Hierarchical Design Rewriting with Maude

Alberto Lluch Lafuente, Roberto Bruni, Ugo Montanari

e

Department of Computer Science Software Engineering for
University of Pisa Service-Oriented Overlay Computers
{bruni,lafuente,ugo}@di.unipi.it

7th Int'l Workshop on Rewriting Logic and its Applications
Budapest, March 29-30, 2008

1/19

Sensoria (Poster Collage)

Software Engineering for Service-Oriented Overlay Computers ~www.sensoria-ist.eu

develops

semantically well-founded languages, novel
theories, methods and tools for constructing
and analysing the new generation of high-
quality service-oriented systems

Integrates

foundational theories, techniques, and
methods with pragmatic software engineering

researches

linguistic primitives for modelling and
programming service-oriented systems
qualitative and quantitative analysis
methods for global services
development and deployment
techniques for systems services

offers

model-driven approach for service-

oriented software engineering

modelling of service-oriented systems

analysis of behaviour, security and quality

of service properties

suite of tools and technigues for
deploying service-oriented systems
reengineering legacy software into
services

case studies

in automotive, finance, telecommunications and

and e-learning domains

List of partners

Coardinator: Prof, Dr, Martin Wirsing, Ludwig-Maximilians-Universitét Miinchen, Germany
Universita di Trento | University of Leicester | Warsaw University | TU Denmark at Lyngby | Universita di Pisa

SIXTH FRAMEWORK PROGRAMAE

Universita di Firenze | Universita di Bolagna | ISTI Pisa | Universidade de Lisboa | University of Edinburgh | ATX ¢
Telecom Italia Lab | Imperial College London | FAST GmbH | Budapest University of Technology and Economice
nation Socicty S&N AG | University College Landon | Politecnico di Milane

2/19

Running Example

We want to design and analyse reconfigurable filter architectures:

» We allow to compose filters in sequence or parallel
» .. and forbid disconnected and cyclic parts.
» Some filters are (services) not known at design-time.

» Run-time reconfigurations are needed (e.g. to ensure QoS)

O —>»0

oo s

3/19

Some problems we face

How can we design such software architectures?
» Some solutions:

» Drop & bind components, check, correct: tedious.
» Bounded SAT (a la Alloy): no guidance, trial&error.

4/19

Some problems we face

How can we design such software architectures?
» Some solutions:
» Drop & bind components, check, correct: tedious.
» Bounded SAT (a la Alloy): no guidance, trial&error.
How can we define property-preserving reconfigurations?
» Some solutions:

» Show a theorem: manual.
» Model checking : undecidable in general.
» Monitor & Repair: no design-time guarantee.

Disclaimer: some flaws of some solutions that still remain valid.)

4/19

Principles of ADR

Architectural Design Rewriting:
> Algebra of design terms

» Type T4 set of architectures that satisfy ¢.
» Set of design productions (operations, inductive definitions).

» Domain of Designs

» Designs: hierarchical graphs with interfaces (HDR).
> Partial designs: designs with holes.

» Reconfiguration as Rewriting

» Rewrite design terms (not designs) d: T —d': T.
» Based on conditional term rewriting, SOS.

5/19

Principles of ADR

Architectural Design Rewriting:
> Algebra of design terms
» Type T4 set of architectures that satisfy ¢.
» Set of design productions (operations, inductive definitions).
» Domain of Designs
» Designs: hierarchical graphs with interfaces (HDR).
> Partial designs: designs with holes.
» Reconfiguration as Rewriting

» Rewrite design terms (not designs) d: T —d': T.
» Based on conditional term rewriting, SOS.

No panacea: not everything can be modelled with ADR, but you
should be happy if you manage to capture part of your problem. J

5/19

Pipes-and-Filters (Designs)

= Filter

oo oo
Architectures as graphs:
» components are hyperedges (boxes), Implemented in modules
> ports are tentacles (arrows), » GRAPH-*
» and connectors are nodes (circles), » DESIGN-*

» interfaces are types (blue boxes).

6/19

Pipes-and-Filters (Design Productions)

We define our style of pipes-and-filters in an inductive manner

A filter is...
. . fmod FILTER-STYLE is
» A single filter sort Filter .
op filter : -> Filter [...] .
A A op seq : Filter Filter -> Filter [assoc...]
> 2 Sequentlal ﬁlters op par : Filter Filter -> Filter [...]
o endfm
» 2 parallel filters

7/19

Pipes-and-Filters (Interpreted Design Productions)
Interpretation of design productions:

>
S

for each sort we have an interface type,

e.g. for sort Filter, we have a Filter-labelled edge
exposing two nodes,

an operation is like a design, where some edges are arguments,
and substitution means hyperedge replacement.

=] seq : Filter Filter -> Filter:

[FFilter [FFilter
oo —ro«—lj —>0-—0

fmod FILTER-DESIGN

8/19

Pipes-and-Filters (Interpreted Design Productions)

[E filter : -> Filter:

[Elbypass : -> Filter

0——(}—?{) o o)

IE par : Filter Filter —> Filter:

o

=] Filter:
ﬂj i er; o

[E seg : Filter Filter —> Filter
[[Filter = Filter
or——o«—“j —»o«—“j —>0—-0

9/19

Pipes-and-Filters (Interpreted Term)

seq(filter,par(filter,filter))

=] Filter

= Filter

(before substitution)

10/19

Pipes-and-Filters (Interpreted Term)

seq(filterl,par(filter2,filter3))

=] Filter

oo

(after substitution)

10/19

Pipes-and-Filters (Reconfiguration)
We define reconfigurations as rewrite rules:

2seq 2seq
x1 —x3 x2 —x4

filter =% filter -
seq(x1,x2) — seq(x3,x4)

2se 2se
x1 %33 %229 x4

par(x1,x2) 2o seq(x3,x4)

mod FILTER-RECONFIGURATION is
rl : filter => {’2seq}filter .
crl : seq(x1,x2) => {’2seq}seq(x3,x4)

Standard)
SOS-in-RL if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .
el crl : par(xl,x2) => {’2seq}tseq(x3,x4)}

endm

if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .

11/

Pipes-and-Filters (Interpreted Reconfiguration)

= Filter:
=] x1:Filter
=] x1:Fi tEr_)
ot
=] x2:Filter]
= Lo
2seq Zseq 2seq
\
= J Filter!

ol [=]x3:Filter!

(<] x4:Filter +0

12/19

Pipes-and-Filters (Modelling Activities)

A right-to-left reading of operations:
» results in a grammar to generate all possible architectures,
» simulates design-by-refinement,

» can be used for model finding.

mod FILTER-REFINEMENT is
op Filter-nt : -> Filter [ctor]
rl : Filter-nt => bypass
rl : Filter-nt => filter .
rl : Filter-nt => seq(Filter-nt,Filter-nt)
rl : Filter-nt => par(Filter-nt,Filter-nt)
endm

13/19

Pipes-and-Filters (Property Specification)

Structural properties given...
mod FILTER-PROP

» over design terms (e.g. a la VLRL), nod MSO
» over designs (e.g. a la MSO).

Temporal properties
» over the state space of reconfigurations,

» as LTL formulae, strategies, etc..

14/19

Pipes-and-Filters (Quick Analysis Example)

We require some ordering constraints phi among filters.

Maude> srew FClient-nt using modelCheck(phi)
Solution 7
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt

15/19

Pipes-and-Filters (Quick Analysis Example)

We require some ordering constraints phi among filters.

Maude> srew FClient-nt using modelCheck(phi)
Solution 7
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt

Does the 7th solution preserve some other constraints psi?

Maude> red modelCheck(sol7, [Ipsi)
result ModelCheckResult:
counterexample. ..

15/19

Pipes-and-Filters (Quick Analysis Example)

We require some ordering constraints phi among filters.

Maude> srew FClient-nt using modelCheck(phi)
Solution 7
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt

Does the 7th solution preserve some other constraints psi?

Maude> red modelCheck(sol7, [Ipsi)
result ModelCheckResult:
counterexample. ..

We ask for an architecture satisfying phi and preserving psi.

Maude> srew FClient-nt using modelCheck(phi /\ [lpsi)
Solution 3
result FClient: wrap(seq(filter(0), par(filter(1),

15/19

Summary

What is ADR?
» A formal method for reconfigurable architectures.
» Based on term rewriting.
» Based on graphs (HDR).
» Supported by Maude.
What can | do ADR?
» Design software architectures respecting structural properties.
» Define property preserving, inductive reconfigurations.
» Analyse architectures (e.g. Model Finding, Model Checking).

16/19

Some Examples

17/19

Some Pointers

» Links

» http://www.albertolluch.com/adr.html
» http://sensoria.fast.de/

» Papers:

» Hierarchical Design Rewriting [WRLA'08]
» Service Oriented Architectural Design [TGC'07]
» Style-Based Architectural Reconfigurations [EATCS]

» Mail

» {bruni,lafuente,ugo}@di.unipi.it

18/19

http://www.albertolluch.com/adr.html
http://sensoria.fast.de/

WIKIPEDIA ADR s a three-letter acronym that may refer to
2

e Free Encyclopedia

Académie de Roberval, a school in Montreal, Canada

navigation , -
short for Accord 1SpO) es par route, also known as the
Main Page
the International
Contents
Featurs ntent o - - -
Current events Adria Airways, an airline of Slovenia (ICAQ code; ADR)
Random article Advanced Digital Radio Testing
interaction g
it Wikipedia
munity portal ie rallway stati

n. United Kingdom (National Rail code: ADR)

fter Der Ruine, a power noise group from
V Omn
- P20 | |

Australian Design Rules, a set of construction standards for road registered vehicles in Australia
ding

nt chang

search
pplied Data Research
Go Search Avrtificial Disc ment
Astra Digital Radio
toolbex

What links here

Automated Dialogue R

scement or Additional Dialogue Re also known as "dubbing"

Related changes

zily rate, a common lodging industry statistic
aijan Democ public

ad file
I

Printab sion
permanent link adr may also mean:
Cite this page

The adr microformat, a sub-set of the hCard microformat.

19/19

