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Abstract. The algebraic models of computation for contextual nets that have
been proposed in the literature either rely on non-free monoid of objects, or in-
troduce too many behaviors that must be somewhat filtered out. In this report, we
exploit partial membership equational logic to define a suitable theory of mod-
els, where the meaningful concurrent computations can be selected by means of
membership predicates.

1 Introduction

Thanks to their friendly formulation as multiset rewrite systems and to their graphical
presentation, Petri net2324] are an appealing formalism for the specification and
study of concurrent and distributed systems: states constskehdistributions over

the set ofplacesandtransitionscan atomically fetch the tokens in their presets and
generate new tokens according to their postsets. In particular, several transitions can
execute concurrently when they work on mutually disjoint sets of tokens.

Nets with read arc<20] (also introduced separately with different names, such as
contextual netsd2], nets with test arcs7], and nets with activator arc44]) encom-
pass a non-destructive reading operation not present in the basic Petri net model. In
fact, read arcs allow multiple concurrent readings of the same resource, an operation
whose need arises naturally in many distributed systems, while ikie eaacoding of
read arcs as self-loops in ordinary Petri nets serializes all the accesses to read tokens
with a dramatic loss of concurrency. Nets with read arcs have been used to model a
variety of applications, such as transaction serializability in databa@sgspncurrent
constraint programminll], asynchronous systeni&d], and analysis of cryptographic
protocols ).

As a drawback, the presence of read arcs introduces some complication in the math-
ematical characterization of computations, leading to the study of suitable extensions
of well-studied domains and models for Petri nets. Extensions of this kind include: the
asymmetric event structures df|[the match-share categories @fl], and the monoids
of places proposed iiLE] and fully developed in6] and 2Q].

* Research supported by the IST ProjectLE and by the Italian MIUR ProjectOMETA. The
first author is also supported by an Italianr fellowship on Information Sciences and Tech-
nologies, and by the Computer Science Dept. of the Univ. of lllinois at Urbana-Champaign.
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In this paper we extend the so-called “Petri nets are monoids” approach initiated
in [17] to find a functorial characterization of the monoidal category of concurrent com-
putations. In particular, we improve upchl], where such computations were shown
to be faithfully embedded in a large, freely generated category. Our approach is to de-
fine a typing discipline — expressed by membership predicates in partial membership
equational logicl16] — that characterizes in that category the valid computations, dis-
tinguishing them from garbage expressions.

Structure of the paper

In Sectior2 we summarize the techniques used for defining functorial models for Petri
nets. Sectio describes the technical problems arising when extending the approach to
nets with read arcs, and Sectidpresents our solution. Sectibigives our conclusions.

2 On the algebraic semantics of Petri nets

Petri netsare one of the most studied models for concurrency, thanks to their natural
representation of concurrent and distributed systems based on multiset rewriting. Their
flexibility has encouraged many different semantical interpretations. In particular, an
overall distinction can be drawn betweeallectiveandindividual token philosophies

(see, e.g.,12]). According to the collective token philosophgTph), net semantics
should not distinguish between different tokens in the same place, because any such
token isoperationally equivalento all the others. The individual token philosophy
(ITph) relies instead on the observation that the different origins and histories that each
token has must be accounted for, because choosing different tokens can make an event
causally dependent on different past events, and causal dependencies may influence the
degree of concurrency in the computations. In the classical example below, for instance,
aftertg andt; have fired, a firing of will appear as caused by one of them, according

to which of two tokens irt is consumed. Also, two instancestahay fire concurrently

that only differ in their causal histories.

a®Hto

oo
b(e)—lt1

The “Petri nets are monoids” approadY]is an algebraic approach to the analysis
of concurrent net computations based on the observation that the monoidal structure
of markings can be lifted to transitions (and then to computations), in such a way that
the suitably axiomatized terms of the new algebra yield an initial model for the concur-
rent semantics of the nets according to @wph. This construction respects the intu-
itive simulation morphismbetween nets, when these are seen as graphs with structured
nodes, as it can be expressed as a fun€ténom the categoryPetri of place/transitions
(pT for short) nets (as objects) and simulation morphisms (as arrows) to the category




Functorial models for contextual pre-nets 3

CMonCat of strictly symmetric strict monoidal categories (as objects) and symmetric
monoidal functors (as arrows). Moreover, the funcfois the left adjoint to an obvious
forgetful functor from the full subcategory @MonCat consisting of categories whose
set of objects is a free monoid.

Note that thefunctorial character of the construction is important for at least two
reasons: (1) working within categories, we make explicit the assocrateghisms
which correspond to appropriate notions of “simulation” or “refinement” between nets;
(2) functors act on objects and behave consistently on their simulation maps, preserving
them. Furthermore, when functors a@jointsthey preserve limits or colimits, yield-
ing good compositionality properties, since complex models can ofter be expressed as
(co)limits of their simpler constituent8(].

Since the publication ofll7], several studies have extended the functorial construc-
tion from the CTph towards thelTph [10,19/27]. Building on the notion ofprocess
presented inl3], the idea has been to take semantic models in the categsgpnohet-
ric monoidal categoriesBut all the constructions proposed lacked functoriality. The
difficulty in dealing with thelTph is that net morphisms iRetri allow replacing two
different tokensa andb in the source net by, say, the same token the target net. In
this way, an ambiguity about the origin ofis introduced that confuses causal histo-
ries in the target net and makes a functorial treatment impossible. A first solution was
proposed in27] based on pseudo functors (see alsg]).

In [4], we introducedore-nets which are more suitable thaT nets to be given a
functorial semantics according to theph. A pre-net is essentially an implementation
of aPT net, where the abstract data structure of multisets is refined into a more concrete
string structure, and where each transitionu — v is simulated byone arbitrarily
fixed, linear implementatiofyy: U — v for some linearizationsi andv of u and v
Although resorting to pre-nets (insteadraf nets) might at first appear unnatural to net
enthusiasts, our formal approach to thgh benefits from several good properties:

— All the pre-net implementations of the same net share the same semantic model,
i.e. the semantics is independent of the choice of linearizations.

— Algebraic models of pre-nets are freely generated and, as part of adjunctions, pre-
serve colimit constructions, allowing a form of compositional reasoning.

In [4] it is shown that the construction can be conveniently expressed at the level of
algebraic theories of the forfX, E), rather than at the level of their categories of mod-
els, i.e. of(Z,E)-algebras. Essentially, HETRI is the theory ofPT nets andCMONCAT
is the theory of strictly symmetric monoidal categories, then there is a theory mor-
phism formPETRI to CMONCAT that induces a forgetful functor between the category
of CMONCAT-algebras (i.e., strictly symmetric monoidal categories) and the category of
PETRI-algebras (i.e.pT nets). The left-adjoint to this forgetful functor is the free con-
struction that associates to eaehnet the strictly symmetric monoidal category of its
concurrent computations. In such category, objects are the markings of the net, arrows

1 We observe, lest confusion arises, that pre-nets differ sharply from phrase-structure grammars,
because pre-nets do not distinguish between terminal and non-terminal symbols, and strings
can be permuted before performing any step. Grammars only generate monoidal categories,
with no symmetries.
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are computations, (arrow) composition models progression in time of a computation,
while tensor product accounts for concurrent activities. For instance, in the example
above tp;t represents the sequential executiorigadndt, while to ® t; stands for the
concurrent firing oty andt;. In the individual token philosophy, the strict symmetry
— characteristic of the collective token interpretation — must be given up to model the
causal flows of tokens in computations. The order of transitions in a parallel composi-
tion, sayto ®t1, determines the order of tokens “in the output” and, consequently, the
causal connections to the activities that may follow. For instaftgeyt; ) ; (t®idc) rep-
resents the computation whergepends causally dg (that is, it consumes the instance
of ¢ generated by that transitions). We are allowed to exch&ngedt; in the tensor
product only if we keep track of this and maintain the correct order of output tokens, as
e.g.in(t1 ®tp);y; (t®id¢), for y the swap symmetry oo® c. (A thorough discussion
and the details are given, e.g., Bf], but see alsc10,19].) As explained above, we can
relate the theorPRENETS of pre-nets(where pre- and post-sets of transitions are taken
in the free monoid of places instead than in the free commutative monoid) to the theory
SMONCAT of symmetric monoidal categories (details/4)[

The above-mentioned theories can be conveniently expresgeattinl member-
ship equational logigPMEQqtl, see [1L6/18] for self-contained presentations), taking
advantage of membership predicates and subsorting to model objects as a special kind
of arrows (the identities), and of partiality to model sequential composition, defined
only if the codomain of the first arrow coincides with the domain of the second arrow.
Moreover, the notion of tensor product of theories allows a more modular presentation
of concepts; for example, we can define the theory of monoidal categories as the tensor
product of the theory of monoids and that of categories.

3 Atoms, electrons and match-share categories

The extension of the approach to nets with read arcs has been considesp¢fu
version in B]), by relying on non-free monoids of objects, and1d]; exploiting match-
share categories in place of symmetric monoidal categories.

Regarding b], the idea is to model each tokenas anatomthat can emit “neg-
ative” particlesa” (electron$ while keeping track of their number, i.e., as suggested
in [15], we have that for alk e N, a= ak® ®}‘=1a', whereaK represents an atom that
has released exactly particles to the environment. Then, by replacing context arcs
on a with self-loop arcs ora”, we obtain an axiomatic construction of the monoidal
category of concurrent net computations. The approach]afdals satisfactorily with
both the collective and the individual token philosophy; possibly, a remaining concern
is that non-free monoids of objects sit uneasily with the traditional intuition of tokens
as atomic pieces of data that one should not be able to decompose. The problem with
the construction in11] is instead that the freely generated model of computations has
too many arrows, representing computations that contextual nets will never be able to
perform.

In this paper we improve upoil] by selecting suitable theories in partial mem-
bership equational logic in order to distinguish ‘good’ arrows — corresponding to com-
putations — from meaningless ones.
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ops d() c(): Arrow -> Object. *** domain and codomain

op _®_: Arrow -> Object. ** monoidal product

op e : Object. % unit of _®-

op _;_ . *** Arrow composition (partial op.)

op V(. ): Object Object -> Arrow. *** symmetric natural transformation

Fig. 1. Operators irBMONCAT.

We refer the reader to the appendix df for the essentials of partial membership
equational logic. Instead, for the reader’s convenience, we summarize in ApjEndix
the description of the theories of monoids, categories, monoidal categories and symmet-
ric monoidal categories. Here we just remark tBAONCAT includes two sorts called
Object andArrow (with Object a subsort ofirrow, written Object < Arrow), and
six operators (see Figud satisfying the axioms of symmetric monoidal categories.

The idea presented iil]] is to model multiple concurrent readings by introduc-
ing in the class of net computations suitable transformations that take care of creating
as many copies as needeshdringphase) and then reassembling all copies after the
reading (natchingphase). These two transformations are called duplicators and co-
duplicators and are denoted byandA respectively. It is worth observing that they are
“non-natural”, in the technical sense that the naturality axidmél = 0O; f ® f and
A; f=f®f;Adonothold.

The theory of match-share categories is summarized in FRjdiiee right-hand side
of the figure gives a pictorial representation of the main axioms of the left-hand side.
The first group of axioms expresses the coherende, @ind the second that & The
third group of axioms states how the two transformations interact together. If we look at
O(a) as a wiring establishing two connections between the objécthe domain and
the occurrences @ in the codomain, and dually fdx(a), the last two axioms say that
the multiplicity of connections is not important, and that the connections work in both
directions, i.e. it is not important how objects are connected but just the fact that they
are connected by an undirected path of wiring.

The theory of match-share categories is a conservative extension of the theory of
symmetric monoidal categories and therefore the construction between (pre-)nets and
symmetric monoidal categories can be straightforwardly extended to match-share cate-
gories. For modeling read arcs, the idea is to first view read arcs as self-loops (i.e. pairs
of inbound and outbound arcs), so that a transitiom — v from u to v in contextw is
regarded as an ordinary pre-net transitidn u®@w — v®@w, and then apply the free
construction to the resulting pre-net, building a match-share category of computations.
The special role ofv — a “context” marking represented as an ordinary one — is dealt
with by copyingl and matchind\. This however generates arrows that do not represent
admissible computations of the net. The construction is not resource-conscious, and the
distinction between read arcs and pre/post-sets is lost, since each token can be matched
and shared in all possible ways.

On the other hand, once we replace read arcs with self-loops, we can form the free
symmetric monoidal category of computations of the pre-net. Such category distin-
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fth MSCAT is /'\ /'\
including SMONCAT. SR = T
ops O() A() : Object -> Arrow. oy N
vars a b : Object. ’

J A
eq d(O() = a > i
eq c¢(0@) = a ®a Y
eq OE) = e A : : A
eq Dfacb) = (0@ =0b)@ oyab) wb). NNy
eq O@);( 0@ ®a) = O@;a «O@). \B/ \B/
eq O(); y@a) = 0O@). ) )

Sy
eq d(AQ@) = a ®a >< _ '\A/
eq c¢(A@) = a 2/ .
eq Ae) = e. :
eq Ala®b) = (a ®y(b,a) «b)( A@) ®A(b))
eq (A@) ®a); A@) = (a ®A@); Aa). 7N\
eq Vv@a); A@ = A@). '\A/' -
eq O(a); A(@) = a
eq Af@); U@ = (@ o0@)( Al ®a) \B/ \ /o\
endfth = A
/o\ \&/ |

Fig. 2. Theory of match-share categories.

guishes arrows that represent the same concurrent computation, in that the construction
enforces sequentialization of all multiple readings of the same resource. For instance,
if t: a—> b, the fact that can fire two concurrent instances fr@ a® ¢ will not be
reflected. However, the monoidal and the match-share category can be combined via a
mapping from the former to the latter that: (1) identifies all computations that are distin-
guished because of the order in which multiple readings are performed; and (2) selects
only the admissible computations of the net with read arcs.

Definition 1. LetR be a pre-net with read arcs and IR denote the pre-net with the
same places aR and transitions{[t]: U W — voWw |t: U —— v e R}. Let S([R))
be the free symmetric monoidal category generatefRbgnd letMS([R]) be the free
match-share category generated [i}. The symmetric monoidal funct@: S([R]) —
MS([R)) is defined on generators by:

a
Z([t) & (ue Ow); (It @ W); (Ve Aw)

g

for any placea and transitiont: u —— v e R.



Functorial models for contextual pre-nets 7

fth RAUT is including MON.

sort Rtrans.

subsort Monoid < Rtrans.

ops pre(_) post(_) ctx() : Rtrans -> Monoid.
var u : Monoid.

eq pre(u) = e.

eq post(u) = e.

eq ctx(u) = u.

endfth.

Fig. 3. Theory of read-automata.

Proposition 1 (cfr. [11]). The imageE(S([R])) € MS([R]) is isomorphic (via a sym-
metric monoidal functor) to the category of concatenable contextual procesBes of

The question that then arises is how to tell whether an arrdWSifR]) belongs to
E(S([R])). We answer this by reformulating the construction at the level of theories in
partial membership equational logic, thus expressing a typing discipline for discarding
all meaningless arrows froMS([R]) and keeping all the good ones.

4 Functorial models for pre-nets with read arcs

The first step is to define the theory of “programs,” that is our base category of nets. It
is technically convenient to consider a larger class of nets, whose states are element of a
generic, non-free monoid, as expressed in Fi@.Ehe class of pre-nets with read arcs

is then embedded as the full subclass whose states are free monoids (generated from
the set of places), and the results can be extended via the obvious embedding.

The theonRAUT has three operationsre(- ), post(- ), andctx(- ), that define re-
spectively source, target and (read) context of each read-transitamrans. Idle tran-
sitions are included by the subsorting relatiimoid < Rtrans. SortMonoid comes
from the theonMON of monoids, consisting of a total operatignwhich is associative
and has the constaatas unit (see Figur&Q0in AppendixA).

The second step is to refine the theMBEAT by adding sorts and operators that are
needed to characterize the class of meaningful arrows. Thus, we add twBtsaihs
andRarrow, with Object < Rtrans < Rarrow < Arrow: the sortRtrans is for em-
bedding basic transitions, and the sttrow is for collecting all correct computations.
Among the operators, we add thoseRalIT for source, target and context of basic tran-
sitions. Note that these operators, unlike those for domain and codomain, are not de-
fined for all arrows, but only for the elementsRifrans. Note also that they are related
to the domain and codomain of transitions by the first two equations of the theory. The
main ingredient is the operatak(_ ), which models the embeddirgdescribed above,
namelymk(t) = [t], for any transitiort.

The third step consists in expressing the adjunction between the class of programs
and that of models. This task is accomplished by the trivial embedding mor@vism
expressed in Figuig.
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fth RCOMP is including MSCAT.

sorts Rtrans Rarrow.

subsorts Object < Rtrans < Rarrow < Arrow.
ops pre(_) post(_) ctx() : Rtrans -> Object.
op mk() : Rtrans -> Arrow.

vars h k : Rarrow.

var t : Rtrans.

var u : Object.

mb hxk : Rarrow.

mb  y(u,v) : Rarrow.

cmb hik : Rarrow if c(h) = d(k).

eq pre(t) octx(t) = d(t).

eq post() ®ctx(t) = c(t).

eq pre(u) = e.

eq post(u) = e.

eq ctx(u) = u.

eq d(mk(t) = d(t).

eq (pre(t)  ®0O(ctx(t)));(mk(t) ®ctx(t));(post(t) QA(Ctx(t) = t.

Fig. 4. Theory of read-computations.

view RV from RAUT to RCOMP is
sort Monoid to Object.
endview.

Fig. 5. The viewRV.

Proposition 2. The viewRV is a theory morphism.

Proof. It is trivial to verify that all axioms irRAUT are respected byv. For example,

the sortMonoid is mapped to the sobbject, which has the same monoidality axioms
(because the theoRCOMP includes the theory of match-share categories and hence also
the axioms of monoidal categories). The remaining axioms fixing the behaviour of the
three operationspre(_ ), post(-), andctx(-) on the elements of soMonoid are
present also iRCOMP for the sortObject, whereMonoid is mapped. O

By Propositior2 and because of the properties of theory morphiskak fve know
that there is a right-adjoint forgetful functdiy from the category oRCOMP-algebras
to the category oRAUT-algebras, which includes all pre-nets with read arcs. We denote
by 7zy the left-adjoint going in the opposite direction.

Lemma 1. Given a pre-net with read arcR, its initial RCOMP-algebra Fry(R) is a
match-share category.
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Proof. The free functorfsy guarantees that the elements of gartow of 7y (R) are
built by composing objects, transitions R, symmetries, duplicators and co-duplicators,
together with the additional elemenix(t) for anyt € R. The axioms of match-share
categories are enforced on all the elementsrafow by inclusion of the theoryiSCAT

into RCOMP. O

The fourth and final step is to show that the $artrow can be used to characterize
all meaningful computations &t.

We recall that a lluf subcatego#y of a categonC is just a subcategory having all
the objects ofC.

Definition 2. Given a pre-net with read ardg, we letRarrow(R) denote the lluf sub-
category of the match-share categdfy (R) whose arrows have soRarrow.

Lemma 2. For any pre-net with read arcR, an element has sorRtrans in Fgy(R) if
and only ift is a transition ofR or t is a string of places.

Proof. The only if part follows trivially from the definition of the theory morphisiw.
The if part can be proved by noting th#y (R) is the initial model, and hence the only
membership predicates that can enfarc@trans are those derived from subsorting
(Object < Rtrans). O

Lemma 3. The categorRarrow(R) is symmetric monoidal.

Proof. The fact thatRarrow(R) is a symmetric monoidal category trivially follows
from the definition of the theorfCOMP in Figureld: The subsorting guarantees that

all objects are also arrows; the membership predicates state that thrasoets is

closed under sequential and parallel composition, and that all the symmetries have sort
Rarrow; the axioms for symmetric monoidal categories are inherited from the theory
MSCAT, where they hold for all elements afrow, whichRarrow is a subsort of. 0O

Theorem 1. The categoryMS([R]) is isomorphic (via a match-share functg) to
Trv(R).

Proof. As observed in the proof of Lemnia the match-share categofyy (R) is gen-
erated by composingandmk(t) (for any transitiort) with identities, symmetries and
(co-)duplicators in all possible ways. On the other hand, any expression dfrsott

can be equivalently expressed as the parallel and sequential composition of just the
mk(t)’s with identities, symmetries and (co-)duplicators, because of the equation

eq (pre() 0O(ctx(t)));(mk(t) ®ctx(t));(post(t) RA(Ctx(®)) = t.

that allows replacing all occurrences tofNote that ift = u for some objecu, then
mk(u) = u. Hence the constructaik(_ ) cannot be applied to identities for generating
new arrows. Moreover, no other axioms involvingRtrans are present that could
further quotient out the elements of sattrow.

Let us consider the match-share funcforMS([R]) — Fry(R) sendingt] to mk(t)
(and being the identity otherwise) which is well-defined by initialigh® ([R]). It can
be easily checked that the functsris full and faithful, it preserves symmetries and
(co-)duplicators, and it defines an isomorphism on objects (and thus on arrows).
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Theorem 2. The categoryE(S([R])) is isomorphic (via a symmetric monoidal functor
R)toRarrow(R).

Proof. The functor®_is S restricted toE(S([R])). In fact, suppose that € £(S([R])),

then an arrov € S([R]) must exist such thaE(B) = a. Let Q: S([R]) — Rarrow(R)

be the symmetric monoidal functor sendiftpto t and preserving identities, symme-
tries, sequential composition and monoidal composition. Then it is straightforward that
S(a) = Q(B) and hences(a) has sorRarrow. The functor®_ is an isomorphism be-
cause it is injective on the generators (the transitions of the net) and preserves the oper-
ations of symmetric monoidal categories strictly. a0

Note that the categories(S(|R])) andRarrow(R) are not match-share categories,
and hence the funct®_is not a match-share functor.

Theorem2 defines a typing discipline for selecting the admissible computations
from the larger clasMS([R)). Since, under appropriate assumptic2js fnembership
predicates allow automated verification in languages Nikaide [8], the construction
RV answers to the ambiguity &f.

Note that for the arrows iRarrow(R) only the operations of domain and codomain
are defined, not those involved with contexts. However, the properties of the initial
model can be exploited to factor out the domain and codomain of arroResrirow(R)
into their consumed, read and produced parts. We show this below.

uy Uﬂ F/l Vi
a - a a A a
G UJ @2 87
DX Xy
U — - a a — V2

Fig. 6. A read object for the arrowh.

Definition 3. Leth € Rarrow(R) and leta be an object withi(h) = u; ® a® u and
c(h) = v1 ® a® vy for suitable objectsi;, uy, vi, V2. The objech is saidto be read irh
if h can be written as (cf. Figuré)

(ul ®0(a)® uz) : (ul ®a®y(a, uz)>; (h® a); (vl Ra® y(vz,a)); (vl ®A(a) ®v2>.

Lemma 4. Lett : Rtrans. Then,ctx(t) is read inh.

Proof. Sincet : Rtrans, then

t= (pre(t) ® D(ctx(t))); (mk(t) ®ctx(t)); (post(t) ®A(ctx(t)))

and therefore, by substitutingthe expression

(pre(t) ® D(ctx(t))); (t ® ctx(t)); (post(t) ®A(ctx(t)))
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mk(t)< = mk(t)<

Fig. 7. The proof of Lemm, graphically.

becomes
(pre(t) ® D(ctx(t)));
(((pre(t) ® D(ctx(t))); (mk(t) ® ctx(t)); (post(t) ®A(ctx(t)))) ® ctx(t));
(post(t) ®A(ctx(t))).
By the functoriality of®, we can rearrange the above expression as
(pre(®)® (D(ctx(); (D(ctx(t) @ cex(t)) ) );
(mk(t) ® ctx(t) ® ctx(t));
(post(®)® ((Alctx(t) @ cex(t) );A(cex() ) ).
Then, by coherence af andA we have:
(pre(®)® (D(ctx(); (ctx(t) @ D(ctx(1)) ) ) );
(mk(t) ® ctx(t) ® ctx(t));
(post(t) ((ctx(t) @ Acex(t) ):A(ctx(t)) ) ).
Again, by functoriality of®, we get:
(pre(t) ® D(ctx(t)));
(mk(t) ® (D(ctx(t));A(ctx(t))));

(post(t) ®A(ctx(t))).
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uq w Uz ug w U2 U w Up

E

=

H
=
c
S
=
c
N

O

Vi w U = Vv w U2:E]1 ’@]Z’hl‘

Vi w2 Vi w V2 Vi w V2

Fig. 8. The proof of Propositiol3, graphically.

Finally, by the interaction ofl andA in match-share categories, we have:

(pre(t) ® D(ctx(t))); (mk(t) ® ctx(t)); (post(t) ®A(ctx(t)))

which is of course equal tb The whole proof is graphically illustrated in Figurg
where for simplicity we leti= pre(t), v=post(t) andw = ctx(t). O

The marking read — and not consumed —Hag the maximum marking read by
and it can be characterized as follows.

Definition 4. Leth € Rarrow(R). The arrowhis pureif d(h) = u@wandc(h) =vew,

with (u® O(w)); (h@w); (v® A(w)) = h and no other object i and v is read. The
objectw is called thecontextof h and denoted bytx(h), whileu andv are denoted
respectively byre(h) andpost(h). We denote by the twistedversion ofh obtained

by exchanging the position of the context with that of the pre- and post-set (respectively,
in the domain and codomain b, i.e.h = y(w,u); h; y(v,w).

The following result follows easily from Lemni
Corollary 1. Any arrowh € Rtrans(R) is pure.
Lemma 5. Leth € Rarrow(R) be pure. Thet e Rarrow(R).

Proof. The assertion follows bRarrow(R) being closed w.r.t. composition with sym-
metries.

Lemma 6. Leth € Rarrow(R) be pure, withpre(h) = u, post(h) =vandctx(h) =w.
Thenh = (O(w) @ u); (W h); (A(w) @V).

The following result shows that computations which are serialized on contexts are
equivalent to the concurrent executions with multiple readings of the context.
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Proposition 3. Lethy,hy € Rarrow(R) be pure arrows, witlpre(h;) = uj, post(h;) =
vi andctx(hj) =wfori=1,2. Then:

(h1®@Uz); (Vi ®hg) = (U @ O(W) ® Wp); (hy @ hp); (Vi @ O(W) @ Vo)
= (L ®h); (M@ V)
Proof. The proof exploits Lemmeé and6 and is (partially) illustrated in Figui8:

— we first make explicit that the arrovg andhAz read the contexw by applying the
laws:

hy = (L@ UO(W)); (hh @w); (vi @ A(w))
Mo = (D(W) ® n); (W hp); (A(w) v )

that are valid for pure arrows;

— then, we apply the axioms of match-share categories to rearrange the matching and
sharing ofw to have enough concurrent copies of it available at the same time and
use functoriality of the tensor to shif andh, in parallel;

— finally, we get rid of additional copies by applying back the laws of pure arrows.

The equality with the computation wheng precedesy can be proven in a completely
analogous way and is thus omitted. ad

5 Conclusion

Previous approaches to extending the “Petri nets are monoids” to nets with read arcs
have either relied on structured tokens or have defined a too rich category of computa-
tions, where it was difficult to filter out meaningless arrows.

We have employed theories in partial membership equational logic to solve the latter
problem. Specifically, we have introduced a suitable th@GoMP that provides us with
a typing discipline to select all and only the correct concurrent computations.

We conclude by mentioning that a non-initial match-share category of abstract mod-
els for nets with read arcs has been use@jnjased on categories of (co)spanSit
However, the models ir8] do not retain all the information about the concurrent com-
putations of the net: they just keep track of which (initial) resources have been read
throughout the computation and thus can be concurrently accessed from the environ-
ment.
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A Theories in partial membership equational logic

The theory of categorie®@AT is defined as follows. Its poset of sorts has sOH$ect
andArrow with Object < Arrow. There are two unary total operatio®s ) andc(_ ),
for domainandcodomain and a binary composition operation_ defined if and only
if the codomain of the first argument is equal to the domain of the second argument.
The complete definition of the theory is given in Figi@eBy convention, functions
with given domain and codomain are total on that domain and codomain. It is easy
to check that a model (cflB] for the details) ofCAT is exactly a category (in which
objects coincide with identity arrows), and tltaT-homomorphisms are just functors.
The theoryMON of monoids is even simpler. It has a unique rhoid and two
total operators: the associative tensap - and the unit elemerd, which behaves as
the identity for_ @ _. The theoryMoN is defined in Figurd0.
Then, by exploiting the tensor product of theories _ defined in L8], the theory
of monoidal categories can be obtained by combining the thetfissand CAT as
illustrated in Figuréll.
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fth CAT is

sorts Object Arrow.

subsort Object < Arrow.

ops d() c() : Arrow -> Object.

op _;_.
var a : Object.
vars f g h : Arrow.
eq d(@) = a

eq c(@) = a.

ceq af = f if d(f) == a.

ceq la =f if c(f) == a.

cmb f,g : Arrow  if c(f) == d(g).
ceq c() = d(g) if f,g : Arrow.
ceq d(f,g) = d(f) if c(f) == d(g).
ceq c(fg) = c(@) if c(f) == d(g).

ceq (f,ghh = fi(g:h) if ¢(f) == d(g) and c(g) == d(h).
endfth

Fig. 9. The theoryCAT.
fth MON is
sort Monoid.

op e : -> Monoid.
op _®_ : Monoid Monoid -> Monoid [assoc id: €].
endfth

Fig. 10.The theoryMON.

fth MONCAT is MON ® CAT renamed by (
sort (Monoid,Object) to Object.
sort (Monoid,Arrow) to Arrow.
op e left to e.
op_®_leftto . ®_.
op _;_right to _; .
op d() right to d().
op c() right to c(). ).
endfth

Fig. 11.The theoryMONCAT.
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fth MON ® CAT is
sorts (Monoid,Object) (Monoid,Arrow).
subsort (Monoid,Object) < (Monoid,Arrow).
op e left : -> (Monoid,Arrow). *** (B) subalgebra axioms are implicit
op _®_ left : (Monoid,Arrow) (Monoid,Arrow) -> (Monoid,Arrow).
ops d() right c() right : (Monoid,Arrow) -> (Monoid,Object).
op _;_ right.
var a : (Monoid,Object).
vars f g h k : (Monoid,Arrow).
eq (f g left) h left = f &(g®h left) left. ** (A) inherited axioms
eq f®(e left) left = f.
eq (e left) &f left = f.
eq d(a) right = a.
eq c(a) right = a.
ceq a;f right = f if d(f) right == a.
ceq fa right = f if c(f) right == a.
cmb f,g right : (Monoid,Arrow) if c(f) right == d(g) right.
ceq c(f) right = d(g) right if f,g right : (Monoid,Arrow).
ceq d(f,g right) right = d(f) right if c(f) right == d(g) right.
ceq c(f,g right) right = c(g) right if c(f) right == d(g) right.
ceq (f;g right);h right = f;(g;h right) right
if ¢(f) right == d(g) right and c(g) right == d(h) right.
eq d(e left) right = e left. *** (C) homomorphism axioms
eq c(e left) right = e left.
eq (e left);(e left) right = e left.

eq d(f g left) right = (d(f) right) ®(d(g) right) left.

eq c(f ®g left) right = (c(f) right) ®(c(g) right) left.

ceq (f;,g right) ®(hik right) left = (f ®h left),(g &k left) right
if f;,g right : (Monoid,Arrow) and hik right : (Monoid,Arrow).

endfth

Fig. 12. Explicit definition of the theorylON ® CAT.

fth SMONCAT is including MONCAT.

op Y(_,) : Object Object -> Arrow.

vars a @ b b’ ¢ : Object.

vars ff 1 Arrow.

eq d(y(ah) = a &b

eq c(y@h) = b ®a

eq y(ae) = a

eq y(e,a) = a

eq y@a®bce) = (@ eybe)( vac) «b).

eq y(ab); vba =a ®b.

ceq (f «f), vbb) = vyaa)f  «f
if dify == a and d(f) == a’ and c(f) == b and c(f) == b"

endfth

Fig. 13.The theorySMONCAT.
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Note that the tensor product constructit@ @ CAT has the sort poset originated
from the product of the two sort posetsMoN andCAT and operatorsdpM left” and
“opCright” for each operatoopM in MON andopCin CAT. The axioms of0N ® CAT
are generated by combining the axiom$16fi andCAT and can be partitioned in three
classes: (A) inherited axioms; (B) subalgebra axioms; (C) homomorphism axioms. The
complete definition of the theomON ® CAT is in Figurel2. We omit discussing the
details here. The theolONCAT just renames sorts and operators by a more friendly
notation.

Finally, the theory of symmetric monoidal categor4ONCAT is defined in Fig-
ure’13, by adding the symmetric natural transformatign, _ ).



