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Premises and Promises

Premises

D5.3a Reconfigurations preserving architectural types and shapes.

Promises

“In future, results of Deliverable 5.3a will be applied to help in
deducting rules for reconfiguration.”

- D6.1a

“We will develop a formal model for [. . . ] reconfiguration . . . ”
- Wiki’s T5.3 description

“The objective of WP5 is to provide rigorous mathematical founda-
tions for combining services, including [. . . ] reconfiguration.”

- Wiki’s WP5 objective
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The recipe

Ingredients

I 20mg (Dynamic) Software Architectures;

I 3 Architectural Styles;

I 10dl Reconfigurations;

I Some Graphs;

I QoS (at will).

Preparation

Put the ingredients together and mix.
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What are (software) architectures?

The experts say...

“... the structure of the components of a program / system, their
interrelationship, and principles and guidelines governing their design
and evolution over time.”

- D. Garlan & D. Perry, 1995
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A suitable model for architectures

Graphs as model of typical architectural models

I E.g. Components and Connectors.

ports

�� ��
client // • connectoroo // • serveroo

component

OO 88

guess...

PP

Graphs as model of Sensoria languages

I SRML diagrams (see SRML-P(v1.3)).

I Graphical encodings of process calculi.
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Architectural Styles

A style is . . .

“. . . a set of patterns or rules for creating one or more architectures
in a consistent fashion.”

- IEEE standard 1471

Roughly... Style = Vocabulary + Rules

Benefits?

Understanding, Reuse, Construction, etc.
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Models for styles

As a language

I Implicit style rules.

I Intuitive style-driven design.

I E.g. Graph grammars approaches [Le Métayer, 1996]

As additional constraints

I Explicit style rules.

I Complex structural rules easier to express.

I E.g. Alloy-based approaches [Garlan 2006].
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Reconfigurations

What?

A reconfiguration is a change in a (dynamic) architecture.

Why?

Security policies, load balancing, mobility, QoS assurance, etc.

E.g.?

Components joining/leaving the system, binding, wrapping, etc.
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What is ADR?

ADR = Term Rewriting + Designs.
Designs = Typed Graphs with Interfaces.

Goal

A unifying model for . . .

I Design;

I Execution;

I Reconfiguration.
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A Client-Server Example. Sorts

Sorts (Vocabulary of Architectural Elements)

The sorts of the client server style are

I Ports (nodes): •.
I Component types (edges, designs)

C // • S

I Actual components (edges)

client // • • connectoroo // •

• orchestratoroo // • • serveroo

Architectural Design Rewriting 12/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Sorts

Sorts (Vocabulary of Architectural Elements)

The sorts of the client server style are

I Ports (nodes): •.
I Component types (edges, designs)

C // • S

I Actual components (edges)

client // • • connectoroo // •

• orchestratoroo // • • serveroo

Architectural Design Rewriting 12/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Sorts

Sorts (Vocabulary of Architectural Elements)

The sorts of the client server style are

I Ports (nodes): •.
I Component types (edges, designs)

C // • S

I Actual components (edges)

client // • • connectoroo // •

• orchestratoroo // • • serveroo

Architectural Design Rewriting 12/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Values

Values (Designs)

A design is a typed graph with an edge as interface.

C // •
%%

client // • connectoroo // •

client // • connectoroo

AA

... is a design of type C .
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A Client-Server Example. Operations

system : C → S

S C // • serveroo

osystem : C → S

S C // • orchestratoroo // • serveroo
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A Client-Server Example. Operations

cclient :→ C

C // •
��

client // • connectoroo // •

client :→ C

C // •
��

client // •
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A Client-Server Example. Operations

clients : C × C → C

C // •
!!

C // •

C

OO

noclient :→ C

C // •
��
•
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A Client-Server Example. Values (again)

Values (evaluation of terms)

The value of clients(cclient, cclient) is . . .

C // •
%%

client // • connectoroo // •

client // • connectoroo

AA
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A Client-Server Example. Reconfiguration rules

join(Y )

X −→ clients(X ,Y )

leave(Y )

clients(X ,Y ) −→ X

orchestrate

system(X ) −→ osystem(X )
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A Client-Server Example. A reconfiguration

Applying rule orchestrate...

If we have system(clients(cclient, cclient)) . . .

S client // • connectoroo // • serveroo

client // • connectoroo

AA

. . . X is matched with clients(cclient, cclient) . . .

. . . and our system becomes osystem(clients(cclient, cclient).

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA
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A Client-Server Example. More reconfigurations

disconnect

Labeled rule to model individual disconnection:

cclient
disc−→ client

Dummy labeled rule:

client
disc−→ client

Conditional labeled rule for complex disconnections:

X
disc−→ X ′ Y

disc−→ Y ′

clients(X ,Y )
disc−→ clients(X ′,Y ′)
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A Client-Server Example. Another reconfiguration

Applying rule disconnect...

If we have osystem(clients(cclient, cclient)) . . .

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA

. . . we obtain osystem(clients(client, client)).

S client // • orchestratoroo // • serveroo

client

AA
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Constrained Designs

Designs with Constraints

I Nodes as QoS attributes.

I Edges as (c-semiring based) constraints.

Purpose

I Postpone design decisions.

I Trigger reconfigurations.

I Measure reconfiguration alternatives.
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ADR in detail

ADR is . . .

I Sorts: Vocabulary, Types (Edge and node labels).

I Values: Designs (graphs with interfaces).

I Operations: grammar-like style rules.

I Terms: proofs of construction.

I Terms (with variables): partial Designs.

I Axioms: properties of operations.

I Membership equations: additional style rules.

I Rewriting rules: behaviour, reconfigurations.

I Rewriting strategies: style conformance, style analysis, etc.
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What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.
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Further reading

Two drafts

I Style-Based Reconfigurations of Software Architectures with
QoS Constraints.

I Architectural Styles for Graphical Encodings of Process
Algebras.
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I got the idea but I have some...

I Questions?

I Remarks?

I Criticism?

I Suggestions?
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