
Introduction
Architectural Design Rewriting

Conclusion

Architectural Design Rewriting

R. Bruni1, A. Lluch Lafuente1, U. Montanari1, E. Tuosto2

1Department of Computer Science, University of Pisa
2Department of Computer Science, University of Leicester

14 June 2007

Architectural Design Rewriting 1/27



Introduction
Architectural Design Rewriting

Conclusion

Outline

Introduction

Architectural Design Rewriting

Conclusion

Architectural Design Rewriting 2/27



Introduction
Architectural Design Rewriting

Conclusion

Premises and Promises

Premises

D5.3a Reconfigurations preserving architectural types and shapes.

Promises

“In future, results of Deliverable 5.3a will be applied to help in
deducting rules for reconfiguration.”

- D6.1a

“We will develop a formal model for [. . . ] reconfiguration . . . ”
- Wiki’s T5.3 description

“The objective of WP5 is to provide rigorous mathematical founda-
tions for combining services, including [. . . ] reconfiguration.”

- Wiki’s WP5 objective

Architectural Design Rewriting 3/27



Introduction
Architectural Design Rewriting

Conclusion

Premises and Promises

Premises

D5.3a Reconfigurations preserving architectural types and shapes.

Promises

“In future, results of Deliverable 5.3a will be applied to help in
deducting rules for reconfiguration.”

- D6.1a

“We will develop a formal model for [. . . ] reconfiguration . . . ”
- Wiki’s T5.3 description

“The objective of WP5 is to provide rigorous mathematical founda-
tions for combining services, including [. . . ] reconfiguration.”

- Wiki’s WP5 objective

Architectural Design Rewriting 3/27



Introduction
Architectural Design Rewriting

Conclusion

The recipe

Ingredients

I 20mg (Dynamic) Software Architectures;

I 3 Architectural Styles;

I 10dl Reconfigurations;

I Some Graphs;

I QoS (at will).

Preparation

Put the ingredients together and mix.

Architectural Design Rewriting 4/27



Introduction
Architectural Design Rewriting

Conclusion

What are (software) architectures?

The experts say...

“... the structure of the components of a program / system, their
interrelationship, and principles and guidelines governing their design
and evolution over time.”

- D. Garlan & D. Perry, 1995

Architectural Design Rewriting 5/27



Introduction
Architectural Design Rewriting

Conclusion

A suitable model for architectures

Graphs as model of typical architectural models

I E.g. Components and Connectors.

ports

�� ��
client // • connectoroo // • serveroo

component

OO 88

guess...

PP

Graphs as model of Sensoria languages

I SRML diagrams (see SRML-P(v1.3)).

I Graphical encodings of process calculi.

Architectural Design Rewriting 6/27



Introduction
Architectural Design Rewriting

Conclusion

A suitable model for architectures

Graphs as model of typical architectural models

I E.g. Components and Connectors.

ports

�� ��
client // • connectoroo // • serveroo

component

OO 88

guess...

PP

Graphs as model of Sensoria languages

I SRML diagrams (see SRML-P(v1.3)).

I Graphical encodings of process calculi.

Architectural Design Rewriting 6/27



Introduction
Architectural Design Rewriting

Conclusion

Architectural Styles

A style is . . .

“. . . a set of patterns or rules for creating one or more architectures
in a consistent fashion.”

- IEEE standard 1471

Roughly... Style = Vocabulary + Rules

Benefits?

Understanding, Reuse, Construction, etc.

Architectural Design Rewriting 7/27



Introduction
Architectural Design Rewriting

Conclusion

Architectural Styles

A style is . . .

“. . . a set of patterns or rules for creating one or more architectures
in a consistent fashion.”

- IEEE standard 1471

Roughly... Style = Vocabulary + Rules

Benefits?

Understanding, Reuse, Construction, etc.

Architectural Design Rewriting 7/27



Introduction
Architectural Design Rewriting

Conclusion

Models for styles

As a language

I Implicit style rules.

I Intuitive style-driven design.

I E.g. Graph grammars approaches [Le Métayer, 1996]

As additional constraints

I Explicit style rules.

I Complex structural rules easier to express.

I E.g. Alloy-based approaches [Garlan 2006].

Architectural Design Rewriting 8/27



Introduction
Architectural Design Rewriting

Conclusion

Models for styles

As a language

I Implicit style rules.

I Intuitive style-driven design.

I E.g. Graph grammars approaches [Le Métayer, 1996]

As additional constraints

I Explicit style rules.

I Complex structural rules easier to express.

I E.g. Alloy-based approaches [Garlan 2006].

Architectural Design Rewriting 8/27



Introduction
Architectural Design Rewriting

Conclusion

Reconfigurations

What?

A reconfiguration is a change in a (dynamic) architecture.

Why?

Security policies, load balancing, mobility, QoS assurance, etc.

E.g.?

Components joining/leaving the system, binding, wrapping, etc.

Architectural Design Rewriting 9/27



Introduction
Architectural Design Rewriting

Conclusion

Reconfigurations

What?

A reconfiguration is a change in a (dynamic) architecture.

Why?

Security policies, load balancing, mobility, QoS assurance, etc.

E.g.?

Components joining/leaving the system, binding, wrapping, etc.

Architectural Design Rewriting 9/27



Introduction
Architectural Design Rewriting

Conclusion

Reconfigurations

What?

A reconfiguration is a change in a (dynamic) architecture.

Why?

Security policies, load balancing, mobility, QoS assurance, etc.

E.g.?

Components joining/leaving the system, binding, wrapping, etc.

Architectural Design Rewriting 9/27



Introduction
Architectural Design Rewriting

Conclusion

Outline

Introduction

Architectural Design Rewriting

Conclusion

Architectural Design Rewriting 10/27



Introduction
Architectural Design Rewriting

Conclusion

What is ADR?

ADR = Term Rewriting + Designs.
Designs = Typed Graphs with Interfaces.

Goal

A unifying model for . . .

I Design;

I Execution;

I Reconfiguration.

Architectural Design Rewriting 11/27



Introduction
Architectural Design Rewriting

Conclusion

What is ADR?

ADR = Term Rewriting + Designs.
Designs = Typed Graphs with Interfaces.

Goal

A unifying model for . . .

I Design;

I Execution;

I Reconfiguration.

Architectural Design Rewriting 11/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Sorts

Sorts (Vocabulary of Architectural Elements)

The sorts of the client server style are

I Ports (nodes): •.
I Component types (edges, designs)

C // • S

I Actual components (edges)

client // • • connectoroo // •

• orchestratoroo // • • serveroo

Architectural Design Rewriting 12/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Sorts

Sorts (Vocabulary of Architectural Elements)

The sorts of the client server style are

I Ports (nodes): •.
I Component types (edges, designs)

C // • S

I Actual components (edges)

client // • • connectoroo // •

• orchestratoroo // • • serveroo

Architectural Design Rewriting 12/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Sorts

Sorts (Vocabulary of Architectural Elements)

The sorts of the client server style are

I Ports (nodes): •.
I Component types (edges, designs)

C // • S

I Actual components (edges)

client // • • connectoroo // •

• orchestratoroo // • • serveroo

Architectural Design Rewriting 12/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Values

Values (Designs)

A design is a typed graph with an edge as interface.

C // •
%%

client // • connectoroo // •

client // • connectoroo

AA

... is a design of type C .

Architectural Design Rewriting 13/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Operations

system : C → S

S C // • serveroo

osystem : C → S

S C // • orchestratoroo // • serveroo

Architectural Design Rewriting 14/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Operations

system : C → S

S C // • serveroo

osystem : C → S

S C // • orchestratoroo // • serveroo

Architectural Design Rewriting 14/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Operations

cclient :→ C

C // •
��

client // • connectoroo // •

client :→ C

C // •
��

client // •

Architectural Design Rewriting 15/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Operations

cclient :→ C

C // •
��

client // • connectoroo // •

client :→ C

C // •
��

client // •

Architectural Design Rewriting 15/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Operations

clients : C × C → C

C // •
!!

C // •

C

OO

noclient :→ C

C // •
��
•

Architectural Design Rewriting 16/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Operations

clients : C × C → C

C // •
!!

C // •

C

OO

noclient :→ C

C // •
��
•

Architectural Design Rewriting 16/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Values (again)

Values (evaluation of terms)

The value of clients(cclient, cclient) is . . .

C // •
%%

client // • connectoroo // •

client // • connectoroo

AA

Architectural Design Rewriting 17/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Reconfiguration rules

join(Y )

X −→ clients(X ,Y )

leave(Y )

clients(X ,Y ) −→ X

orchestrate

system(X ) −→ osystem(X )

Architectural Design Rewriting 18/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Reconfiguration rules

join(Y )

X −→ clients(X ,Y )

leave(Y )

clients(X ,Y ) −→ X

orchestrate

system(X ) −→ osystem(X )

Architectural Design Rewriting 18/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Reconfiguration rules

join(Y )

X −→ clients(X ,Y )

leave(Y )

clients(X ,Y ) −→ X

orchestrate

system(X ) −→ osystem(X )

Architectural Design Rewriting 18/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. A reconfiguration

Applying rule orchestrate...

If we have system(clients(cclient, cclient)) . . .

S client // • connectoroo // • serveroo

client // • connectoroo

AA

. . . X is matched with clients(cclient, cclient) . . .

. . . and our system becomes osystem(clients(cclient, cclient).

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA

Architectural Design Rewriting 19/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. A reconfiguration

Applying rule orchestrate...

If we have system(clients(cclient, cclient)) . . .

S client // • connectoroo // • serveroo

client // • connectoroo

AA

. . . X is matched with clients(cclient, cclient) . . .

. . . and our system becomes osystem(clients(cclient, cclient).

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA

Architectural Design Rewriting 19/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. A reconfiguration

Applying rule orchestrate...

If we have system(clients(cclient, cclient)) . . .

S client // • connectoroo // • serveroo

client // • connectoroo

AA

. . . X is matched with clients(cclient, cclient) . . .

. . . and our system becomes osystem(clients(cclient, cclient).

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA

Architectural Design Rewriting 19/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. More reconfigurations

disconnect

Labeled rule to model individual disconnection:

cclient
disc−→ client

Dummy labeled rule:

client
disc−→ client

Conditional labeled rule for complex disconnections:

X
disc−→ X ′ Y

disc−→ Y ′

clients(X ,Y )
disc−→ clients(X ′,Y ′)

Architectural Design Rewriting 20/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. More reconfigurations

disconnect

Labeled rule to model individual disconnection:

cclient
disc−→ client

Dummy labeled rule:

client
disc−→ client

Conditional labeled rule for complex disconnections:

X
disc−→ X ′ Y

disc−→ Y ′

clients(X ,Y )
disc−→ clients(X ′,Y ′)

Architectural Design Rewriting 20/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. More reconfigurations

disconnect

Labeled rule to model individual disconnection:

cclient
disc−→ client

Dummy labeled rule:

client
disc−→ client

Conditional labeled rule for complex disconnections:

X
disc−→ X ′ Y

disc−→ Y ′

clients(X ,Y )
disc−→ clients(X ′,Y ′)

Architectural Design Rewriting 20/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Another reconfiguration

Applying rule disconnect...

If we have osystem(clients(cclient, cclient)) . . .

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA

. . . we obtain osystem(clients(client, client)).

S client // • orchestratoroo // • serveroo

client

AA

Architectural Design Rewriting 21/27



Introduction
Architectural Design Rewriting

Conclusion

A Client-Server Example. Another reconfiguration

Applying rule disconnect...

If we have osystem(clients(cclient, cclient)) . . .

S client // • connectoroo // • orchestratoroo // • serveroo

client // • connectoroo

AA

. . . we obtain osystem(clients(client, client)).

S client // • orchestratoroo // • serveroo

client

AA

Architectural Design Rewriting 21/27



Introduction
Architectural Design Rewriting

Conclusion

Constrained Designs

Designs with Constraints

I Nodes as QoS attributes.

I Edges as (c-semiring based) constraints.

Purpose

I Postpone design decisions.

I Trigger reconfigurations.

I Measure reconfiguration alternatives.

Architectural Design Rewriting 22/27



Introduction
Architectural Design Rewriting

Conclusion

Constrained Designs

Designs with Constraints

I Nodes as QoS attributes.

I Edges as (c-semiring based) constraints.

Purpose

I Postpone design decisions.

I Trigger reconfigurations.

I Measure reconfiguration alternatives.

Architectural Design Rewriting 22/27



Introduction
Architectural Design Rewriting

Conclusion

ADR in detail

ADR is . . .

I Sorts: Vocabulary, Types (Edge and node labels).

I Values: Designs (graphs with interfaces).

I Operations: grammar-like style rules.

I Terms: proofs of construction.

I Terms (with variables): partial Designs.

I Axioms: properties of operations.

I Membership equations: additional style rules.

I Rewriting rules: behaviour, reconfigurations.

I Rewriting strategies: style conformance, style analysis, etc.

Architectural Design Rewriting 23/27



Introduction
Architectural Design Rewriting

Conclusion

Outline

Introduction

Architectural Design Rewriting

Conclusion

Architectural Design Rewriting 24/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

What next?

Ongoing...

I Implementation in Maude.

I Style for a graphical encoding of the π-calculus.

I Styles for SHR variants.

Future... (Sensorize the Approach)

I Not just symbolic types: service, behavioural, spatial, etc.

I Application to SRML architectures.

I Case Study / Scenario.

Architectural Design Rewriting 25/27



Introduction
Architectural Design Rewriting

Conclusion

Further reading

Two drafts

I Style-Based Reconfigurations of Software Architectures with
QoS Constraints.

I Architectural Styles for Graphical Encodings of Process
Algebras.

Architectural Design Rewriting 26/27



Introduction
Architectural Design Rewriting

Conclusion

I got the idea but I have some...

I Questions?

I Remarks?

I Criticism?

I Suggestions?

Architectural Design Rewriting 27/27


	Introduction
	Architectural Design Rewriting
	Conclusion

