UNIVERSITA DI P1sa

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-04-10

A prototype
implementation
of distributed agreements

Alberto Baragatti Roberto Bruni Hernan Melgratti
Ugo Montanari

22 April 2004

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

A prototype implementation
of distributed agreements *

Alberto Baragatti, Roberto Bruni, Herndn Melgratti, and Ugo Montanari

Dipartimento di Informatica, Universita di Pisa, Italia.
{baragatt,bruni,melgratt,ugo}@di.unipi.it

Abstract. We present a prototype application for distributed agree-
ments in multi-parties negotiations, where the number of participants
is statically unknown, new participants can dynamically join ongoing
negotiations and each participant knows only those parties with whom
interacted. The application is based on asynchronous communication and
it exploits the D2PC protocol for committing or aborting the negotiation.
The software architecture consists of three modular layers, with the D2pPC
compiled in the bottom layer and completely transparent to final users.
Our prototype is tailored to the running scenario of Ad-Hoc networks
used by rescue teams for disaster recovery.

1 Introduction

Mobile Ad-Hoc networks (MANET) are networks where agent mobility coexists
with dynamic infrastructures and net topology. MANET are typical of wireless
scenarios for small mobile units and their infrastructures (emergency teams,
medical teams, security units, press and information groups, hi-tech research
and business meetings), where many local agents are involved (laptops, PDAs,
and last generation mobile phones). Although several technologies are currently
available neither a standard, nor rigorous theoretical foundations and models
have yet emerged.

This paper describes a prototype implementation of a “proof of concept” ap-
plication that requires distributed negotiations between a set of participants not
known statically. The typical running scenario involves a rescue unit composed
by several teams. Each team has a leader and some operators. Leaders and op-
erators can interact by exchanging messages, so to orchestrate the participation
to each specific task, also depending on the position of each operator in the dis-
astered area. Roughly, the idea is that after having exchanged several messages,
each member can either decide to commit her/his negotiated involvement in the
task, or to abort the negotiation when the assigned activity cannot be perfomed.
Leaders and operators have often a limited knowledge of the other participants
involved in the task.

* Research supported by the Italian Ministry of Education, University, and Research
(MIUR) within the framework of the IS-MANET project (Software infrastructures for
mobile Ad-Hoc networks in difficult environments).

2 A. Baragatti et al.

Intial State of the j-th participant P;.

— &; : set of all known parties (those with whom P; cooperated directly).
—Ci=0
— state; € {committing, failed}

Algorithm.

— Committing. While in state committing perform the following steps
1. If §; = C; then finish with “commit”.
2. Otherwise, send the own synchronization set S; to every known party in S; (mes-
sage LOCK).
3. for any received message LOCK — S; from the participant P; update the state in
the following way:
. Sj = Sj usS;
e C; =CU{P;}
4. if a message ABORT is received, send all LOCK messages and then pass to the
state failed.
5. goto 1.
— Failed. When the state failed is reached, finish with “abort”.
While in state failed answer with ABORT to any received message of type LOCK.

Fig. 1. p2pPC algorithm.

The prototype implementation we present is based on a general purpose
mechanism for orchestrating distributed agreements, whose foundations rely on
the Join calculus [7], a reflexive process description language based on asyn-
chronous communication, fresh name creation, and name mobility. The most
abstract scenario consists of distributed processes that can start local activities
to be executed in the context of a larger negotiation. Nevertheless, the structure
of the negotiation in which they can be involved is not described statically, but
determined at runt-time. In fact, the global structure of a negotiation is discov-
ered dynamically accordingly to the interaction of the different participants. In
other words, any activity running as part of a negotiation can communicate with
other processes, possibly involved in another negotiation. When such communi-
cation occurs, all the involved parties become part of the same larger negotiation,
even if they are not aware of the merging.

In order to implement such kind of agreements in a fully distributed way
which is transparent to final users, we exploit the distributed two phase commit
protocol (D2PC), informally summarized in Figure 1. The D2PC was originally
proposed in [2] for implementing a transactional extension of Petri nets, called
zero-safe nets [5], in Join. Consequently, the D2PC can be straightforwardly coded
in any programming language that implements Join features, such as Jocaml [6] or
Polyphonic C* [1]. For these reasons, our prototype implementation is structured
in three layers, where the bottom layer provides the middleware for distributed
negotiations, hosting the distributed transaction manager, which is written in
Jocaml. In order not to tight the development of applications to Jocaml, the code

A prototype implementation of distributed agreements 3

for the D2PC has been developed as an independent process that communicates
with the other layers of the application through sockets. In our case, the other
two layers (GUI and coordinators) are written in Perl, because of its simplicity
for developing prototypes.

Structure of the paper. In § 2 we give an informal description of the D2PcC, while
in § 3 we describe the architecture of the application and its implementation. In
§ 4 we give a detailed description of the negotiations that can take place during
the assignment of activities to rescue teams.

2 The Distributed Two Phase Commit (D2PC)

In this section we provide an informal description of the D2PC proposed in [2].
Roughly, the D2pPC implements a distributed agreement protocol among a set of
participants (or their managers) that have (at the begining) a partial knowledge
about the whole set of parties. The algorithm assumes a reliable asynchronous
communication between participants. Moreover, participants can abort, but do
not crash. The D2PC has been proved to be correct in such setting (details can
be found in [2]).

In the D2PC all participants act as transaction managers, all of them having
the same behaviour and communicating in an asynchronous way. Any manager
maintains a list of all (the ports to communicate with) known parties, called
the synchronization set (S) and a list of committing parties (C). Both lists are
updated during the execution of the protocol. Any participant performs the
algorithm described in Figure 1. (We refer to [2] for the formal definition of the
protocol in Join).

In Figure 2 we illustrate a run of the pD2PC with three participants A, B
and C, any of them willing to commit. The initial configuration (Figure 2(a))
shows the partial view that any participant has about the other parties in the
agreement (i.e., the synchronization sets S): A and B know only that C is part of
the agreement processes, while C' knows both A and B. Note that the knowledge
relation is symmetric, which is required by the D2PC in order to assure consensus.
Moreover, for all participants the set C of commit confirmations is initialized to
the empty set.

When the protocol starts (Figure 2(b)) every participant sends its ready
to commit vote to any known participant together with its synchronization set
S. After this round (Figure 2(c)), all participants update their states with the
information contained in the received messages. Note that C' has received votes
from both A and B without information about other participants. In this case
both its sets S and C coincide and C knows that all parties in the negotiation
are willing to commit. Therefore it commits. Differently, A and B have received
the commit vote from C' containing participants not known previously, thus they
update their state and continue the execution of the protocol. In the next step,
A and B send their decisions to the recently known participants (Figure 2(d)).
After this step, they update their state and commit (Figure 2(e)).

4 A. Baragatti et al.

s={C} s={C} s={C} s={c}
=0 (a) ()0 e=0 @\ ‘f‘”

S={A,B} 5={A,B}
c={} c={}
(a) Initial situation. (b) First round.

S={A,B} S={A,B}
c={A,B} c={c}
(c) After first round. (d) Second round.

(e) Final situation.

Fig. 2. Example of commit.

Consider a different scenario in which A and C are willing to commit but
B decides to abort. The initial situation is shown in Figure 3(a). Note that
the synchronization sets of B are never shown in Figure 3 because they are
useless when the participant aborts. When the protocol starts, every participant
in committing state (i.e., A and C) sends its vote to the known parties. Similarly
to the previous case, committing participants update their states (Figure 3(c)).
Note that C' cannot commit because it has not received the confirmation from B.
Neither A can commit because it has received the identity B, discovering a new
participant to contact. In the next round (Figure 3(d)), A sends its vote to B.
Instead, B answers the message received in the previous round from C' with abt,
signaling the negotiation must be aborted. After the second round (Figure 3(e))
C aborts because of the message abt received from B, while A is still waiting

A prototype implementation of distributed agreements

s={C}
0w @

S={A,B}
c={}

(a) Initial situation.

5

s={C}
e @
{A”;@{;B}

S={A,B}
c={}

(b) First round.

§={B,C} S={B,C} {
SAOI T
(© (o) =

S={A,B} S={
c={A} c

(c) After first round. (d) Second round.

{B,C} §={B,C}
{B.,C} c={B,C}

@ " Q@ O ©

(e) After second round. (f) Third round. (g) After third round.

Fig. 3. Example of abort.

the corresponding vote from B. Finally, in the third round (Figure 3(f)), B
answers to the commit vote from A with abt. After this round (Figure 3(g)) all
participants have aborted.

3 Application

We developed a prototype application that implements a minimal set of func-
tionalities for allowing users to communicate by exchanging messages and to
reach an agreement in the context of scenarios like those described in the Intro-
duction and § 4. In this section we describe the architecture and the principles
that have inspired the design of our implementation.

6 A. Baragatti et al.

Graphical

Interface
Graphical COMMIT
Entries ABORT

Coordinator

ML Messages ML Commands

Fig. 4. Application layout.

D2PC

3.1 Architecture

The application has been implemented as the layered architecture (i.e., a stack
of modules) shown in Figure 4. The functionalities of any layer are summarised
below.

— Graphical Interface, which handles GUI events, allowing a user to send
messages to other parties, and to commit or abort the current agreement.

— Coordinator, responsible for the distributed execution of the commit pro-
tocol, by communicating with other coordinators and using the underlying
D2PC algorithm.

— D2PC algorithm, which performs the algorithm described in § 2.

Information about the commit protocol is processed locally by the D2PC
algorithm, but messages to/from other nodes are managed (and forwarded) by
the coordinator layer.

Top and middle layers have been implemented in Perl while the bottom one
has been written in Jocaml. The communication between layers is realized by
exchanging messages asynchronously through TCP (or Unix) sockets. This leaves
us the freedom of implementing each module in a different programming lan-
guage, achieving modularity. At the same time, this allows the interaction with
participants running on other platforms and developed in other languages, such
as Polyphonic C# applications running on the .NET platform, thus yielding in-
teroperability.

Due to the asynchronous communication between the different layers and
users, the coordinator’s functionalities have been split into several threads in
order to manage all messages coming from other parties and adjacent modules.

A prototype implementation of distributed agreements 7

test 2

ilululql Commit -

Fig. 5. User actions.

Then the Jocaml core for the D2PC computes a new network status and even-
tually sends commands back to the coordinator that in turn updates GUI status
and forwards messages to coordinators modules running on different nodes.

3.2 User view

To improve usability of our application, the top layer hides all the implemen-
tation details to final users. In particular, the D2PC protocol is provided as a
middleware service and its execution is transparent to the user.

The prototype abstracts away from the logic of the negotiation, but of course,
algorithms or workflows based on message exchanges can be straightforwardly
programmed by exploiting the two layers below. Negotiations are expected to
finish within a period of time, therefore we assume without loss of generality
that each participant will vote commit / abort after a finite amount of time.

Actually, users in our application are allowed to send messages with free
textual content, trying to establish some agreement with other reachable users
(chosen from a set fixed a priori and loadable from the configuration file). More-
over, at any moment, a user can decide to commit or abort. Figure 5 shows a
detail of the graphical interface, which contains the core widgets: a text box for
inputting a message, a button to send the message, a button for voting commit
and one for voting abort.

When a user aborts, the local graphical interface shows immediately the
status abort. Moreover, every other user in the agreement that has voted, will
eventually reach the abort state (as granted by the D2PC).

When a user tries to commit, the decisions from all other parties must be
waited for, because the status of every participant must be commit only when
every participant in the negotiation has voted commit. The way in which the
decision is achieved is not shown to the user, who has just to press the commit
button and then wait for the outcome to be displayed.

3.3 Communication between parties

Each user is identified with its own unique 1D, which is provided as command line
argument when the application is first launched. For simplicity, the application
knows how to reach other nodes by reading a static configuration file, which
associates an 1P address to any ID, e.g. node-address:ID. Moreover, the ports in
which parties communicate depend exclusively on the node 1D. This assures that

8 A. Baragatti et al.

APPLICATION T APPLICATION

—Z

COORDINATOR COORDINATOR

D2PC D2PC

Fig. 6. Communications between parties.

different applications running on the same 1P address do not conflict in the use
of ports.

The application layer provides a simple discovery tool that dynamically
checks peers availability. It has been implemented as a thread that periodically
sends icmp messages (echo request) toward all peers in the configuration file.
Probably a wireless media dependent tool (hwping, I2ping) could be desiderable
as a less invasive discovery protocol for the wireless physical channel, but this
would tie the application to a specific wireless technology. The actual design
instead, is only bound to the 1P protocol and proved to work on Bluetooth and
802.11 media in Ad-Hoc mode.

As shown in Figure 6, the communication between different parties (or nodes)
occurs at two different levels: (i) the application layer; and (ii) the coordinators.
Note that the D2pPC algorithm layer is wrapped by the coordinator layer and thus
it cannot directly exchange messages with other parties. In fact, bottom layers
interact only through their corresponding coordinators, which are responsible
for forwarding messages from/to other parties.

We recall that both the application and the coordinator layer requires only
the 1D of the peer party to communicate with, because they are associated to a
particular address and range of ports. We assume the platform 16 bits threshold
for port definition (max 65535 ports) does not affect the application behaviour.

The two kinds of inter-party communication that can occur are summarized
below, together with the corresponding message format.

Application layer communication. The application layer exchanges messages
with the correspondent layer of another node when a user decides to send a
message to a different user. In this case, both the sender and the receiver update
their synchronization sets with the identity of the other participants, i.e., from

A prototype implementation of distributed agreements 9

Reachables Reachables Roachehive

205

(a) Userl. (b) User2. (c) User3.

Fig. 7. Reachability information

this moment both participants are part of the same negotiation. Messages must
have the form:

[free text] from User<ID>

Communication between coordinators. Coordinators exchange the following two
messages, which are the messages involved in the D2PC described in § 2 for voting
abort or commit:

— ABORT- to notify that the sender has reached the abort.

— LOCK-11;12;...;1n-11-al-to send a commit vote with the synchronization
set 11;12;...;1n. The ports 11 and a1 are respectively the ports to be used
by other participants to send D2PC messages to the local coordinator.

Example. As a running example, let us consider three different nodes partic-
ipating to the same negotiation. As mentioned before, the different nodes are
identified by a name (i.e., an IP or a DNS resolvable name) and the IDs are
statically defined into the configuration file of the application. In this case all
participants are using the following configuration file:

dotto: 1
131.114.2.205: 2
131.114.3.110: 3

As soon as the application starts, each user interface will show reachable
nodes. For instance, the user with ID 1 (abbreviated as Userl) will see the other
two users, i.e. User2 and User3 (Figure 7(a)). Similary, User2 sees reachability
information about Userl and User3 (Figure 7(b)) and User3 has information
about Userl and User2 (Figure 7(c)).

Now, suppose User3 sends the message “testl” to Userl and, at the same
time, Userl sends “test2” to User2 and User3. In this case, the interface of Userl
(Figure 8) will show in its list of Contacted nodes the addresses of both User2
(i.e., 131.114.2.205:2) and User3 (i.e.,131.114.3.110:3). Moreover, the mes-
sage “testl from User3” is displayed on the list Received Mesg. Similarly, the

10 A. Baragatti et al.

laMciic | WUaer .

Reachables Contacted Received Mesg
131.114.3.110:3 13.114.2.205:2 |tust1 from User3

131.114.2.205:2 131.114.3.1103

Fig. 8. State of Userl after exchanging messages with User2 and User3.

oL | Wsel . £

Reachables Contacted Received Mesy

[dotto:1 ~ dotto:1 ~ | testz from user1
131.114.3.110:3 [

Fig. 9. State of User2 after receiving a message from Userl.

interfaces of both User2 (Figure 9) and User3 (Figure 10) will display the address
of Userl in the list of Contacted nodes and the message “test2 from Userl”
in the list Received Mesg.

Note that at this point User2 and User3 have never exchanged messages but,
nevertheless, they are part of the same negotiation because both have inter-
acted with Userl. The only information they know about each other concerns
reachability (they are in range). Suppose that at this moment all users push
the Commit button, which will activate the execution of the distributed commit
protocol (D2PC) in every node. Since all participants have voted commit, the
D2PC closes the agreement, and the green Commit flag will be displayed in the
status bar of each Gul. Figure 11 shows the final state of Userl (the status is
updated anologously in the GUIs of the other participants).

3.4 Communication Protocols between layers

In this section we summarise the communication protocols between the different
layers (the numbering refers to Figure 4).

1. Application — Coordinator. The application layer sends a message to a co-
ordinator in order to start the commit protocol, in particular it can send one
of the following two messages, depending on the button pressed by the user:

— ABORT- to start the commit protocol voting “abort”.
— PUT-11;12;...1n- to start the commit protocol voting “commit”. The
synchronization set contains the coordinators 11;12;...;1n.

2. Coordinator — D2PC. The coordinator forwards messages to the D2PC layer
when it receives the vote from the user (one of the two messages described

A prototype implementation of distributed agreements 11

babAE | Wser . g

—_
Reachables Contacted Received Mesg

test2 from Userl
I

Fig. 10. State of User3 after exchanging messages with Userl.

ISMANET User H. 1
Contacted Received Mesg
31.1142.205:2 [testi from Users

31.1143.110:3

Fig. 11. Userl after the termination of the D2PcC.

above) or when it receives votes coming from other parties as part of the
D2PC protocol (inter-party messages between coordinators). More precisely,
the coordinator can send the following messages to the D2PC layer in order
to start the commit protocol or to update the status of algorithm:

— ABORT- to start the commit protocol voting “abort” (corresponds to the
abort message generated by the application layer) or to notify the recep-
tion of an abort message from a party.

— PUT-11;12;...;1n- to start the commit protocol voting “commsit”. The
synchronization set contains the coordinators 11;12;...;1n. This mes-
sage corresponds to the PUT generated by the application.

— LOCK-11;12;...;1n-11-al- to notify a commit vote from 11, with the
syncronization set 11;12;...;1n. The ports 11 and a1 refers to the ports
lock and abort of the sender.

12 A. Baragatti et al.

3. D2PC — Coordinator. The D2PC algorithm generates the following messages
to notify the coordinator about the actions it must take (see Figure 1):

— FWLOCK-11-11;12;...;1n- to ask the coordinator to forward the com-
mit vote to the coordinator 11 with the synchronization set 11;12; ... ;1n.

— FWCOMMIT-COMMIT- to ask the coordinator to inform the user that an
agreement has been reached.

— FWABT-ABORT- to notify the coordinator that current negotiation has
been aborted.

— FWABT-al- to ask the coordinator to forward the abort message to the
port al corresponding to the port abort of a coordinator in the negoti-
ation.

4. Coordinator — Application.
The coordinator informs the application with the success or abortion of the
negotiation.

— ABORT- to inform that the running negotiation has been aborted.

— COMMIT- to inform that the running negotiation has been committed.

When one of the two messages above is received by the application, then the
content of the status box in the user interface is updated correspondingly.

4 Future Scenario

In this section we consider a scenario borrowed from [8] to identify possible ap-
plications of the agreement mechanism presented before. The scenario considers
rescue teams structured in a hierarchical way (as shown in Figure 12), where
different nodes correspond to different computation and communication capa-
bilities. The main goal of the application is to provide a set of functionalities
to support the coordination of a rescue unit during ground operations. A rescue
unit is divided into several rescue teams and is coordinated from a Base capa-
ble of communicating via satellite or cellular telephony with a wired network.
Additionally, the Base can communicate with the different rescue teams oper-
ating on the area (i.e., by using 802.11 devices). Any rescue team, consisting,
e.g., of five operators, has a team leader that coordinates the team. Any team
leader can communicate with the central Base and with team operators, which
are provided with PDAs. PDAs are able to communicate with the team leader and
possibly with other PDAs. Moreover, all operators are equipped with a device for
a georeference system that provides the Base with real-time information about
their positions.

The assigment of tasks to people is organized in a top-down way. That is,
the Base assigns general activities to the different teams by sending a message
to the team leader. The leader will in turn split and distribute the task to team
operators. Clearly, there can be different situations in which the distribution of
activities may require an agreement between all involved members.

The scenario described below considers a rescue unit consisting of four teams
that cover different contiguous zones of an area where an avalanche occurred (as
shown in Figure 13). This scenario specifies how the Base assigns an activity to
the team 7.

A prototype implementation of distributed agreements 13

+ "

Fig. 12. Structure of a rescue unit.

4.1

Scenario: Assignment of an Activity

Normal Flow:

1.

The scenario starts when the Base sends a message to the leader [; of the
team T signaling the need of looking for an escape of gas in an area situated
between the zones covered by teams 77 and T5.

After receiving the request, the leader I; decides that two operators will be

needed to cover the whole area.

Consequently, the leader [; selects from T) the three operators that are

closer to the compromised area, and sends them a message requiring their

availability for performing a new task. After that, I; waits for operator’s
answers.

Any operator that receives the request will answer the message either by

offering her/his availability or by refusing the task. An operator implicitly

commits the negotiation when refusing a request, because they are not in-
terested in the result of the agreement.

When [; receives the answers from the three operators, one of the following

situations takes place:

(a) All operators have answered in the affirmative. In this case I; chooses
two of them and sends them detailed instructions for carrying out the
activity. Moreover, [y communicates the decision to the remaining oper-
ator. Additionally, l; confirms the Base about the successful assignment
of the activity and commits the negotiation.

(b) Two operators have offered their help and the other refused the request.
In this case the choice is the obvious one, and the leader sends messages
only to the two chosen operators and to the Base, and it commits.

(c) Less than two operators are available for the required task. In this case
there are three alternatives:

14 A. Baragatti et al.

& ¥
’ »
e &
A .
F
¢ ¢ & °
*

Fig. 13. A rescue unit distributed over a disastered area.

i. I; refuses the activity by aborting the negotiation. In this case the
Base will try to assign the activity to another team, for instance T5.
ii. Iy asks the remaining operators of T} about their availability. The
scenario follows analogously from point 4.
iii. Iy requires help from other teams (the scenario follows as described
below in § 4.2).

6. If I; has managed to assign the task, then the chosen operators receive the
specific instructions to perfom the activity. After that, they will commit the
agreement.

7. Also the Base receives the notification of the successful assignment of the
activity to 77 and commits the agreement.

8. When all participants have committed, all of them are notified about the
successful completion of the agreement.

Exceptions: Any participant is able to withdraw its decision at any moment
before it explicitly commits. In this case the scenario ends by making aware all
participants about such decision. Typical cases are the following:

— The Base has been informed that the gas provider has safely stopped the
provision on the area, and therefore the activity is no longer useful.

— The team leader I; receives a request to perform an activity with higher
priority, for instance to move people out of the area.

— The operator realises that is unable to reach the area.

As described before, during the assignment of an activity a particular team
may need some extra operators in order to carry out the task. Teams may also
need help while they are performing an already assigned task, i.e. if an operator
is unable to fulfill an activity that becomes harder or more complex. In such case,

A prototype implementation of distributed agreements 15

the operator will ask support to its own team by sending a message to the leader,
who will manage to assign the new task to other members of the team (similarly
to the task assignment described in § 4.1). It could be the case that the team
is unable to provide the required support, doing necessary the participation of
operators from other teams. The following scenario describes such situation.

4.2 Scenario: A team requires support from other teams

Normal Flow:

1. The team leader I; asks the Base to find additional operators from other
teams, for instance n operators.

2. The Base selects the k closest teams and forwards the request.

3. When a leader receives a request, it follows a protocol similar to that de-
scribed in § 4.1 to ask for operators availability.

4. After receiving answers from operators, the leader informs the Base with the
number of available people.

5. When the Base receives enough answers to satisfy the original request from
l1, it notifies all selected teams and l;. The Base implicitly commits the
agreement at this moment.

6. After receiving the confirmation, /; decides to commit the agreement.

7. Chosen leaders forward the received notification to their operators and com-
mit the agreement.

8. Chosen operators receive the confirmation and then decide to commit.

9. All involved parties are notified when all involved participants have commit-
ted.

Exceptions: Analogously to the scenario presented in § 4.1, any participant
can withdraw its decision and abort. In such cases, the scenario ends by making
aware all participants about the abort.

5 Conclusions

In this paper we have described a prototype implementation of distributed agree-
ments in multi-parties negotiations by taking advantage of the D2PC protocol
introduced in [2]. Any party is implemented as a three-layer system (as shown
in Figure 4). The application layer is responsible for keeping track of the in-
volved parties and eventually to initiate (locally) the agreement protocol. The
two lower layers abstract away the application from the orchestration of the
agreement. In this way, they can be reused to provide a negotiation mechanism
for the development of new applications. Moreover, as the communication be-
tween different coordinators takes place by exchanging textual messages through
TCP sockets, it would be possible to interoperate with applications running on
different platforms, such as Polyphonic C# applications running on .NET.
Nevertheless, some limitations should be overcome in order to make the de-
scribed architecture fully satisfactory for scenarios like that in § 4. In particular,

16 A. Baragatti et al.

the D2PC should be extended to handle failures, for instance by using a suit-
able version of the three phase commit protocol. Moreover, taking into account
the hierarchical organization of rescue units and the way in which decisions are
taken, it would be interesting to analyze the combination of the D2PC with some
traditional commits protocols that optimize the number of exchanged messages.
Additionally, the inclusion of some mechanisms for the dynamic discovering of
participants instead of the static configuration files used in the presented imple-
mentation would be desirable.

As an additional contribution, the proposed architecture seems suitable to
implement (in an ad hoc manner) applications written in cJoin [4]. The cJoin
calculus is an extension of the Join calculus with nested, compensatable nego-
tiations, where processes in different transactions can interact by joining their
original negotiations into a larger one. In particular, the subcalculus of flat ne-
gotiations has been encoded into Join by applying the D2PC [3]. Such encoding
provides the bases for coding cJoin applications over the presented architecture.

References

1. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C¥. In
B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, 16th European
Conference, volume 2374 of Lect. Notes in Comput. Sci., pages 415440, Malaga,
Spain, June 10-14 2002. Springer Verlag.

2. R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join calculus.
In L. Brim, P. Jancar, M. Kretinsky, and A. Kucera, editors, Proceedings of CON-
CUR 2002, 13th International Conference on Concurrency Theory, volume 2421 of
Lect. Notes in Comput. Sci., pages 321-336. Springer Verlag, 2002.

3. R. Bruni, H. Melgratti, and U. Montanari. Flat Committed Join in Join. In F. Hon-
sell, M. Lenisa, and M. Miculan, editors, Proceedings of CoMeta 2003, Final Work-
shop of the CoMeta Project, 2003. To appear as Elect. Notes in Th. Comput. Sci.

4. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi:
extending Join, 2004. Submitted.

5. R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and individual
token approaches. Inform. and Comput., 156(1-2):46-89, 2000.

6. S. Conchon and F. Le Fessant. Jocaml: Mobile agents for Objective-Caml. In 1st
International Symposium on Agent Systems and Applications (ASA’99)/3rd Inter-
national Symposium on Mobile Agents (MA’99), 1999.

7. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile
agents. In U. Montanari and V. Sassone, editors, Proceedings of CONCUR’96, Tth
International Conference on Concurrency Theory, volume 1119 of Lect. Notes in
Comput. Sci., pages 406—421. Springer Verlag, 1996.

8. IS-MANET. Un possibile scenario per la piattaforma is-manet. On-line documen-
tation of the MIUR Project IS-MANET. Available at http://zeus.elet.polimi.
it/is-manet/Documenti/mi20030924-dei.ppt, September 2003.

