
U̀  P

D  I

T R: TR-08-05

Types and deadlock free sessions
for SCC

Roberto Bruni1 Leonardo Gaetano Mezzina2

April 3, 2008
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Types and deadlock free sessions for SCC?

Roberto Bruni1 and Leonardo Gaetano Mezzina2

1 Computer Science Department, University of Pisa, Italy
bruni@di.unipi.it

2 IMT Lucca, Institute for Advanced Studies, Italy
leonardo.mezzina@imtlucca.it

Abstract. The notion of a session is fundamental in service oriented applica-
tions, as it serves to separate interactions between different instances of the same
services, and to group together logical units of work. Recently, SCC has been pro-
posed as a calculus centered around the concept of a dyadic session, where service
interaction protocols and service orchestration can be conveniently expressed. In
this paper we propose a generic type system to collect services’ behaviors and
then we fix a class of well typed processes that are guaranteed to be deadlock
free. The type system is based on previous research on traditional mobile calculi,
here conveniently extended and simplified thanks to the neat discipline imposed
by the linguistic primitives of SCC.

1 Introduction

The success of service orientation is attracting the interest of both industry and academy.
On the one hand, important standardization bodies and industrial consortia are devel-
oping the WS-* stack, targeting the engineering of web services technologies from a
pragmatic perspective. The related documentation is often centered around typical us-
age patterns: it focuses on technical details of the implementation, but leaves several
ambiguities on the overall methodology. On the other hand, several efforts are now
posed on mathematical foundations, by developing formal languages and models tai-
lored to services. The related documentation is aimed in first place to provide current
standards with unambiguous semantics, but also to lay the basis for sound service or-
chestration, tackling the scenarios from a maybe more abstract perspective. Within this
research thread, building on the experience maturated in the area of concurrency, many
proposals of service oriented calculi have emerged [1, 4, 6–9, 13, 21, 22] (just to cite a
few), where well-studied calculi have been enhanced with service-specific primitives.

The aim of this paper is to study a type system of one of such calculi. The ATM ex-
ample in [16] describes the behavior of an automatic teller machine that can serve well
to illustrate our main idea. The ATM offers three options to choose from: deposit, with-
draw and balance. Once the user chooses one option the ATM establishes a new direct
connection with the bank to account for the operation. Afterwards, the result is returned
by the ATM to the user who can choose another option. At the type system level, even

? Research supported by the EU within the FET-GC II Integrated Project IST-2005-016004 S-
 and by the Italian FIRB Project T..

if the connection with the bank is reiterated each time an user chooses an option, it is
only necessary to check a single instance to guarantees safety of the communication.
We show that fixing some communication patterns this type not only guarantees safety
but a much stronger property such as deadlock freedom.

We study a session calculus derived from SCC [4] and its recent proposal CaSPiS [5]
in which service invocation encompasses one-way and request-response [10–12, 3] but
also allows for more sophisticated message exchanges, according to some fixed inter-
action protocol exposed by the service. The key feature is considering such messages
as correlated, enclosed in special units of work, called sessions, and isolated from mes-
sages belonging to different invocations to the same service. Differently from other
session languages [15, 16, 24] and also from languages based on correlation sets [22],
here the programmers should not bother with the manipulation of sessions, as SCC
chooses to instantiate sessions in an automatic way, upon service invocation. With re-
spect to pi-calculus, in SCC the channel name expressing the communication media
for exchanging messages is always implicit and determined by the context surrounding
abstractions and concretions (i.e., the enclosing session/pipeline). Pipelines has been
inspired by Cook and Misra’s Orc [13], an elegant language for structured orchestra-
tion, where pipelines offer a basic mechanism for composing processes in a fashion that
is more general and better suited w.r.t. concurrency than sequential composition.

Since sessions are automatically established and can be nested, the language is en-
dowed with children-to-parent communications and with in-session communications.
Only these two communication patterns not only are expressive enough but also typ-
ing a single instance of a session is suffice to guarantee deadlock freedom of recursive
processes such as factorial service (see Example 2).

However, the resulting language is somehow too permissive to be dealt with using
session types [15, 24, 16] directly. Session types permit to correctly typecheck sessions
if a process has some constraints and, in particular, each input in a session must be
matched by only an output. This condition is violated (and consequently subject reduc-
tion does not hold) if, for example, in the presence of an input we introduce parallel
outputs (of different types of course). Our type system extends ordinary session types
to work correctly with our language. Differently from [17], this permits for each vari-
able to have a simple way for statically knowing its type in the case of the basic values
or the service type in the case of service name mobility.

Thus, we investigate a subclass of SCC processes typical of the service oriented
scenarios (e.g., service declarations are top level and replicated) for which we show the
main theorem of this paper: we prove that these processes are deadlock free in the sense
that they either diverge (by invoking new service instances and opening new sessions)
or reach a normal form in which only service declarations remain; that is, every client
terminates its computation unless someone diverges but the entire system cannot block
on pending communications. The approach followed for the proof makes an extensive
use of types to limit the number of possible cases, resulting less error prone.

A similar type system exists for SSCC (a variant of SCC based on named streams
instead of pipelines) [21] that guarantees session safety. Streams introduce some sort of
global buffers for extra-session communication and permit only a single type of value

for each stream. Likewise, the type system described in [2] resembles our type system
but guarantees only session progress.

Concerning deadlock freedom we use definitions in [19, 20] as references for our
definition which is slight different as it is adapted for the service oriented scenario.

Outline of the paper. Section 2 fixes the syntax and semantics of our SCC-like calculus.
Section 3 presents the type system and the subject reduction result. Section 4 presents
the class of initial processes and proves that every well typed and initial process is
deadlock free. Section 5 summarizes the results and points out directions for further
work. For referees’ convenience, proofs omitted for space limitation are in Appendix.

2 Session Centered Calculus

2.1 Example

Before the formal presentation of our language we illustrate a simple example. Consider
the following calculator service calc

C = calc.
(

(sum).(x,y).〈add(x,y)〉 + (inc).(x).〈add(x,1)〉
)

calc offers two operations, sum or inc, depending on the client choice. If the client after
an invocation calc sends the label sum to the service then the service waits for a tuple
of two integers x and y, and after receiving them, sends their sum back to the client.
Here add is a function only available on service side either directly implemented or
built with other services (the reader might think of add to be replaced by an operation
that requires either an access to local data or a computational power available only at
the service side). Functions available to the service together with the base type are left
unspecified, because we want to model the entire system with modularity; in the case of
calc service, for example we want to hide the sum implementation. Assume the client

calc.if (test) then 〈inc〉.〈1〉.(x).return x
else 〈sum〉.〈1,2〉.(y).return y

after invoking calc and depending on some internal condition test, it chooses between
the two available options. The situation of the freshly established session r after the
client’s choice of sum is the following:

(ν r)
(

r− . 〈1,2〉.(y).return y | r+ . (x,y).〈add(x,y)〉 | C
)

where the client protocol is running on the left (the session with negative polarity) and
the service protocol on the right (the session with positive polarity). Abstractions (e.g.,
(x, y)) and concretions (e.g., 〈1, 2〉) running on the opposite sides (service side r+ and
client side r−) of the same session (bound name r) can exchange data, thus leading to

(ν r)
(

r− . (y).return y | r+ . 〈add(1,2)〉 | C
)

After another interaction the client side (r− .return 3) can return the result outside
of r (to the parent session, if any). We shall see in Section 3 that thanks to session types,
the type system collects the usage in each session and compares it with the correspon-
dent dual usage to guarantee sound session interactions.

P,Q,R ::= 0 (nil)
| s.P (service definition)
| v.P (invocation)
| if v = v1 then P else Q (if-then-else)
| (x̃).P (tuple input)
| 〈ṽ〉.P (value output)
| Σn

i=1(li).Pi (label-guarded sum)
| 〈l〉.P (label choice)
| return ṽ.P (return)
| rp . P (session)
| P > x̃ > Q (pipe)
| P|Q (parallel)
| (νm)P (restriction)

v ::= f(ṽ) (function call)
| x (variable)
| m (service/session)
| b (basic data value)

Fig. 1. Syntax of our service calculus.

2.2 Syntax

The set of processes is inductively defined by the grammar in Figure 1. We let P,Q
range over the processes, s over service names, r over session names, m over both
session and service names, l over labels, x over variables (over session names, services
and data), and v over values, which include an elsewhere specified set of basic data
values and expressions (possibly with names, variables and functions). Operators are
listed in decreasing order of precedence: P > x̃ > Q|R means (P > x̃ > Q)|R and
r . P > x̃ > Q means (r . P) > x̃ > Q.

As usual [·̃] identifies a tuple, 0 is the nil process, the trailing of 0 is often omitted,
parallel composition is denoted by P|Q and restriction by (νm)P. The construct r p . P
indicates a generic session side with polarity p (taking values in {+,−}). Nevertheless,
differently from other languages that provide primitives for explicit session naming and
creation, here all sessions could be built automatically, resulting in a more elegant and
disciplined style of writing processes. In fact, a fresh session name r and two polarized
session ends r− . P and r .+ Q are generated (on client and service sides, respectively)
upon each service invocation s.P of the service s.Q. Then, communications in P and
in Q are uniquely directed toward the dual session side labeled with the same name r
but with opposite polarity. We use p, q as meta variables to range over session polarities
and p, q are the opposite/dual polarities of p and q., i.e.; + = − and − = +.

Also labels can be exchanged, but they are just a way for expressing a choice on
one side among a set of available options at the other side. The primitive return is
used to output values to the parent session and the pipe P > x̃ > Q is a construct for
on-side communications, i.e., for propagating values in the same side of a session. Pipe
is inspired by Orc [13] to activate a fresh instance of Q on any value produced by P.
For example calc.〈inc〉.〈2〉.(x).return x > y > Q invokes calc and deliver the result in
y to Q. Since after a prefix of invocation a new session will be created, the pipe is the
easiest way to continue the computation within the established session.

P|0 ≡ P P|Q ≡ Q|P (P|Q)|R ≡ P|(Q|R)
(νm)0 ≡ 0 (νm1)(νm)P ≡ (νm)(νm1)P ((νm)P)|Q ≡ (νm)(P|Q) if m < fn(Q)

(νm)P > x̃ > Q ≡ (νm)(P > x̃ > Q) if m < fn(Q) rp . (νm)P ≡ (νm)(rp . P) if r , m
0 > x̃ > P ≡ 0 (P|Q) > x̃ > R ≡ (P > x̃ > R)|(Q > x̃ > R)

(rp . 0) > x̃ > R ≡ rp . 0 rp
1 . (rq

2 . 0|Q) ≡ rp
1 . Q|rq

2 . 0 (νr)(r+ . 0|r− . 0) ≡ 0

Fig. 2. Structural congruence.

λ ::= : s⇒ r | s⇐ r (service invocation/definition)
| → ṽ | ← ṽ (value production/consumption)
| rp :→ ṽ | rp :← ṽ (production/consumption within r)
| → l | ← l (choice selection/branching)
| rp :→ l | rp :← l (selection/branching within r)
| τ | rτ (silent steps)
| ↑ ṽ | (m)λ (value return/extrusion) .

Fig. 3. Labels of the transition system.

Processes are taken up to alpha-equivalence considering (x̃).P and P > x̃ > Q as
binders for variables x̃ and (νm)P as the binder for session / service name m. Conse-
quently, the notion of free names fn(P) and bound names bn(P) are defined as expected.
It is worth noting that the operation of substitution P[ṽ/ x̃], which replaces a tuple of vari-
ables with a tuple of values, considers that variables cannot appear in certain positions
(i.e. that x . P and x.P are forbidden by the syntax). The effect of the substitution over
the other processes is the standard capture avoiding substitution.

Each service definition is persistent (i.e., not consumed after an invocation). For
this reason their protocols are not supposed to return any value to the parent in the type
system given in Section 3.

2.3 Operational Semantics

We describe the semantics of our language by means of an LTS that exploits a structural
congruence. The structural congruence≡ is the least relation defined by the equations in
Figure 2. The structural congruence includes ordinary axioms about parallel and restric-
tion, together with distributivity of parallel over pipes, and a few axioms for garbage
collecting terminated session ends rp . 0.

Our transition system exploits the labels λ in Figure 3. We write (m)λ to mean the
label λ where the name m becomes bound (see Figure 4). We write ↔ to mean either
← or→.

The semantics is given in the early style, which guesses the values and labels in
the rules (In) and (Branch), respectively. Rule (Def) shows the replicated nature of the
service and together with (Inv) creates two processes which are ready to communicate
after that (Scom) creates a new shared common session. (SessionOut) accounts for the
return of a value, which is converted in an output out of the current session when the
session construct is traversed. (Session) marks with the name of the exchanging session

bn((m)λ) = bn(λ) ∪m
bn(λ) = ∅ if λ , (m)λ′

Fig. 4. Bound names for labels.

(I)

(x̃).P
← ṽ
−→ P[ṽ/ x̃]

(O)

〈ṽ〉.P
→ ṽ
−→ P

(S)

P
λ
−→ P′ λ ∈ {↔ ṽ,↔ l, τ}

rp . P
rp :λ
−→ rp . P′

(B)

Σn
i=0(li).Pi

←li
−→ Pi

(C)

〈l〉.P
→l
−→ P

(S)

P
rp:→l
−→ P′ Q

rp:←l
−→ Q′

P|Q
rτ
−→ (P′|Q′)

(D)
r < fn(s.P)

s.P
(r)s⇐r
−→ r+ . P|s.P

(I)
r < fn(s.P)

s.P
(r)s⇒r
−→ r− . P

(SC)

P
(r)s⇒r
−→ P′ Q

(r)s⇐r
−→ Q′

(P|Q)
τ
−→ (νr)(P′|Q′)

(R)

return ṽ.P
↑ ṽ
−→ P

(SO)

P
↑ ṽ
−→ P′

rp . P
→ ṽ
−→ rp . P′

(NI)

P
(r′)s⇒r′

−→ P′ r , r′

rp . P
(r′)s⇒r′

−→ rp . P′

(C)

P
rp:← ṽ
−→ P′ Q

r:p→ ṽ
−→ Q′

P|Q
rτ
−→ (P′|Q′)

(O)

P
λ
−→ P′ λ ∈ {→ ṽ, rp :→ ṽ} ∧ s ∈ n(ṽ)

(νs)P
(s)λ
−→ P′

(R)

P
λ
−→ P′ s < n(λ)

(νs)P
λ
−→ (νs)P′

(SR)

P
rτ
−→ P′

(νr)P
τ
−→ (νr)P′

(P)

P
→ ṽ
−→ P′

P > x̃ > Q
τ
−→ Q[ṽ/ x̃]|(P′ > x̃ > Q)

(PP)

P
λ
−→ P′ λ ,→ w̃

P > x̃ > Q
λ
−→ P′ > x̃ > Q

(IL)

P
λ
−→ P′

if v = v then P else Q
λ
−→ P′

(IR)

v1 , v Q
λ
−→ Q′

if v = v1 then P else Q
λ
−→ Q′

(P)

P
λ
−→ P′ bn(λ) ∩ fn(Q) = ∅

P|Q
λ
−→ P′|Q

(E)

P
λ
−→ P′ P ≡ Q P′ ≡ Q′

Q
λ
−→ Q′

Fig. 5. Operational semantics.

T,U ::= end (no action)
| ?(S 1, . . . , S n).T (input of a tuple)
| !(S 1, . . . , S n).T (output of a tuple)
| &{l1 : T1, . . . , ln : Tn} (external choice)
| ⊕{l1 : T1, . . . , ln : Tn} (internal choice)

S ::= [T] (session)
| B (basic data types)

Fig. 6. Syntax of types.

each operation in that session. (Comm) permits both communication of basic values
and service names. Extrusion is handled by (Open) and (Par), but thanks to (Equiv)
restricted names can be moved to the top before communication and a closure rule
is not necessary. On the other hand, side condition of rule (Par) is useful for session
floating since r is bound in labels for the service invocation.

Rule (Pipe) creates a new concurrent copy of process Q together with the residual
P′ > x̃ > Q in the case that P outputs a value. Rule (PipePass) makes a move in P if the
action is not an output.

3 Typing

The set of session types, U,T ,. . ., is defined by the grammar in Figure 6. Session types
express sequences of typed tuples of input and output. Internal choice ⊕ records all the
possible process choices at a certain point of a session, generated by means of an if
instruction, like in the calculator example above. External choice & records the types
of each offered options.

Sorts S can be either [T] which represents a session with session type T or an
elements of a given set of basic data types B. By convention we point with τb the type
of the basic value b and τb ∈ B.We shall assume that int ∈ B.

Our set of type judgments is in Figure 7. Type judgments for values take the form
Γ ` v : S where S represents the sort of v. Type judgments for processes take the form
Γ ` P : U[T] where the type U represents the outputs of P to the parent session, while
T is the type of current session usage. Sometimes we write only [T] as a shorthand for
end[T]. The type environment Γ is a finite partial mapping from variables and services
to sorts and function types. As usual the empty environment is annotated ∅. When x <
dom(Γ) (same holds for m < dom(Γ)) we write Γ, x : S for the type environment
obtained by extending Γ with the binding of x to S .

With respect to the two typing systems presented in [24] our type system is more
like the second one, with balanced typing. This can be easily viewed observing the
shape of the rule for service binder (Tnew).

The first four rules for values are standard and the signature of each used external
function must be inserted in the environment as a functional type (rule (FuncV)) because
they are not bound by the process.

(S)

Γ, s : S ` s : S
(V)

Γ, x : S ` x : S

(BV)
τb ∈ B

Γ ` b : τb

(F)
Γ ` v1 : S 1 . . . Γ ` vn : S n τb ∈ B

Γ, f : S 1 × . . . × S n → τb ` f(v1, . . . , vn) : τb

(T)

Γ ` 0 : end[end]

(T)
Γ ` P : end[T] Γ ` s : [T]

Γ ` s.P : end[end]

(T)

Γ ` P : U[T] Γ ` v : [T]

Γ ` v.P : end[U]

(T)

Γ, x̃ : S̃ ` P : U[T]

Γ ` (x̃).P : U[?(S̃).T]

(T)

Γ ` P : U[T] Γ ` ṽ : S̃

Γ ` 〈ṽ〉.P : U[!(S̃).T]

(T)

Γ ` P : U[T] Γ ` ṽ : S̃

Γ ` return ṽ.P :!(S̃).U[T]

(T)
I ⊆ {1, . . . , n} ∀i ∈ I Γ ` Pi : U[Ti]

Γ ` Σn
i=0(li).Pi : U[&{li : Ti}]i∈I

(TC)
l = li ∈ {l1, . . . , ln} Γ ` P : U[Ti]

Γ ` 〈l〉.P : U[⊕{l1 : T1, . . . , ln : Tn}]

(TL)
Γ ` P : U[T] Γ ` Q : U ′[end]

Γ ` P|Q : U ◦ U ′[T]

(TR)
Γ ` P : U[end] Γ ` Q : U ′[T]

Γ ` P|Q : U ◦ U ′[T]

(T)

Γ ` P : U[T] Γ, x̃ : S̃ ` Q : U ′[T ′] pipe(U[T],U ′[T ′], S̃) = U ′′[T ′′]

Γ ` P > x̃ > Q : U ′′[T ′′]

(T)
Γ ` P : U[T]

Γ, r : [T] ` r+ . P : end[U]

(TI)
Γ ` P : U[T]

Γ, r : [T] ` r− . P : end[U]

(T)
Γ,m : S ` P : U[T] exists(m, P)

Γ ` (νm)P : U[T]

(T)
Γ ` vi : S i i = 1, 2 Γ ` P : U[T] Γ ` Q : U[T]

Γ ` if v1 = v2 then P else Q : U[T]

Fig. 7. Typing rules.

The type of 0 in (Tzero) is end[end] since no action is performed neither in the
current session nor towards the parent session. Rule (Tdef) constrains the protocol of
the service to be the same as the body process P and rule (Tinv) checks that invoked
service behaves in the dual manner with respect to the client. Here the dual of T , written
T is inductively defined as:

?(S̃).T =!(S̃).T !(S̃).T ′ =?(S̃).T ′ end = end

&{l1 : T1, . . . , ln : Tn} = ⊕{l1 : T1, . . . , ln : Tn}

⊕{l1 : T1, . . . , ln : Tn} = &{l1 : T1, . . . , ln : Tn}

Rules (Tin), (Tout) and (Tret) insert the usage type in the correct place. The type
for the input variable x̃ in rule (Tin) is not specified in the syntax but can be inferred
with the help of the algorithm described in [23]. Rule (Tbranch) considers in the final
type only the effective branches used by all the dual sessions in the rule (Tchoice). In

fact, the if construct allows to choose between many branches at the same time and
also different clients can invoke the same service making their own choices. The two
rules for parallel composition (TparL) and (TparR) allow parallel composition of two
processes only if at least one does not have any action in the current session, i.e. it has
a type U[end]. Note instead that both P and Q are allowed to produce values upwards,
in which case the operation U ◦U ′ is defined only if all the atomic actions in U and U′

are of the same kind !(S̃), and in that case U ◦ U ′ = U.U ′ = U ′ ◦ U. This operation is
sound because tail outputs of parallel values of the same type are not observable at the
type system level. Rule (Tpipe) uses the function pipe(U[T],U ′[T ′], S̃) defined as

pipe(U[end],U ′[T ′], S̃) = U[end]
pipe(U[!(S̃)],U ′[T], S̃) = U ◦ U ′[T]
pipe(U[!(S̃)k],U ′[end], S̃) = U ◦ U ′k[end] k > 1

Intuitively pipe constrains P > x̃ > Q in the current session to allow a single output
P whenever the type of Q is different from a single input or vice versa Q to be a single
input whenever P is !(S̃)k a sequence of k-times !(S̃). In this case the result is visible
upward replying k times U ′. The first case of pipe is necessary to guarantee the subject
reduction. (Tses) and (TsesI) are similar to service definition and invocation rules but
r is removed from the type environment which means that nesting of the same session
name is forbidden.

Rule (Tnew) checks a corresponding service definition by means of exists(m, P).
Function exists ensures that the process P declares, in case m is a service, the an-
nounced service and the inductive definition is as expected. Finally, rule (Tif) handles
conditionals in the usual way.

Typing rules allow a deduction for processes like r :!(int) ` r+ .〈1〉|r+ .〈2〉 which do
not preserve session linearity. We will exclude such processes by forbidding the direct
usage of session constructs (see Definition 3).

Example 1. Let us take the calculator example. The type !(int)[!(int, int).?(int)] ex-
presses the following client usage: the output of two integers is followed by the read-
ing of the result and an integer is returned outside the session (the first output out of
the square brackets indicates a return action, that is an output out of the current ses-
sion). Previous usage is compared with the session usage ?(int, int).!(int) to ensure that
the invocation is sound. Below we report the typing proof for the client, where we let
Γ = calc : [&{sum :?(int, int).!(int), inc :?(int).!(int)}], P = 〈inc〉.〈1〉.(x).return x,
Q = 〈sum〉.〈1, 2〉.(x).return x and T = ⊕{sum :!(int, int).?(int), inc :!(int).?(int)}:

Γ ` 〈1〉.(x).return x :!(int)[!(int).?(int)]
Γ ` 〈inc〉.〈1〉.(x).return x :!(int)[T]

Γ ` 〈1, 2〉.(x).return x :!(int)[!(int, int).?(int)]
Γ ` 〈sum〉.〈1, 2〉.(x).return x :!(int)[T]

Γ ` if (test) then P else Q :!(int)[T]

Moreover, we could safely replace the service definition with

calc.
(

(sum).(x,y).〈add(x,y)〉 + (inc).(x).〈add(x,1)〉 + (sub).(x,y).〈minus(x,y)〉
)

(which extends the previous version of the service with additional behaviors) and still
correctly type check the client. In fact, our type system can statically exclude the new
branch sub when the client is typed.

Example 2. Let us consider the factorial service f att, defined by:

f att.(n). if (n==0) then 〈1〉
else f att.〈n-1〉.(x).return x > x > 〈mul(x,n)〉

Notice that in this case we are able to express the factorial thanks to service per-
sistence, which guarantees a separation between each invocation. The entire program
is well typed by type checking only a single session instance. As the Theorem 2 will
show, this check suffices to ensure that f att is deadlock free. The typing proof is below,
where we recall that end[!(int)] = [!(int)] and let P = f att.〈n − 1〉.(x).return x, Q′ =
〈mul(x, n)〉, Q = P > x > Q′ and Γ = f att : [?(int).!(int)], n : int, mul : int × int → int

∅ ` 〈1〉 : [!(int)]

Γ ` 〈n − 1〉.(x).return x :!(int)[!(int).?(int)]

Γ ` f att.〈n − 1〉.(x).return x : [!(int)] Γ, x : int ` Q′ : [!(int)]
Γ ` P > x > Q′ : [!(int)]

Γ ` if (n == 0) then 〈1〉 else Q : end[!(int)]
f att : [?(int).!(int)], mul : . . . ` (n).if (n == 0) then 〈1〉 else Q : end[?(int).!(int)]

f att : [?(int).!(int)], mul : . . . ` f att.(n).if (n == 0) then 〈1〉 else Q : end[end]

Example 3. Beyond the basic type, expressions may use the name of a service as pa-
rameter. Take a load balancing service that is called to discover, at each invocation,
which service between a and b is more reliable for executing P.

(ν a b)
(

loadbalance.if choose(a, b) = 1 then 〈a〉 else 〈b〉 | a.P | b.P
)

Here the function choose is a basic expression of type [T] × [T] → int and uses the
names of the two services as parameters. The client after receiving the name of the
reliable service can substitute it for x for all future invocations of the service.

loadbalance.(x).return x > x > x.Q

It is a nice exercise to verify that the ensemble of the above processes is well-typed
(assuming P and Q have types [T] and [T] respectively).

The type system enjoys subject congruence and subject reduction. In their proof we
need some auxiliary lemmas.

Lemma 1 (Weakening). If Γ ` P : U[T] and m < fn(P) then Γ,m : S ` P : U[T].

Proof. Straightforward induction on the derivation of the typing judgment, applying α-
conversion when needed. ut

Lemma 2 (Strengthening). If Γ,m : S ` P : U[T] and m < fn(P) then Γ ` P : U[T].

Proof. Straightforward induction on the derivation of the typing judgment. ut

Proposition 1 (Subject Congruence). If Γ ` P : U[T] and P ≡ Q then Γ ` Q : U[T]

Lemma 3 (Substitution). Let Γ, x : S ` P : U[T]. If Γ ` v : S then Γ ` P[v/x] : U[T].

Theorem 1 (Subject reduction). Let ⊆ denote the smallest partial order on types such
that: T ⊆?(S̃).T,T ⊆!(S̃).T, Ti ⊆ &{l1 : T1, . . . , ln : Tn} and Ti ⊆ ⊕{l1 : T1, . . . , ln : Tn}.

– If Γ ` P : U[T] and P
τ
−→ Q then Γ ` Q : U[T].

– If Γ, r : S ` P : U[T] and P
rτ
−→ Q then Γ, r : S ′ ` Q : U[T] where S ′ ⊆ S and

[T ′] ⊆ [T].

In the proof of subject reduction we use the strengthening lemma to remove an
assumption about a session from Γ and the weakening lemma to insert a session with
modified type. We use the strengthening lemma to replace Γ′ with Γ every time that
Γ′ ⊆ Γ holds, and the weakening lemma to replace Γ′ with Γ every time that Γ ⊆ Γ′.

4 Deadlock freedom and normal form

In this section we show that a large subclass of well typed processes is deadlock free,
in the sense that certain communications will eventually succeed (unless the process
diverges).

Hereafter,
ω
−→∗ represents the reflexive and transitive closure of

τ
−→ and ω, γ . . . is a

(possibly empty) sequence of labels. We developed a notion of deadlock-freedom suit-
able for our processes. In particular, a process is deadlock-free if it cannot be blocked
waiting a synchronization unless it reaches the normal form. Normal form means that
all the possible communications are exhausted and only service definitions remain.

Definition 1 (Normal form). A process P is in normal form if
P ≡(νs1) . . . (νsn)(Πn

1 si.Qi).

Definition 2 (Deadlock-free). A process P is deadlock-free if for each Q s.t. P
ω
−→∗Q

then either Q
τ
−→ or Q reaches the normal form.

Since deadlock-freedom is a strong property we necessarily need to restrict the set
of possible processes. Thus we define a notion of initial process.

Definition 3 (Initial process). A process P is initial if it does not contain session con-
structs and all service definitions are at the top level.

The main theorem states deadlock freedom of all initial processes P such that ∅ `
P : end[end] (see Theorem 2).

Before proving the main theorem we need some auxiliary definitions and results.
Next lemma shows that only “safe” programs are produced starting from an initial pro-
cess, that is situation like rp . 〈1〉|rp . 〈1〉 cannot arise at runtime. In fact, the process is
an example for which session linearity is not respected since rp is used twice.

Lemma 4 (Linear sessions). Let P an initial process. If P
ω
−→∗Q, then for each session

r in Q, exactly two session constructs for r appear in Q with opposite polarities and
there is a restriction (νr) binding them.

Proof. The proofs of the lemma is by induction on the length of the computation. ut

Proving deadlock freedom involves the possibility of exhibiting a suitable τ reduc-
tion after an arbitrary number of evaluation steps. However, to characterize the next
computational reduction in a constructive way, we need to argue about a specific ses-
sion. To make it observable the session in which a synchronization is taking place we
need a mild modification to the rule (SCom) of the transition system. The basic idea is
to predicate over Pses instead of P, for P ≡ (ν r̃)Pses, i.e. where Pses has no binder on

session names. Similarly, when P
τ
−→Q we want to reason on the underlying reduction

from Pses to Qses. The revised rule, called (Scom’), behaves like the original but does
not restrict the session with a binder and uses the label rι to identify the current session.

(SC’)

P
(r)s⇒r
−→ P′ Q

(r)s⇐r
−→ Q′

(P|Q)
rι
−→ (P′|Q′)

The modification of the rule is sound since we are considering only initial pro-
cesses or processes that represent states in the evaluation of an initial process. In fact,
by Lemma 4 any initial process will produce for each new session a corresponding
binder to restrict the session. For this reason the LTS with rule (Scom’) has essentially
the same behavior of the previous LTS with rule (Scom); that is we can rename both
labels rι and rτ (generated by communications) in τ. Accordingly, in the new system
ω, γ are labels τ,rτ and rι. Another subtle aspect is that now session r is bound in the
label rτ and rι, because we need r to be fresh w.r.t. all the other pre-existing session
names, but we omit parentheses in favor of a lighter syntax. On the other hand, the type
environment Γ for closed processes can contain assumptions about session names.

We also need to reason inductively on the way sessions are nested and introduce the
notion of a context as a convenient notation.

Definition 4 (Contexts). The set of contexts is inductively defined by:

C ::= [[·]] | C|P | rp . C | (νs)C | C > x̃ > P
Crp ::= rp . [[·]]|P

As usual C[[P]] and Crp [[P]] are the processes obtained by replacing the hole in C
and Crp with P respectively.

Definition 5 (Session nesting relation). Let r1 ≺P r2 iff P ≡ C[[Crp
1
[[rq

2 . P]]]] and let
<P the transitive closure of ≺P.

Relation <P for initial processes is also acyclic (<P is irreflexive), it is preserved by

τ reductions and it holds that if P
rι
−→ Q then <Q=<P ∪{(x, r) | ∃r1.r1 ≺P r ∧ x <P r1}.

Next proposition is a sort of progress property valid for the outermost (in terms of
≺-relation) active sessions. In fact, if one of such sessions has a pending action enabled
then it is either guaranteed that after a finite number of steps a suitable synchronization
is accomplished or the opening of a new nested session is performed (by means of a
service invocation).

Proposition 2. Let Γ ` P : end[end] be an initial process typed over Γ that contains

only assumptions about sessions. Whenever P
ω
−→∗Q and r is a session name in Q such

that @r2 <Q r with Q
rq

2 :λ
−→ or Q ≡ C[[Crp

2
[[P′′ > x̃ > Q′′]]]] and C[[Crp

2
[[P′′]]]]

rq
2 :λ
−→ all of

the following hold:

(I) if Q
rp:← ṽ
−→ then Q

γ
−→∗

rp:→ ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(II) if Q
rp:→ ṽ
−→ then Q

γ
−→∗

rp:← ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(III) if Q
rp:←l
−→ then Q

γ
−→∗

rp:→l
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(IV) if Q
rp:→l
−→ then Q

γ
−→∗

rp:←l
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(V) if Q ≡ C[[Crp [[P′ > x̃ > Q′]]]] and Γ1 ` P′ : U[!(S̃).T] then

C[[Crp [[P′]]]]
γ
−→∗

rp:→ ṽ
−→ ∨ C[[Crp [[P′]]]]

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

Proof. The proof is by induction on the length llns(r,Q) of the longest nesting se-
quence induced by ≺Q and starting with r; that is the longest sequence of the form
r ≺Q r1 ≺Q r2 . . . rn−1 ≺Q rn, and then on the structure of the processes. More pre-
cisely, the well-founded order we consider for the induction is defined on pairs (rp,Q)
by letting (rp1

1 ,Q1) < (rp2

2 ,Q2) be the least transitive relation satisfying:

– (rp1

1 ,Q1) < (rp2

2 ,Q2) if llns(r1,Q1) < llns(r2,Q2)
– (rp,C[[Crp [[Q1]]]]) < (rp,C[[Crp [[Q2]]]]) if llns(r,Q1) = llns(r,Q2) and Q1 is a sub-

term of Q2[ṽ/ x̃] for suitable ṽ.

We sketch the first case (see the Appendix for the other cases). Actually proving (I)
means proving two different statements, depending on the essence of p.

(I).a if Q
r− :← ṽ
−→ and Γ, r : [!(S̃).T] ` Q : end[end] then Q

γ
−→∗

r+:→ ṽ
−→ ∨Q

γ
−→∗

r1ι
−→ Q1 and

r <Q1 r1

(I).b if Q
r+:← ṽ
−→ and Γ, r : [?(S̃).T] ` Q : end[end] then Q

γ
−→∗

r− :→ ṽ
−→ ∨ Q1

γ
−→∗

r1ι
−→ Q1

and r <Q1 r1

We can read previous statements as “a session side must respect, after a certain number
of steps γ, the obligation imposed by its type unless it postpones the obligation with
a new service call”. The fact that the type of r reflects the enabled action is a direct
consequence of the subject reduction.
Case (I).a If r : [!(S̃).T] it means that Γ1 ` Q′ : U[!(S̃).T], where Q ≡ C[[r+ . Q′]]. The
entire proof is completely type-driven, the key idea is that we consider only rules able
to yield U[!(S̃).T] in the conclusion. For ease of readability we also use the variable W
to range over processes.
Base cases: The base cases in Figure 8(a) are those prefixes compatible with an r+

output action. In these cases γ is the empty sequence.
(Some) Inductive cases: The thesis follows by inductive hypothesis on C[[r+ .W]] for
(TparL) and C[[r+ . R]] for (TparR) (see Figure 8(b)).

For (Tpipe), figure 8(c), we apply the inductive hypothesis case (V) on

C[[r+ .W]]. If C[[r+ .W]]
γ′

−→∗
r+→ ṽ
−→ C[[r+ .W ′]] then C[[r+ . (W > x̃ > R)]]

γ′

−→∗
τ
−→

(T)

Γ′, ṽ : S̃ ` W : U[T]

Γ ` 〈ṽ〉.W : U[!(S̃).T]

(TI)

Γ′, ṽ : S̃ ` return ṽ.W : !(S̃).T [T ′]

Γ′, r1 : [T ′], ṽ : S̃ ` r−1 . return ṽ.W : [!(S̃).T]

(T)

Γ′, s : [T ′] ` W :!(S̃).T [T ′]

Γ′, s : [T ′] ` s.W : [!(S̃).T]

(a) Base cases

(TL)

Γ ` W : UW [!(S̃).T] Γ ` R : UR[end]

Γ ` W |R : UW ◦ UR[!(S̃).T]

(TR)

Γ ` W : UW [end] Γ ` R : UR[!(S̃).T]

Γ ` W |R : UW ◦UR[!(S̃).T]

(b) Inductive cases: parallel

(T)

Γ ` W : UW [!(S̃ ′)] Γ, x̃ : S̃ ′ ` R : UR[!(S̃).T]

Γ ` W > x̃ > R : UW ◦ UR[!(S̃).T]

(c) Inductive cases: pipe

(TI)

Γ′ ` (x̃).W :!(S̃).T [T ′]

Γ′, r1 : [T ′] ` r−1 . (x̃).W : end[!(S̃).T]

(d) Inductive cases: nested session

Fig. 8. Deduction rules

C[[r+ . (W ′ > x̃ > R)|R[̃v/ x̃]]], and then the thesis follows by inductive hypothesis on

C[[r+ . R[ṽ/ x̃]]] if instead C[[r+ .W]]
γ
−→∗

r2ι
−→ then C[[r+ . (W > x̃ > R)]]

γ
−→∗

r2ι
−→ Q1

and r <Q1 r2.
In the presence of a nested session r1 with r ≺Q r1 we have various cases all similar.

For example, if Q
r−1 :← ṽ′

−→ , figure 8(d), then by inductive hypothesis we have two cases.

Q
γ′

−→∗
r−1 :→ ṽ′

−→ and then the thesis follows adding r1τ at the begin of the resulting sequence
generated by another application of the inductive hypothesis on C[[r+ . (r−1 .W)]]. Or

Q
γ′

−→∗
r2ι
−→ Q1 with r1 <Q1 r2 and then the thesis follows since r ≺Q r1 and r1 <Q1 r2.

Case (I).b is similar but we might also have Q ≡ C[[r− . return ṽ.W]]. As Q has type
end[end] there exists a parent session r1 for which the return become an enabled output.
Since r1 ≺Q r this case contradicts the assumptions. ut

We are now ready to prove the main result.

Theorem 2 (Deadlock freedom). Let P an initial process s.t. ∅ ` P : end[end] then

for each Q s.t. P
ω
−→∗Q then either Q

τ
−→ or Q is in normal form.

Proof. By contradiction, if Proposition 2 holds then it cannot be the case Q blocked on
a pending action in the middle of a session. In fact, it is always possible to accomplish
the synchronization choosing the right session that fits the proposition hypothesis. Such
a session must be one of the outermost sessions with an enabled action. Furthermore,
since the process is closed the type system (rule (TNew)) ensures that every service call

is successful. Otherwise, if only service declarations remain the process is already in
normal form. ut

Remark 1. The result can be extended to processes P that can output some values. In
fact, if Γ ` P : end[!(S̃)k] then we can take any suitable Q (designed to work on the
resulting values) such that Γ ` P > x̃ > Q : end[end], thus fitting the requirements of
Proposition 2. (The simplest case is Q ≡ 0.)

Example 4. The process P = s.(x).s.〈x〉.(y).return y | s.〈5〉.(y) is well typed in the
environment s :?(int).!(int) and hence is deadlock free. Notice that the input of y never
succeeds but the process is deadlock free since it keeps invoking new instances of s
(nested within the first established top session).

As a final observation, consider that even if simple, our framework can also cor-
rectly typecheck non-tail recursive processes. Take for example the initial process
s.s.return 1.(x)|s.(y). It is well formed and welltyped in the type environment s :!(int)
then we can conclude the process is deadlock free. An equivalent π-calculus process
is ∗s(r).(νr′)(s(r′).r (1).r′(x))|(νr)s(r).r(y) and in Kobayashi’s type system [19, 18] the
action r (1) is not ensured to succeed. In fact, r and r′ have the same type and hence the
capability level of r equal to the obligation level of r′ but rule A’[19] is not applicable
since r is created less recently than r′. Proposition 2 instead ensures that return 1 is
eventually performed.

5 Conclusion

We have studied a service language with sessions and pipelines. Differently from [15,
16, 24] our language build sessions automatically on each service invocation. For this
language we have defined a simple type system. To some extent, it is similar to the
simply typed π-calculus because it only tracks the exchanged values in each session. In
fact, since sessions are developed as low level runtime primitives, the type system does
not need to check session linearity, thus it only worries about session duality. Checking
duality means simply tracking active session usages; i.e., the current session, and the
parent session.

Subsequently, we restrict on the class of initial processes for which well typing
imply a suitable notion of deadlock freedom. Together with the type interference al-
gorithm, reported in [23], we have a simple tool to check deadlock freedom of our
processes. Among the main novelties of our approach we emphasize the form of the
types for sessions with returns (U[T]) and the typing rules for pipelines together with
the particular form of induction due to sessions structure.

The full version of this work will address the enhancement of the type system with
a notion of subtyping so that different usages of the same service can be typed consis-
tently. Moreover, recursion and regular µ-types [14] will be accounted for in the type
system, even if Proposition 2 will no longer hold in the present form. To see this, think
of a process making the same unbounded number of inputs and returns: if we type the
process as µα.!(S̃).α[µα.?(S̃).α] then we just approximate its real essence, because the
number of inputs and returns must be the same. Furthermore, we want to relax some

requirements on parallel usages, admit session passing and extend the type system to
multiparty session languages.

References

1. L. Acciai and M. Boreale. Xpi: a typed process calculus for xml messaging. In Proceedings
of FMOODS’05, volume 3535 of Lect. Notes in Comput. Sci., pages 47–66. Springer Verlag,
2005.

2. L. Acciai and M. Boreale. A type system for client progress in a service-oriented calculus.
2008. Lect. Notes in Comput. Sci. to apper.

3. D. Booth and C. Liu. Web Services Description Language () Version 2.0 Part 0: Primer,
2006. http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327.

4. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: A service centered calculus.
In M. Bravetti, M. Núñez, and G. Zavattaro, editors, Proceedings of WS-FM’06, volume 4184
of Lect. Notes in Comput. Sci., pages 38–57. Springer Verlag, 2006.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for structured
service programming. In Proceedings of FMOODS’08, Lect. Notes in Comput. Sci. Springer
Verlag, 2008. To appear.

6. A. L. Brown, C. Laneve, and L. G. Meredith. Piduce: A process calculus with native XML
datatypes. In Proceedings of EPEW’05/WS-FM’05, volume 3670 of Lect. Notes in Comput.
Sci., pages 18–34. Springer Verlag, 2005.

7. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In Proceedings of ESOP’07, volume 4421 of Lect. Notes in Comput. Sci.
Springer Verlag, 2007.

8. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Sock: a calculus for service ori-
ented computing. In A. Dan and W. Lamersdorf, editors, Proceedings of ICSOC’06, volume
4294 of Lect. Notes in Comput. Sci., pages 327–338. Springer Verlag, 2006.

9. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In Proceedings of ESOP’07, volume 4421 of Lect. Notes in Comput. Sci.,
pages 2–17. Springer Verlag, 2007.

10. R. Chinnici, H. Haas, A. Lewis, J.-J. Moreau, et al. Web Services Description Lan-
guage () Version 2.0 Part 2: Adjuncts, 2006. http://www.w3.org/TR/2006/

CR-wsdl20-adjuncts-20060327.
11. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description Lan-

guage () Version 2.0 Part 1: Core Language, 2006. http://www.w3.org/TR/2006/
CR-wsdl20-20060327.

12. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language () 1.1, 2001. http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

13. W. Cook, D. Kitchin, and J. Misra. A language for task orchestration and its semantic prop-
erties. In C. Baier and H. Hermanns, editors, Proceedings of CONCUR’06, volume 4137 of
Lect. Notes in Comput. Sci., pages 477–491. Springer Verlag, 2006.

14. V. Gapeyev, M. Levin, and B. Pierce. Recursive subtyping revealed. J. Funct. Program.,
12(6):511–548, 2002.

15. S. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inform., 42(2):191–
225, 2005.

16. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline for struc-
tured communication-based programming. In C. Hankin, editor, Proceedings of ESOP’98,
volume 1381 of Lect. Notes in Comput. Sci., pages 122–138. Springer Verlag, 1998.

17. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. ACM SIGPLAN
Notices, 36(3):128–141, 2001.

18. N. Kobayashi. Typical: Type-based static analyzer for the pi-calculus. Tool available at
http://www.kb.ecei.tohoku.ac.jp/˜koba/typical/.

19. N. Kobayashi. New type system for deadlock-free processes. In C. Baier and H. Hermanns,
editors, Proceedings of CONCUR’06, volume 4137 of Lect. Notes in Comput. Sci., pages
233–247. Springer Verlag, 2006.

20. N. Kobayashi and D. Sangiorgi. A hybrid type system for lock-freedom of mobile processes.
http://www.cs.unibo.it/˜sangio/DOC_public/hybrid.ps.gz.

21. I. Lanese, V. Vasconcelos, F. Martins, and A. Ravara. Disciplining orchestration and conver-
sation in service-oriented computing. In Proceedings of SEFM’07. IEEE Computer Society
Press, 2007. To appear.

22. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In
Proceedings of ESOP’07, volume 4421 of Lect. Notes in Comput. Sci., pages 33–47. Springer
Verlag, 2007.

23. L. G. Mezzina. How to infer finite session types in a calculus of services and sessions. In
Proceedings of COORDINATION’08, Lect. Notes in Comput. Sci. Springer Verlag, 2008. To
appear.

24. N. Yoshida and V. Vasconcelos. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session com-
munication. Electron. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

Appendix

Definition (Operational semantics). The following is an alternative formulation of the
operational semantics by means of evaluation contexts.

(Inv) D[[s.P, s.Q]] → (νr)D[[r− . P, r+ . Q | s.Q]] r < fn(D[[s.P, s.Q]])
(Com) Dr[[(x̃).P, 〈 ṽ〉.Q]] → Dr[[P[ṽ/ x̃],Q]]
(Lcom) Dr[[Σn

i=1(li).Pi, 〈lk〉.Q]] → Dr[[Pk,Q]] (1 ≤ k ≤ n)
(Ret) Dr1[[(x̃).P,Crp[[return ṽ.Q]]]] → Dr1[[P[ṽ/ x̃],Crp [[Q]]]]
(Pipe) C[[〈 ṽ〉.P > x̃ > Q]] → C[[P > x̃ > Q | Q[ṽ/ x̃]]]
(PipeRet) C[[Crp [[return ṽ.P]] > x̃ > Q]] → C[[Crp [[P]] > x̃ > Q | Q[̃v/ x̃]]]
(I f T) C[[if v = v1 then P else Q]]→ C[[P]] (v = v1) ↓ true
(I f F) C[[if v = v1 then P else Q]]→ C[[Q]] (v = v1) ↓ false
(S cop) P → P′ ⇒ (νm)P→ (νm)P′

(S tr) P ≡ P′ ∧ P′ → Q′ ∧ Q′ ≡ Q ⇒ P→ Q
where

C ::= [[·]] | C|P | rp . C | C > x̃ > P
Crp ::= rp . [[·]]|P
D ::= C[[C′ | C′′]]
Dr ::= D[[C′rp ,C′′rp]] r < fn(D)

Definition (T k).
(T.end)k = T k

(!(S̃))k = !(S̃).!(S̃)k−1

(!(S̃))1 = !(S̃).end

Definition (◦).

T ◦ T ′ =



















































































end ◦ end = end

!(S̃) ◦ end = !(S̃)
end ◦ !(S̃) = !(S̃)
!(S̃) ◦ !(S̃) = !(S̃).!(S̃)
!(S̃).T ◦ end = !(S̃) ◦ T
end ◦ !(S̃).T = !(S̃) ◦ T
!(S̃) ◦ !(S̃).T = !(S̃).!(S̃) ◦ T
!(S̃).T ◦ T ′ = !(S̃) ◦ (T.T ′)
undefined otherwise

Proposition (Subject Congruence). If Γ ` P : U[T] and P ≡ Q then Γ ` Q : U[T]

Proof. By induction on the derivation of P ≡ Q, with a case analysis on the last rule
used. The inductive cases are the congruence rules, and are straightforward. Of the other
cases we show the two most significant.
Case for ((νm)P)|Q ≡ (νm)(P|Q) if m < fn(Q), we have:

*
Γ,m : S ` P : U[T]

(Tnew)
Γ ` (νm)P : U[T] Γ ` Q : U ′[end]

(TparL)
Γ ` ((νm)P)|Q : U ◦ U ′[T]

which can be rearranged to give:

**
Γ,m : S ` P : U[T] Γ,m : S ` Q : U ′[end]

(TparL)
Γ,m : S ` (P|Q) : U ◦ U ′[T]

(Tnew)
Γ ` (νm)(P|Q) : U ◦ U ′[T]

The two proofs * and ** can be read from * to ** to have the only if side in which we
use the weakening lemma to type Q with the assumption m and from ** to * for the if
side in which we use the strengthening lemma to type Q without the assumption m. The
case in which (TparR) is used instead is similar.
Case for rp

1 . (rq
2 . 0|Q) ≡ rp

1 . Q|rq
2 . 0, we have:

Γ ` 0 : end[end]
(Tses)

Γ, r2 : [end] ` r+2 . 0 : end[end] Γ, r2 ` Q : U[T]
(TparR)

Γ, r2 ` (r+2 . 0|Q) : U[T]
(Tses)

Γ, r1 : [T], r2 : [end] ` r+1 . (r+2 . 0|Q) : end[U]

which can be rearranged to give:

Γ, r2 : [end] ` Q : U[T]
(Tses)

Γ, r1 : [T], r2 : [end] ` r+1 . Q : end[U]
Γ, r1 : [T] ` 0 : end[end]

(Tses)
Γ, r1 : [T], r2 : [end] ` r+2 . 0 : end[end]

(TparL)
Γ, r1 : [T], r2 : [end] ` r+1 . Q|r+2 . 0 : end[U]

Since the two proofs use the same sets of assumptions we can conclude the hypothesis.
The mirror cases with different polarities for r1 and r2 are similar.
Case for (P|Q) > x̃ > R ≡ (P > x̃ > R)|(Q > x̃ > R):

Γ ` P : U[!(S̃)] Γ ` Q : U ′[end]
(TparR)

Γ ` (P|Q) : U ◦ U ′[!(S̃)] Γ, x̃ :S̃ ` R : U ′′[T]
(Tpipe)

Γ ` (P|Q) > x̃ > R : U ◦ U′ ◦ U ′′[T]

which can be arranged to give:

Γ ` P : U[!(S̃)] Γ, x̃ :S̃ ` R : U ′′[T]
(Tpipe)

Γ ` (P > x̃ > R) : U ◦ U′′[T]
Γ ` Q : U ′[end] Γ, x̃ :S̃ ` R : U ′′[T]

(Tpipe)
Γ ` Q > x̃ > R : U′[end]

(TparR)
Γ ` (P > x̃ > R)|(Q > x̃ > R) : U ◦ U′ ◦ U ′′[T]

The mirror case which uses (TParL) is similar. There are also two other cases depending
of the pipe definition in which the process R can make only one input.

Γ ` P : U[(!(S̃))k] Γ ` Q : U ′[end]
(TparR)

Γ ` (P|Q) : U ◦ U ′[(!(S̃))k] Γ, x̃ :S̃ ` R : U ′′[end]
(Tpipe)

Γ ` (P|Q) > x̃ > R : U ◦ U′ ◦ (U ′′)k[end]

which can be arranged to give:

Γ ` P : U[(!(S̃))k] Γ, x̃ :S̃ ` R : U ′′[end]
(Tpipe)

Γ ` (P > x̃ > R) : U ◦ (U′′)k[end]
Γ ` Q : U ′[end] Γ, x̃ :S̃ ` R : U ′′[end]

(Tpipe)
Γ ` Q > x̃ > R : U′[end]

(TparR)
Γ ` (P > x̃ > R)|(Q > x̃ > R) : U ◦ U′ ◦ (U ′′)k[end]

ut

Lemma (Substitution lemma). Let Γ, x : S ` P : U[T]. If Γ ` w : S then Γ ` P[w/x] :
U[T].

Proof. By induction on the typing judgment.
Without losing the essence of the argument, we consider only 1-arity.
Case for (Tzero): straightforward.
Cases for (Tin) and (Tnew) : follow directly from the induction hypothesis and the fact
that variable under the binder cannot be chosen neither as a object nor as a subject of
the substitution.
Case for (Tout): the only interesting case is when x = v, we have:

(T)

Γ, v : S ` P : U[T] Γ, v : S ` v : S

Γ, v : S ` 〈v〉.P : U[!(S).T]

by assumption Γ ` w : S and induction hypothesis Γ ` P[w/v] : U[T] so (Tout) gives
Γ ` 〈w〉.P[w/v] : U[!(S).T] which is the required judgment.
Case for (Tret): the only interesting case is when x = v, we have:

(T)

Γ, v : S ` P : U[T] Γ, v : S ` v : S

Γ′, v : S ` return v.P :!(S).U[T]

by assumption Γ ` w : S and induction hypothesis Γ ` P[w/v] : U[T] so (Tret) gives
Γ ` return w.P[w/v] :!(S).U[T] which is the required judgment.
Case for (Tinv) the only interesting case is when x = v, we have:

(T)

Γ′, v : [T],w : [T] ` P : U[T]

Γ′, v : [T],w : [T] ` v.P : end[U]

by induction hypothesis Γ′,w : [T] ` P[w/v] : U[T] so (Tinv) gives Γ′,w : [T] `
w.P[w/v] : end[U] which is the required judgment.
Cases for (Tchoice), (Tbranch), (Tses), (TsesI) and (Tdef) follow directly from the in-
duction hypothesis.
Cases for (TparL), (TparR), (Tif) and (Tpipe) follow directly from the distributivity of
substitution with respect to |, if and > and the fact that pipe and ◦ work only on the
resulting type. ut

Theorem (Subject reduction). If Γ ` R : U[T] and R
λ
−→ R′ then ∃Γ′, T ′,U ′ s.t.

Γ′ ` Q : U ′[T ′] provided that whenever R
rp:← ṽ
−→ R′ also R

rp:→ ṽ
−→ R′′ and whenever

R
rp:←l
−→ R′ also R

rp:→l
−→ R′′.

Proof. We prove a more general statement, assumptions are necessary due to the early
style operational semantics, in particular for the shape of (In) and (Branch) rules. The
proof is by induction on the derivation with a case analysis on the last used rule.

Case for (In): We have Γ ` (x̃).P : U[?(̃S).T] where (x̃).P
← ṽ
−→ P[ṽ/ x̃]. We also know

that Γ′, x̃ :S̃ ` P : U[T] where Γ′ depends of the shape of ṽ :S̃ and Γ ⊆ Γ′. It’s worth
noticing the fact that the chosen ṽ has the same type of x̃ follow from the hypotheses.
By the application of the substitution lemma we have Γ′ ` P[ṽ/ x̃] : U[T] which is the
desiderated judgment.
Case for (Branch) We have Γ ` Σn

i=1(li).Pi : U[&{li : Ti}]i∈I and I ⊆ {1, . . . , n}. In
particular, the last point follow from the hypotheses. The desiderated judgment follows
because Γ ` Pi : U[Ti] and i ∈ I .
Case for (Choice): We have Γ ` 〈l〉.P : U[⊕{l1 : T1 . . . ln : Tn}] and l = li. The
desiderated judgment follows because Γ ` P : U[T i].
Cases for (Select): We have Γ ` (P|Q) : UP ◦ UQ[T]. By inductive hypothesis we
know that either Γ ` P′ : UP[T] and Γ ` Q′ : UQ[end] or Γ ` P′ : UP[end] and
Γ ` Q′ : UQ[T]. Applying (TparL)/(TparR) we obtain Γ ` (P′|Q′) : UP ◦ UQ[T] which
is the desiderated judgment.

Case for (Out): We have Γ′, ṽ :S̃ ` 〈 ṽ〉.P : U[!(̃S).T] and 〈 ṽ〉.P
→ ṽ
−→ P. We also know

that either Γ′, ṽ :S̃ ` P : U[T] or Γ′ ` P : U[T] (depending if ṽ is still used by P)
which is the desiderated judgment.

Case for (Ret): We have Γ′, ṽ :S̃ ` return ṽ.P :!(̃S).U[T] and return ṽ.P
↑ ṽ
−→ P. We

also know that Γ′, ṽ :S̃ ` P : U[T] or Γ′ ` P : U[T] (depending if ṽ is still used by P)
which is the desiderated judgment.

Case for (Def): We have Γ′, s : [T] ` s.P : end[end] and s.P
s⇒r
−→ r+ . P|s.P. We also

know that Γ′, s : [T] ` P : end[T] and that the session r has type [T] which is the same
of s. Thanks to (TSes) we can conclude that Γ′, s : [T], r : [T] ` r+ . P : end[end] and
finally with (TparL) Γ′, s : [T], r : [T] ` r . P|s.P : end[end] which is the desiderated
judgment.

Case for (Inv): We have Γ′, s : [T] ` s.P : end[U] and s.P
s⇐r
−→ r− . P. We also know

that Γ′, s : [T] ` P : U[T] and that the session r has a type [T]. Thanks to (TSesI)
we can conclude that Γ′, s : [T], r : [T] ` r− . P : end[U] which is the desiderated
judgment.
Case for (SCom): We have Γ′, s : S ` (P|Q) : UP ◦ UQ[T]. By inductive hypothesis
we also know Γ′, s : S , r : S ` P′ : UQ[T] and Γ′, s : S r : S ` Q′ : UQ[end] and
by applying (TParR) and (Tnew) we obtain Γ′ ` (νr)(P′|Q′) : UP ◦ UQ[T]. It is worth
noticing that if s is a top level invocation and it returns some values then T is exactly
the type of these values.
Case for (SessionOut): We have Γ′, r : [?(S̃).T] ` r− . P : U[!(S̃).T]. By inductive
hypothesis we know that Γ′′ ` P′ : T [T ′] where Γ′′ ⊆ Γ′. Thanks to (TsesI) we can
conclude Γ′′, r : [T] ` r− . P′ : [T] which is the desiderated judgment. In the other case
we have, Γ′, r : [!(S̃).T] ` r+ . P : U[!(S̃).T] and it is similar.
Case for (Session): We have Γ′, r : [T] ` r+ . P : end[U] and T depending on λ. By
inductive hypothesis we know Γ′′ ` P′ : T ′[U ′] where either Γ′′ ⊆ Γ′ (for an output)
or Γ′ ⊆ Γ′′ (for an input) or Γ′ = Γ′′ (for labels and τ) and thanks to (Tses) we can

conclude Γ′′, r : [T ′] ` r .+ P′ : end[U] which is the desiderated judgment.
Case for (NestInv). We have Γ′, s : [T] ` r+ . P : end[U]. By inductive hypothesis we
know Γ′, s : [T], r′ : [T] ` P′ : U[T]. Thanks to (Tses) we can conclude Γ′, s : [T], r′ :
[T] ` r+ . P′ : end[U]. The mirror case with r− . P is similar.
Case for (Comm): We have either Γ′, r : [!(S̃).T] ` (P|Q) : UP ◦ UQ[T ′] or Γ′, r :
[!(S̃).T] ` (P|Q) : UP ◦UQ[T ′] depending on the polarity of p. By inductive hypothesis
we know Γ′′ ` P′ : UP[T ′] where Γ ⊆ Γ′′ and Γ′′′ ` Q′ : UQ[end] where Γ′′′ ⊆ Γ with
T ′′ = T . Applying (TparL) we obtain Γ′, r : [T] ` (P′|Q′) : UP ◦ UQ[T ′] which is the
desiderated judgment. The other cases one where P is located on the client side and one
where Q performs actions are similar.
Case for (Res): We have Γ ` P : U[T] and by inductive hypothesis Γ, s : S ` P′ :
U ′[T ′]. Applying (Tnew) we obtain Γ ` P′ : U ′[T ′] which is the desiderated judgment.
Cases for (SessRes) and (Open) similar to the previous case.
Case for (Par): We have Γ ` P|Q : UP ◦ UQ[T] and by inductive hypothesis Γ′ ` P′ :
U ′P[T ′] where Γ′,U ′P and T ′ depend of the shape of the label λ. Applying (TParL) we
have Γ ` P′|Q : U ′P ◦ UQ[T ′]. The other case with P : UP[end] is similar.
Case for (Pipe): We have Γ ` P > x̃ > Q : U[T] and by inductive hypothesis we also
have Γ′ ` P′ : UP[end] where Γ′ ⊆ Γ. Substitution lemma and inductive hypothesis
on Q give Γ′′ ` Q[ṽ/ x̃] : UQ[T] where Γ′′ ⊆ Γ with U = UP ◦ UQ. The desiderated
judgment follows by applying (Tpipe) and (TParR) which give Γ ` P′ > x̃ > Q|Q[̃v/ x̃] :
U[T]. In the other case we have Γ ` P > x̃ > Q : U[end]. By inductive hypothesis
Γ′ ` P′ : UP[T] where Γ′ ⊆ Γ and Γ′′ ` Q : UQ[end] where Γ′′ ⊆ Γ. By applying
(TPipe) we have Γ ` P′ > x̃ > Q : U′[end] and with (TParR) and the substitution
lemma finally we can conclude Γ ` (P′ > x̃ > Q)|Q[̃v/ x̃] : U[end]
Case for (PipePass) we have Γ ` P > x̃ > Q : U[T] and by inductive hypothesis we
also have Γ′ ` P′ : U ′[T ′] and by applying (TPipe) Γ′′ ` P′ > x̃ > Q : U′′[T] where
Γ ⊆ Γ′′.
Cases for (IfL) and (IfR): Follow directly from the inductive hypothesis.
Case for (Equiv): Follow directly by inductive hypothesis and the subject congruence
lemma. ut

Proposition. Let Γ ` P : end[end] be an initial process typed over Γ that contains only

assumptions about sessions. Whenever P
ω
−→∗Q and r is a session name in Q such that

@r2 <Q r with Q
rq

2 :λ
−→ or Q ≡ C[[Crp

2
[[P′′ > x̃ > Q′′]]]] and C[[Crp

2
[[P′′]]]]

rq
2 :λ
−→ all of the

following hold:

(I) if Q
rp:← ṽ
−→ then Q

γ
−→∗

rp:→ ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(II) if Q
rp:→ ṽ
−→ then Q

γ
−→∗

rp:← ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(III) if Q
rp:←l
−→ then Q

γ
−→∗

rp:→l
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(IV) if Q
rp:→l
−→ then Q

γ
−→∗

rp:←l
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

(V) if Q ≡ C[[Crp [[P′ > x̃ > Q′]]]] and Γ1 ` P′ : U[!(S̃).T] then

C[[Crp [[P′]]]]
γ
−→∗

rp:→ ṽ
−→ ∨ C[[Crp [[P′]]]]

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

Proof. The proof is by induction on the length llns(r,Q) of the longest nesting se-
quence induced by ≺Q and starting with r; that is the longest sequence of the form

r ≺Q r1 ≺Q r2 . . . rn−1 ≺Q rn, and then on the structure of the processes. More pre-
cisely, the well-founded order we consider for the induction is defined on pairs (rp,Q)
by letting (rp1

1 ,Q1) < (rp2

2 ,Q2) be the least transitive relation satisfying:

– (rp1

1 ,Q1) < (rp2

2 ,Q2) if llns(r1,Q1) < llns(r2,Q2)
– (rp,C[[Crp [[Q1]]]]) < (rp,C[[Crp [[Q2]]]]) if llns(r,Q1) = llns(r,Q2) and Q1 is a sub-

term of Q2[ṽ/ x̃] for suitable ṽ.

We show the first case the others are simpler.
Actually proving (I) means proving two different statements.

(I).a if Γ, r : [!(S̃).T] ` Q : end[end] and Q
r− :← ṽ
−→ then Q

γ
−→∗

r+:→ ṽ
−→ ∨Q

γ
−→∗

r1ι
−→ Q1 and

r <Q1 r1

(I).b if Γ, r : [?(S̃).T] ` Q : end[end] and Q
r+ :← ṽ
−→ then Q

γ
−→∗

r− :→ ṽ
−→ ∨ Q1

γ
−→∗

r1ι
−→ Q1

and r <Q1 r1

We can read previous statements as “a session side must respect, after a certain number
of steps γ, the obligation imposed by its type unless it postpones the obligation with a
new service call”. The fact that the type of r reflects the type of the enabled action is
straightforward.
Case (I).a if Γ(r) = [!(S̃).T] it means that:

(T)

Γ ` Q′ : U[!(S̃).T]

Γ, r : [!(S̃).T] ` r+ . Q′ : end[U]

where Q ≡ C[[r+ . Q′]]. The entire proof is completely types driven, the key idea is that
we consider only rules able to yields U[!(S̃).T] in the conclusion. For ease of readability
we also use the variable W to range over processes.
Base cases: The bases cases are those prefixes compatible with an r+ output action.

(T)

Γ′, ṽ :S̃ ` W : U[T]

Γ ` 〈 ṽ〉.W : U[!(̃S).T]

(TI)

Γ′, ṽ :S̃ ` return ṽ.W :!(̃S).T [T ′]

Γ′, r1 : [T ′], ṽ :S̃ ` r−1 . return ṽ.W : end[!(̃S).T]
(T)

Γ′, s : [T ′] ` W :!(S̃).T [T ′]

Γ′, s : [T ′] ` s.W : end[!(S̃).T]

in these cases γ is the empty sequence and r1 , r since session nesting is acyclic.
Inductive cases:

(TL)

Γ ` W : UW [!(S̃).T] Γ ` R : UR[end]

Γ ` W |R : UW ◦ UR[!(S̃).T]

(TR)

Γ ` W : UW [end] Γ ` R : UR[!(S̃).T]

Γ ` W |R : UW ◦ UR[!(S̃).T]

The thesis follows by induction hypothesis on C[[r+ .W]] for (TparL) and C[[r+ . R]]
for (TparR).

(T)

Γ ` vi : S i i = 1, 2 Γ ` W : U[!(S̃).T] Γ ` R : U[!(S̃).T]

Γ ` if v1 = v2 then W else R : U[!(S̃).T]

The thesis follows by induction hypothesis either onC[[r+ .W]] orC[[r+ . R]] depending
on the evaluation of the if guard.

(T)

Γ ` W : UW[!(S̃ ′)] Γ, x̃ :S̃ ′ ` R : UR[!(S̃).T]

Γ ` W > x̃ > R : UW ◦ UR[!(S̃).T]

We apply the induction hypothesis case (V) on C[[r+ .W]]. If C[[r+ .W]]
γ′

−→∗
r+→ ṽ
−→

C[[r+ .W ′]] then C[[r+ . (W > x̃ > R)]]
γ′

−→∗
τ
−→ C[[r+ . (W ′ > x̃ > R)|R[̃v/ x̃]]], and

then the thesis follows by induction hypothesis on C[[r+ . R[ṽ/ x̃]]] if instead

C[[r+ .W]]
γ
−→∗

r2ι
−→ then C[[r+ . (W > x̃ > R)]]

γ
−→∗

r2ι
−→ Q1 and r <Q1 r2.

(T)

Γ, s : S ` W : U[!(S̃).T]

Γ ` (νs)W : U[!(S̃).T]

Follows directly by inductive hypothesis on C[[r+ .W]].

(TI)

Γ′ ` (x̃).W :!(̃S).T [T ′]

Γ′, r1 : [T ′] ` r−1 . (x̃).W : end[!(̃S).T]

Since Q
r−1 :← ṽ′

−→ and r ≺Q r1 then by induction hypothesis we have two cases. Q
γ′

−→∗
r−1 :→ ṽ′

−→

and then the thesis follows adding r1τ at the begin of the resulting sequence gen-
erated by another application of the induction hypothesis on C[[r+ . (r−1 .W)]]. Or

Q
γ′

−→∗
r2ι
−→ Q1 with r1 <Q1 r2 and then the thesis follows since r ≺Q r1 and r1 <Q1 r2.

(TI)

Γ′ ` 〈 ṽ〉.W :!(̃S).T [T ′]

Γ′, r1 : [T ′] ` r−1 . 〈 ṽ〉.W : end[!(̃S).T]

(TI)

Γ′ ` 〈li〉.W :!(S̃).T [T ′]

Γ′, r1 : [T ′] ` r−1 . 〈li〉.W : end[!(S̃).T]
(TI)

Γ′ `
∑n

i=1(li).Wi :!(S̃).T [T ′]

Γ, r1 : [T ′] ` r−1 . 〈li〉.W : end[!(S̃).T]

(TI)

Γ′ ` (νs)W :!(S̃).T [T ′]

Γ′, r1 : [T ′] ` r−1 . (νs)W : end[!(S̃).T]

They are similar to the previous case.

(TI)

Γ′ ` W : UW[T ′] Γ′ ` R :!(S̃).UR[end]

Γ′, r1 : [T ′] ` r−1 . (W |R) : end[!(S̃).UW ◦ UR]

(TI)

Γ′ ` W :!(S̃).UW[T ′] Γ′ ` R : UR[end]

Γ′, r1 : [T ′] ` r−1 . (W |R) : end[!(S̃).UW ◦ UR]
(TI)

Γ′ ` W : UW[end] Γ′ ` R :!(S̃).UR[T ′]

Γ′, r1 : [T ′] ` r−1 . (W |R) : end[!(S̃).UW ◦ UR]

(TI)

Γ′ ` W :!(S̃).UW[end] Γ′ ` R : UR[T ′]

Γ′, r1 : [T ′] ` r−1 . (W |R) : end[!(S̃).UW ◦ UR]

Thesis follows directly on induction on the process producing the output.

Γ′ ` W :!(S̃).UW[!(S̃ ′)] Γ′, x̃ :S̃ ′ ` R : UR[T ′]

Γ′ ` W > x̃ > R :!(̃S).UW ◦ UR[T ′]

Γ′, r1 : [T ′] ` r−1 . (W > x̃ > R) : end[!(̃S).UW ◦ UR]

Γ′ ` W : UW [!(S̃ ′)] Γ′, x̃ :S̃ ′ ` R :!(S̃).UR[T ′]

Γ′ ` W > x̃ > R :!(̃S).UW ◦ UR[T ′]

Γ′, r1 : [T ′] ` r−1 . (W > x̃ > R) : end[!(̃S).UW ◦ UR]

We apply the induction hypothesis case (V) on C[[r+ . (r−1 .W)]]. If

C[[r+ . (r−1 .W)]]
γ′

−→∗
r−1→ ṽ
−→ C[[r+ . (r−1 .W ′)]] then C[[r+ . (r−1 . (W > x̃ > R))]]

γ′

−→∗
τ
−→

C[[r+ . (r−1 . (W ′ > x̃ > R)|R[̃v/ x̃])]], and then the thesis follows by induction hypothesis
either on C[[r+ . (r−1 .W ′)]] for the first case or on C[[r+ . (r−1 . R[ṽ/ x̃])]] for the second

case. If instead C[[r+ . (r−1 .W)]]
γ
−→∗

r1ι
−→ then C[[r+ . (r−1 . (W > x̃ > R))]]

γ
−→∗

r2ι
−→ Q1

and r <Q1 r2.

Γ′ ` W :!(S̃).UW[!(S̃ ′)k] Γ′, x̃ :S̃ ′ ` R : UR[end]

Γ′ ` W > x̃ > R :!(̃S).UW ◦ Uk
R[end]

Γ′, r1 : [end] ` r−1 . (W > x̃ > R) : end[!(̃S).UW ◦ Uk
R]

Γ′ ` W : UW [!(S̃ ′)k] Γ′, x̃ :S̃ ′ ` R :!(S̃).UR[end]

Γ′ ` W > x̃ > R :!(̃S)k.UW ◦ Uk
R[end]

Γ′, r1 : [end] ` r−1 . (W > x̃ > R) : end[!(̃S)k.UW ◦ Uk
R]

We apply the induction hypothesis case (V). If C[[r+ . (r−1 .W)]]
γ′

−→∗
→ ṽ
−→ then

C[[r+ . (r−1 . (W > x̃ > R))]]
γ′

−→∗
τ
−→ C[[r+ . (r−1 . (W > x̃ > R))|R[̃v/ x̃])]], and then the

thesis follows by induction hypothesis either on C[[r+ . (r−1 .W)]] for the first case or

on C[[r+ . (r−1 . R[ṽ/ x̃])]] for the second case. If instead C[[r+ . (r−1 .W)]]
γ
−→∗

r1ι
−→ then

C[[r+ . (r−1 . (W > x̃ > R))]]
γ
−→∗

r2ι
−→ Q1 and r <Q1 r2.

(T)

Γ ` W : T ′[!(S̃).T]

Γ ` return ṽ.W :!(̃S ′).T ′[!(S̃).T]

Case (I).b is similar but we might also have Q ≡ C[[r− . return ṽ.W]]. As Q has type
end[end] there exists a parent session r1 for which the return become an enabled output.
Since r1 ≺Q r this case contradicts the assumptions.

ut

