h . T .

and 3 a triple {Eq;. morp ISMS f edges, Nypois the set of nodes,

H.'.'Hf Tf; : F,'{,' — . -
Let G, H be hypergraphs. A (hypergraph) morphism £ : G — H is a pair of

functions fr: Eq — Ey. fn : Nep — Ny preserving the tentacle function.




The proposed solution:
graph algebras as intermediate language

Definition 156 (processes). Lot & be o set of names, A process P s o term

generated by Hhe syates SI ml |ar Synta}(

/o= ) (b} | PF

Ao M+M | AP E "E
Definition 17

wevats ewenid v SOlUTION: graph algebras

Al = §LED: if a € fn(P)

. Lt ”I!r“'lf B {{';“I,-. v, @idp) o | P15/, I-“{r},_,‘- ath e se
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[Le 8|5 = n1denl £ Fad nar) [t7.£ )5 = outi jni| L5 )
[P | Qf = par, ([P[5, []5) [i{y).F]; = in; 5 [lf’{‘“ [kl
[0]% = nil, [M + N|2 = choiceg{[M]5. [V]5 J
Definition 22 (bigraph)
where: I = {m, A and J
ordin .. 4. |
cach | Definition 7

and 3 a triple (Eq. N te) such that E¢ is the set of edges, Neyois the set of nodes,
and te 2 Eq — NY is the tentacle function.
: € ororanhe. A (haroeres ohism £ 1 O R one to one
Let G, H be hypergraphs. A (hypergraph ) morphism §: G — H is a pair of
functions fi @ Eq; — Ep, fan 1 Nop — Ny preserving the tentacle function.




From graphs to graph algebras

Start with a given class (category?) of graphs
Define an equational signature,
= operators correspond to operations on graphs
= axioms describe their properties

Prove once and for all soundness and completeness of the
axioms with respect to the interpretation on graphs, as well
as surjectivity

Next, you can safely use the algebra as an alternative, more

handy syntax for the graphs




Graphs with nesting and restriction (NR-graphs)

Hypergraphs where
— hyperedges may contain nested graphs
— nodes can be global, globally restricted, or locally restricted
— locally restricted nodes cannot be accessed “from outside”
— isomorphisms preserve names of free nodes

X
Ik_sjl

| i




NR-graphs: the formal definition
[for Fernando only...]

Definition 1 (NR-graphs). An NR-graph G € NR-Graph is a tuple G =
(FFN,GR, H), where FN is a set of free nodes, GR is a set of globally restricted
nodes with FN NGR =0, and H € NR-Graph[FN UGR]. The set of global
nodes of G' is given by FN UGR.

An NR-graph H with external nodes X, H € NR-Graph|X], is a tuple
H = (LR,E.l,c,p), where LR is a set of locally restricted nodes (satisfying
LRNX = 0), Fis a set of (hyper-)edges, 1: E — B labels each edge with
an element of B, ¢: E — (X U LR)* is the connection function (satisfying

T(c(e)) = rnk(l(e)) for alle € E), and p: E — NR-Graph|X U LR] maps each
edge to a graph nested within 1.
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The Algebra of Graphs with Nesting - AGN:
syntax, some terms, and the denoted graphs

G =0 |z:s5 | bG|@W) |[[GIG | (vx:5)G | (px:s)G

[ net =] net
x® [=I'st - st \;@z X@ -llst ~  [Fst bz
N A -




The Algebra of Graphs with Nesting: Axioms

Gu=0|2:5|bG@ | G|G| (ve:95G | (nz:5)G

GIH=H|G (A1)
GIH|T)=(G|H)I (A2)
G|0=G (A3)
(wiz:s)(wry:t) G=(way:t)(wix:8)G ife:sF#y:t (Ab)
(wx:8)0=(wx:s)r:s (A5)
G|l(wx:sH=(wax:s)(G|H) if v:s € fn(G) (A6)
(wa:s)G=(wy:s)(G{" [us}) ify:s & n(G) (AT)
vz )G = (vr: G ifz:sE s (A8)
r:s|G=G if x:s € fn(G) (A9)

bz s | G(F) =z : s | BGI®) (AL0)

-
N




From terms of AGN to NR-graphs, informally
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Properties of the axiomatization

The axiomatization of NR-graphs is sound, complete
and surjective

An AGN term and the corresponding NR-graph:

(v y)net[st(x,y) | (i 21,22, 23)(st(z3,21) | st(z1,22) | st(z2,23) |
net[ (p za)( st(z2,z4) | st(za,23)) |(22) ) ()

i

net
het

=Ist

=Ist )




The simplest example: encoding the
Ambient Calculus as AGN terms

The syntax of the Ambient Calculus:

P a=0| (wn)P | P|P | M.P | n|[P]
M = inn | outn | openn

box labels: “[ ]° for ambients; M.P for each process M.P

[o] = 0
[M.P] " M.P[0](fn(]M.P))
[n[P]] = [][[P]](n)

[P Q= [P][Q]
[(vw)P]T= (vw)[F]

We get automatically a representation of processes
as NR-graphs

15



But what about the dynamics?

Reduction rules for the Ambient Calculus

(1) nlin m.P | Q] | mR] = m[n|[P | Q]| R (Red In)
(2) mnjout m.P | Q|| R| = n|P | Q]| mR] (Red Out)
(3) openn.P | n|Q] = P | Q (Red Open)

A graphical intuition:

i m

16




The in-rule, seen as pair of NR-graphs

ninm.P | Q]| m|R|] = m|[n|[P | Q] | R] (Red In)

nm
(OICROE)
= VI
= [lf":
|| R
- L___Z]
jQ j(__;
NR-graph rewriting needs to be formalized:
— roleof R, Qand P - definition of matching?
— meaning of [[P]] - what is preserved?
— rule or rule schema®? - applicability?

17




Defining NR-graph rewriting:
possible approaches

Define from scratch rules, matches, rewriting (e.g. according
to DPO approach), identify conditions for parallel/sequential
Independence, prove results about parallelism...

Show that NR-graphs, equipped with suitable morphism,
form an adhesive category (or a variation of it) and exploit
general results.

Embed NR-graphs into a known category of graphs, and
work there, exploiting the existing results...

— we embed NR-graphs into Term Graphs
* many-sorted terms with sharing

* acyclic hypergraphs (edges labeled by
operators) with node indegree <= 1

— It is a quasi-adhesive category, but the interesting
results are not very interesting...
18




Encoding NR-graphs into Term Graphs

Basic idea: add a new node sort for locations

— every hyperedge and locally restricted node is
attached to a location

— every hyperedge offers a location (its interior)
— locations form a tree

We exploit an existing axiomatization of Term Graphs, as
arrows of gs-monoidal theories.

AGN(S,B)/=, < > NR-Graphs over (S, B)

Sec. 4£ Sec. 5£
[10]

GS(LE) 4 » Term Graphs over L'

19



GS-monoidal theory: an
axiomatization of term graphs

feXus T = uesS" ue S8
op) ——— id) —— bang) —— du
{pjf:u—>s ( )'f-du:H—PH ( g} T — € (dup) Vau:iu— un
_ u,v € 8S* tru—v t:v—w t:u—v t:u —
[‘._-.}’]Tj} . (seq) T {pzu"} o fF ' '
Pup UV — VU bt ru— w ftet run — vo

Definition 11 (gs-monoidal theory). Given a signature X over a set of sorts
S, the associated gs-monoidal theory GS(X') is the category whose objects are the
elements of 8%, and whose arrows are equivalence classes of gs-monoidal terms,
i.e., terms generated by the inference rules in Fig. 6 subject to the following
con — identities and sequential composition satify the arioms of categories:
lidentity] id,;t=t=1t;id, forallt:u— v;
lassociativity] 1 (fo;ts) = (1 : ta) ; ta whenever any side is defined,
— ® is a monoidal functor with unit id., i.e. it satisfies:
functoriality] id,, = id, ® id,, and
(t1®ta); () @t5) = (tl ;1) @ (te ; 1) whenever both sides are defined,
‘monoid] t®id. =t=id. @t t1 @ (ta Rt3) = (1 R ta) R t3
— p is a natural transformation, i.e. it satisfies:
maturality] (t®@t'); ppo = puw ; (@) forallt :u—vandt' 1u' — v
and furthermore it satisfies:
[Synunetry] {idu & .Dv._u') ) (pu,w & ldt} = Pu@uv,w Puyv 3 Pou = idu’é@i’
Peu = Pue = ?r'du
— V and ! satisfy the following arioms:
unit] . =V, =1id,
[duplication] V,; (id,@V,)=V,;(V,®id,) Vi (id,®!,) = id,
vu y Puu = vu
'monoidality] V., ; (id, ® p, , ®id,) =V, @V, luw =lu @,

!

20



Encoding AGN into Term Graphs

Inductive encoding from AGN terms to gs-monoidal terms

- [[OHU_[OT(G}:.;T(O')%E
— [2:5]6 = [le.7(0)] 1 @, T(0) — €
- [[G‘G,ﬂcr:[ .Tcr):| [[G:[IO'®[[GI:|]O-. T(0) — €

o [[(l/ £ S)GHU — [idO,T(U) '8) yS} 3 [[G{y:s/:r:s}ﬂa,y:s : .:T(U) — €
where y: s = freshg(x:s,0)

— [(nx:5)G]o = [(Ve i ide @ p1s) @ idr(5)] i [G1Y" /05t yiso : @.T(0) — €
where y: s = freshg(x:s,0)

21
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Encoding AGN into Term Graphs, graphically




Encoding AGN into Term Graphs, graphically
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Properties of the encoding

Correct
Complete
Surjective onto well-scoped term graphs

A badly scoped term graph:
edge st accesses a node locally
restricted in a sibling edge net

24



But what about the dynamics?

Reduction rules for the Ambient Calculus

(1) nlin m.P | Q] | mR] = m[n|[P | Q]| R (Red In)
(2) mnjout m.P | Q|| R| = n|P | Q]| mR] (Red Out)
(3) openn.P | n|Q] = P | Q (Red Open)

A graphical intuition:

i m

25




Back to the Ambient Calculus in-rule

ninm.P | Q]| m|R|] = m|[n|[P | Q] | R] (Red In)

nemo
(OIOXOXT)
JERENE
= |
. ||| R
2 8
— —

Let us translate it into term graphs
26




The in-rule, seen as Term Graph rule

ninm.P | Q]| m|R|] = m|[n|[P | Q] | R] (Red In)

n m n m K

seb0 06 ebde o
. . o
. i
.\ .......... @ — Q.0 —
""""""""" e I S
— e
- | /preaian |
o A
A -

o >

The more formalized framework allows to
— identify the parts of the state that are preserved

— give a precise meaning to R and Q 07




Ongoing work

Prove that the encoding of Ambient Calculus rules is correct
— well-scopedness is preserved
— rewrite steps are one-to-one with reductions

|dentify conditions on rules/matches that allow for the
parallel application of rules, and thus for unfolding...

— known results are too weak

* Term Graphs are quasi-adhesive, but regular
monos

— are monos which preserve “variables”
—you cannot even modelrule all b

— look for weaker conditions of applicability of Church-
Rosser theorem

* characterization of Van Kampen squares in

Term Graphs
28




Conclusions

A methodological approach for the graphical representation
of process calculi and other computational formalisms

Static part: Using graph algebras as intermediate language
— Correct and complete@kiomatization of class of
graphs with gestng and restriction
— Encoding ofserecess terms into the graph algebra
— Applied to Tacalculus, Sagas, CaSPisS,...

Dynamics: Encode NR-graphs into Term Graphs

— Characterize conditior@or parallel application of
rules [existing o@f aré too weak

— Exploit Concurr‘ait sefantics of graph rewriting
. unfo&ding echniques
* analysts and verification

29
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