
Hierarchical Design Rewriting with Maude

Alberto Lluch Lafuente, Roberto Bruni, Ugo Montanari

Department of Computer Science Software Engineering for
University of Pisa Service-Oriented Overlay Computers

{bruni,lafuente,ugo}@di.unipi.it

7th Int’l Workshop on Rewriting Logic and its Applications
Budapest, March 29-30, 2008

1/19



Sensoria (Poster Collage)

2/19



Running Example

We want to design and analyse reconfigurable filter architectures:

I We allow to compose filters in sequence or parallel

I .. and forbid disconnected and cyclic parts.

I Some filters are (services) not known at design-time.

I Run-time reconfigurations are needed (e.g. to ensure QoS)

3/19



Some problems we face

How can we design such software architectures?
I Some solutions:

I Drop & bind components, check, correct: tedious.
I Bounded SAT (à la Alloy): no guidance, trial&error.

How can we define property-preserving reconfigurations?
I Some solutions:

I Show a theorem: manual.
I Model checking : undecidable in general.
I Monitor & Repair: no design-time guarantee.

Disclaimer: some flaws of some solutions that still remain valid.

4/19



Some problems we face

How can we design such software architectures?
I Some solutions:

I Drop & bind components, check, correct: tedious.
I Bounded SAT (à la Alloy): no guidance, trial&error.

How can we define property-preserving reconfigurations?
I Some solutions:

I Show a theorem: manual.
I Model checking : undecidable in general.
I Monitor & Repair: no design-time guarantee.

Disclaimer: some flaws of some solutions that still remain valid.

4/19



Principles of ADR

Architectural Design Rewriting:
I Algebra of design terms

I Type Tφ set of architectures that satisfy φ.
I Set of design productions (operations, inductive definitions).

I Domain of Designs
I Designs: hierarchical graphs with interfaces (HDR).
I Partial designs: designs with holes.

I Reconfiguration as Rewriting
I Rewrite design terms (not designs) d : T → d ′ : T .
I Based on conditional term rewriting, SOS.

No panacea: not everything can be modelled with ADR, but you
should be happy if you manage to capture part of your problem.

5/19



Principles of ADR

Architectural Design Rewriting:
I Algebra of design terms

I Type Tφ set of architectures that satisfy φ.
I Set of design productions (operations, inductive definitions).

I Domain of Designs
I Designs: hierarchical graphs with interfaces (HDR).
I Partial designs: designs with holes.

I Reconfiguration as Rewriting
I Rewrite design terms (not designs) d : T → d ′ : T .
I Based on conditional term rewriting, SOS.

No panacea: not everything can be modelled with ADR, but you
should be happy if you manage to capture part of your problem.

5/19



Pipes-and-Filters (Designs)

Architectures as graphs:

I components are hyperedges (boxes),

I ports are tentacles (arrows),

I and connectors are nodes (circles),

I interfaces are types (blue boxes).

Implemented in modules

I GRAPH-*

I DESIGN-*

6/19



Pipes-and-Filters (Design Productions)

We define our style of pipes-and-filters in an inductive manner

A filter is...

I A single filter

I 2 sequential filters

I 2 parallel filters

fmod FILTER-STYLE is

sort Filter .

op filter : -> Filter [...] .

op seq : Filter Filter -> Filter [assoc...] .

op par : Filter Filter -> Filter [...] .

endfm

7/19



Pipes-and-Filters (Interpreted Design Productions)
Interpretation of design productions:

I for each sort we have an interface type,
I e.g. for sort Filter, we have a Filter-labelled edge

exposing two nodes,
I an operation is like a design, where some edges are arguments,
I and substitution means hyperedge replacement.

fmod FILTER-DESIGN

8/19



Pipes-and-Filters (Interpreted Design Productions)

9/19



Pipes-and-Filters (Interpreted Term)

seq(filter,par(filter,filter))

(before substitution)

10/19



Pipes-and-Filters (Interpreted Term)

seq(filter1,par(filter2,filter3))

(after substitution)

10/19



Pipes-and-Filters (Reconfiguration)
We define reconfigurations as rewrite rules:

filter
2seq−→ filter

x1
2seq−→ x3 x2

2seq−→ x4

seq(x1,x2)
2seq−→ seq(x3,x4)

x1
2seq−→ x3 x2

2seq−→ x4

par(x1,x2)
2seq−→ seq(x3,x4)

Standard
SOS-in-RL
encoding

mod FILTER-RECONFIGURATION is
rl : filter => {’2seq}filter .
crl : seq(x1,x2) => {’2seq}seq(x3,x4)
if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .
crl : par(x1,x2) => {’2seq}seq(x3,x4)}
if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .

endm

11/19



Pipes-and-Filters (Interpreted Reconfiguration)

12/19



Pipes-and-Filters (Modelling Activities)

A right-to-left reading of operations:

I results in a grammar to generate all possible architectures,

I simulates design-by-refinement,

I can be used for model finding.

mod FILTER-REFINEMENT is
op Filter-nt : -> Filter [ctor] .
rl : Filter-nt => bypass .
rl : Filter-nt => filter .
rl : Filter-nt => seq(Filter-nt,Filter-nt) .
rl : Filter-nt => par(Filter-nt,Filter-nt) .
endm

13/19



Pipes-and-Filters (Property Specification)

Structural properties given...

I over design terms (e.g. à la VLRL),

I over designs (e.g. à la MSO).

mod FILTER-PROP
mod MSO

Temporal properties

I over the state space of reconfigurations,

I as LTL formulae, strategies, etc..

14/19



Pipes-and-Filters (Quick Analysis Example)
We require some ordering constraints phi among filters.

Maude> srew FClient-nt using modelCheck(phi)
Solution 7
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt ...

Does the 7th solution preserve some other constraints psi?

Maude> red modelCheck(sol7,[]psi) .
result ModelCheckResult:
counterexample...

We ask for an architecture satisfying phi and preserving psi.

Maude> srew FClient-nt using modelCheck(phi /\ []psi)
Solution 3
result FClient: wrap(seq(filter(0), par(filter(1), ...

15/19



Pipes-and-Filters (Quick Analysis Example)
We require some ordering constraints phi among filters.

Maude> srew FClient-nt using modelCheck(phi)
Solution 7
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt ...

Does the 7th solution preserve some other constraints psi?

Maude> red modelCheck(sol7,[]psi) .
result ModelCheckResult:
counterexample...

We ask for an architecture satisfying phi and preserving psi.

Maude> srew FClient-nt using modelCheck(phi /\ []psi)
Solution 3
result FClient: wrap(seq(filter(0), par(filter(1), ...

15/19



Pipes-and-Filters (Quick Analysis Example)
We require some ordering constraints phi among filters.

Maude> srew FClient-nt using modelCheck(phi)
Solution 7
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt ...

Does the 7th solution preserve some other constraints psi?

Maude> red modelCheck(sol7,[]psi) .
result ModelCheckResult:
counterexample...

We ask for an architecture satisfying phi and preserving psi.

Maude> srew FClient-nt using modelCheck(phi /\ []psi)
Solution 3
result FClient: wrap(seq(filter(0), par(filter(1), ...

15/19



Summary

What is ADR?

I A formal method for reconfigurable architectures.

I Based on term rewriting.

I Based on graphs (HDR).

I Supported by Maude.

What can I do ADR?

I Design software architectures respecting structural properties.

I Define property preserving, inductive reconfigurations.

I Analyse architectures (e.g. Model Finding, Model Checking).

16/19



Some Examples

17/19



Some Pointers

I Links
I http://www.albertolluch.com/adr.html
I http://sensoria.fast.de/

I Papers:
I Hierarchical Design Rewriting [WRLA’08]
I Service Oriented Architectural Design [TGC’07]
I Style-Based Architectural Reconfigurations [EATCS]

I Mail
I {bruni,lafuente,ugo}@di.unipi.it

18/19

http://www.albertolluch.com/adr.html
http://sensoria.fast.de/


19/19


