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Abstract

We introduceArchitectural Design RewritinADR), an approach to the
design of reconfigurable software architectures whose &atufes are: (i)
rule-based approach (over graphs); (ii) hierarchical gresfiii) algebraic
presentation; and (iv) inductively-defined reconfigunasio Architectures
are modelled by graphs whose edges and nodes represent rampand
connection ports. Architectures are designed hierartiizibg a set of edge
replacement rules that fix the architectural style. Depaydhi their reading,
productions allow: (i) top-down design by refinement, (dttom-up typing
of actual architectures, and (iii) well-formed compositiof architectures.
The key idea is to encode style proofs as terms and to expicit ;iforma-
tion at run-time for guiding reconfigurations. The main auteges of ADR
are that: (i) instead of reasoning on flat architectures, AdpRcifications
provide a convenient hierarchical structure, by explgitthe architectural
classes introduced by the style, (ii) complex reconfigoraichemes can be
defined inductively, and (iii) style-preservation is guarsed.

1 Introduction

Autonomous and adaptive systems challenge software esrgigeto deal with
issues like scalability, dynamicity and openness at thiet ligvel of abstraction.
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In this context, software architectures can help in the ifijgpation, formalization
and manipulation of such systems by restricting and disgig the admissible
shapes and patterns to be considered.

The architecture of a software system basically consisthefstructure of
components and the way they are interconnected. The coafigarof a system
consists of the present components and interconnecti@ndgl{e architecture), to-
gether with their current state. Ordinary computation daange the state, but not
the architecture. Changes in the configuration that com@®the system might
trigger a proper reaction, which is callegconfiguration aimed to re-establish a
non-compromised configuration by restructuring the aedtiire.

When designing an architecture, it is desirable to condigeiconcept ofr-
chitectural styld22], i.e. some set of rules indicating which componentsloan
part of the architecture and how they can be legally inteneated. Typical ar-
chitectural styles include client-server and pipelineschitectural styles can be
applied to reuse existing design patterns. More impornatitey dfer a further
benefit when architectural information is carried over tkeaition of the system,
since: (i) it can be used to better localize and isolate thallgmarts of the system
to be reconfigured, and (ii) one can control whether changésa system imply
changes in the architecture and eventually in its style. [§Mthhanges in the ar-
chitecture are acceptable and even necessary, in mosttbasmshitectural style
should be preserved by reconfigurations. For instance, ystem with client-
server architectural style, clients connecting and disecting from the server
are permitted, while a client connecting to a client is not.

The use of graphs and graphs transformations to model acthial styles
has been proposed by several authors (see [22], for ingtavite based their
approaches on the conceptsifapesn programming language5s![7]. Amongst
such works our paper is closely related to the approach _gihch we extend
with a simpler, more intuitive and flexible formalism (rouglspeaking, we use
an algebra of proof terms instead of higher-ordezxpressions). Within this re-
search line, our algebraic approach is original. In congmariwith [18], which
proposes software architectural styles as graph grammarsegonfigurations as
graph transformations our approach has several advantagsis our hierarchical
and inductively based approach allows us to compactly sgmtecomplex recon-
figuration rules. Second, while in_[18] one has to formallgye the correctness
of each reconfiguration rule (which in some cases can be dpngelns of an al-
gorithm), in our approach such correctness is automagigalen by the fact that
proof terms, rather than architectures, are rewritten.

The paper is also related to approaches that deal with regoafions in soft-
ware architectures defined by an ADL. As far as we are awarewfapproach
differs from such frameworks in that they do not consider hiétiaed and induc-
tive reconfigurations. Anotherfiierence is that we use graph rewriting as a unify-



ing model to represent architectural design, behaviourraodnfiguration, while
most ADLs use dterent, separated formalisms for such issues. For instaage,
ous approache5 [110] mix the ingredients of a concrete ADLthad\lloy [14,15]
language to respectively describe the vocabulary and @nt that define an ar-
chitectural style. In addition, we think that our proposedydes a formal basis
for extending existing architectural description langesm@gADLS) [17] with the
novel concepts of our approach.

The main contribution of our approach is the proposal of apénalgebraic
formalism calledArchitectural Design RewritinADR). It can be used for de-
scribing development issues like refinement, abstractimh @mposition, and
run-time issues like execution and reconfiguration. Thehagblogy associated
with ADR guarantees that all reconfigurations are styles@reing and can be
conveniently formulated by structural induction on hiefacal designs.

We represent software architectures by suitable graphssa&kedges model
components and whose nodes model the ports through whiclpawents are
connected. We see architectural styles not just as a “flgthty (e.g. a graph
morphism from the actual architecture to the type graphesgmting the style),
but rather as the way to impose some hierarchy over the anthite (e.g. to better
parse it and reason on it). In general, it can be the casewitain a fixed style,
several diferent readings are possible for the same actual archigectur

In the spirit of initiatives that promote the conciliatioh software architec-
tures and process calculi by means of graphical methodsjé®jave taken inspi-
ration from the use of process calculi in the modelling of commicating mobile
systems and specify architectural styles in terms of slétalgebras, interpreted
over a specific graph-based model. We emphasize here therailgeeading of
both style-based design and reconfiguration rules. Desilgs i(or productions)
are seen as the basic operations for composing well-defriochdectures accord-
ing to their types, yielding well-typed results. Hence,hatiectural information
can be kept at run-time just by recording (possibly an abstma of) the term as-
sociated with the well-typedness proof from the design ph&tyle-preserving
reconfigurations can then be expressed as ordinary termiteemtes on such
architectural information. The hierarchical nature of ARRows for the specifi-
cation of rules that take typed architectures as parameters

Thanks to the fact that term rewrites can always occur in aryelr context,
ADR reconfigurations span over the least part of the systewivad in the re-
configuration. In case certain local changes in the architeare subordinated
to the corresponding adaptation of the adjacent environntban we can use
conditional reconfiguration rules, expressing that a casegoarchitecture can
be rewritten only if its sub-components are suitably transked first. This step
makes the formalism very powerful. For example, complexnéigurations like
the nested wrappings of a hierarchy of components are easyptess and check.
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Figure 1: The road assistance scenario.

Although not discussed here, by pushing further this meshanADR can
also represent the normal behaviour of systems. Thus A& a unified set-
ting where design development, runtime execution and fgguanation could be
defined on the same foot.

We illustrate our approach with a simple scenario, wheredb#ccess wireless
services via ad-hoc stations that are situated along a ré&aglre[1l depicts a
simple configuration of such a system. Each bikg {s connected to the service
access point() of a station §’) which is possibly shared with other bikes (attached
to the same station). A station and its accessing bikes farell &). Bikes can
move away from the range of the station of their current cedl anter the range
of another cell. A handover protocol permits bikes to migred adjacent cells
as in standard cellular networks. Stations, in additiorhogervice access point,
use two other communication ports that we call chainingg@it Such ports are
used to link cells in larger cell-chain&®]. Stations can shut down, in which case
their orphanbikes are connected to other stations. This is tackled byogpiate
system reconfigurations. We shall consider two shuttingrdsituations: one in
which the adjacent stations are able to bypass the conneartihadopt all orphan
bikes and another in which the bypassing is not possible gritho bikes switch
from their normal mode of operation to a cell modex), in which they become
standalone stations.

We give an incremental presentation of the main features@R ASectior P
defines our notion of software architectureslasignswhich are basically graphs
with a typed interface. Sectidd 3 explains how to defimehitectural stylesdy
a set of design productions. Sectldn 4 presents the maimilcotion of our ap-
proach, namely, hierarchical style-based reconfiguratiaa term rewriting. Sec-
tion[d concludes the paper and outlines future work.

2 Software Architectures

An architecture is an abstraction or view of the implemeatabf a system. The
basic view describes the present components and theicarteections but other



aspects (e.g. behaviour) can also be considered, leadiag &spect oriented
development. In this paper we focus on structural aspedis Section explains
our domain for representing and manipulating softwareitectures.

2.1 Architectural Models

Graphs dfer a natural model for software architectures. Take, fotainse, the
typical component and connector view of software architess [3] which is at
the base of architectural description languages (ADL®) AKME [9]. Basically,
an architecture is viewed as a collection of interconnectadponents which rep-
resent the main computational entities. The interface obraponent is repre-
sented by ports whereonnectorsare attached. Connectors model the pathways
of communication and their interfaces consist of roles. r@&mtors are attached
to components by assigning ports to roles. The correspgngliaph has com-
ponents and connectors as hyperedges wtergaclesepresent roles and ports.
The nodes of the graph are the attach points.

Example.The components of our running example appearing in Figure 1 a
bikes and stations and are represented as hyperedges.nfmic#y connectors
are not considered and nodes model interconnections of @oemps, namely two
components are connected when their tentacles (outgorogsr share a node.
For instance, a station is a hyperedge with three tentatiesleftward and the
rightward are attached to chain ports (tygdor communicating in each direction
along the chain, while the downward tentacle connects ttestto bicycles and
is thus attached to access ports (type

Of course, other choices like representing a component as@are possible
and have been indeed proposed (e.g.[in [18]). Anyway, thalslity of graphs
as a modelling formalism for software architectures hasobex accepted. In
addition, because our refinement mechanism is based onddgeereplacement,
we shall typically prefer to see complex, refinable architeasd entities as edges,
rather than nodes. Let us now give a formal definition for ggap

Definition 1. A graphis a a tuple G= (V, E, t) where V is the set of nodes, E is
the set of edges and £ — V* is the tentacle function.

We leave implicit the order of tentacles exiting from eaclgegince in our
example their order is clearly given by the outoging directof the tentacles (say
that the first one is the leftwards tentacle and the rest atered clockwise).

2.2 Architectural Elements

The vocabulary of an architectural style consists of a satdiitectural elements.
For instance, in a client-server architecture the obvidusiae is to take two



classes of architectural elements: clients and serverauirexample, we have
bikes, stations, cells and ports. A suitable way to represehitectural elements
consists of using type graphs, which have one edge and nodadh diferent
type of edge and node elements, respectively. One can alscahgpe hierarchy
with sub- and super-types relations aslin [1] but we restdc one-level typing
hierarchy for the sake of simplicity. The relationship beem actual elements of
an architecture and their abstract classes is suitablyesepted by graph mor-
phisms, mapping each instance to its type. In our graphegaksentation, edge
types are explicitly represented as labels inside the spaeding box.

Example.The architectural elements of our running example are ineg.
The types of edges a8, ®, o, £sx¢ andess which respectively represent sta-
tions, chains of cells, bikes in normal mode, bikes in celldemand collections
of bikes. The nodes have either typdports where bikes in normal mode and
cell stations are attached to), ern(nodes connecting stations). Bikes have one
connection port only (of type) while stations have three of them (one of type
e on both its left and right tentacle and one of typen the bottom one). Now,
in our approach we distinguish two kind of architectural gaments: abstract
(or non-terminal, refinable) and concrete (or terminal,itgason refinable). A
doubly-boxed edge represents a non-terminal edge. Namgtal edges labelled
by 5 and@ are used to represent collections of bikes and chains abssat
respectively. For instance, we shall see that a chain of calh be refined as a
concatenation of chains of cells or as a single cell (cf. Fe{).

Typed graphs are hence defined as graphs equipped with @ tyy@rphism.

Definition 2. Let G and H be two graphs. A pair of functiog§,, fg) where
fv : Ve = Vy and & : Eg — Ey is agraph morphism fronG to H if fy, and &
preserves the tentacle functions, i.¢o s = ty o fg, where § is the homomorphic
extension of\fto V¢.

Definition 3. Let T be a graph. Ayped graphG over T is a graphG|, together
with a graph morphismg : |G| — T. A morphismbetween T-typed graphs
f : G; — Gy is a graph morphism f |G;| — |G;| consistent with the typing, i.e.
such thatrg, = 7, o f.

The type graph of our running example is in Figlre 2. TecHhjicadge types
(i.e., edge<r of the type grapiT) are partitioned into several alphabets. A first
distinction is due to the tentacle functioBs is partitioned into families indexed
by tuples of node types. Even if there is only one node typgedgpes are
ranked according to the number of tentacles. An additiorstirdttion is between
terminals7 and nonterminal®/7". As for ordinary string grammars, (non) termi-
nal edges, namely edges labelled by a (non) terminal syméymlesent abstract
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Figure 2: Architectural elements as a type graph.

components which cannot (can) be refined. Thus, terminasdgpresent basic
components of the architecture.

A designis an assembly of basic components that have a typed ingetac
belled by a non-terminal edge. The idea is that the type ofintexface edge
represents the abstract component class, while its testagpresent the exposed
nodes.

Definition 4. A designis a graph with interface, i.e a triple d&= (L4, Ry, iq),
where ly is a (typed) graph consisting only of a nonterminal and byidlc$ nodes
attached to its tentacles;Hs a (typed) graph without nonterminal edges; and
lg : Vi, = VR, Is a total function.

The notion of graph morphism is trivially extended to mogyhs between
designs. The nodes & in the image oify4 are the interface nodes of the design,
ordered according to the tentacles of the nonterminal eddg,iwhile the label
Ly gives the type (or role, meaning, etc.) of the design. Wel e that this
notion of design is suited for system development by refimgmegbstraction or
composition. By abuse of notation, we shall use the tgraphfor both a typed
graph with interface and its underlying graph. In additiom sometimes say that
a graph is of typeA meaning that the interface of the graph is an edge of Ape

Example. Figure[l depicts a design of tyg@: the graph inside the dotted
box is the architecture. The interface edge is representededdotted box itself,
whose type is indicated by at its upper-left corner. Theaelets are represented
by the dotted lines, which also represent the edge morphisms

3 Architectural Design

Designing a software architecture is a process that mighsiso of putting to-
gether existing designs (composition), describing therimdl structure of an ab-
stract component (refinement) or specifying that an assewfbtomponents is
actually an abstract component (abstraction). When cernisigl styles, all these
operations should be governed by a mechanism consistemtthgtstyle of the



system. Graph grammars are a suitable formalism to achinevésee e.g [11] for
an early work proposing graph transformations as architattlesign formalism).

3.1 Architectural Styles

An architectural style consists of the set of components ¢ha be part of the
architecture (the vocabulary), and a set of rules indicgtiow they can be legally
interconnected. In ADR the vocabulary of a style is giventlmytype graph, while
the legal interconnections are defined by productions. &reywery much like

designs (see Definitidd 4), but where the underlying graphhzeve non-terminal
edges. Any architecture constructed following a style egponds to a term built
out from such productions: the term represents the way ichvtiie architecture
was constructed and its value is the architecture itself.

Definition 5. A (design) productiom is a tuple(Lp, Ry, iy, |) where Ly is a (typed)
graph consisting only of a nonterminal labelled by sayafd by distinct nodes at-
tached to its tentacles; Hs a (typed) graph with both terminal and non-terminal
edges; ) : Vi, — Vg, is a function; and | is a bijection mapping the non-terminal
edges of Ron an initial segmenftl, 2, . . ., n,] of positive numbers.

The type of a productionp is A; X A, X ... X A, — A, where A, is the
nonterminal symbol labelling thke-th nonterminal edgey of R,, namely with
I(&) = k. The functional typeA; x A; X ... x Ay, — A, associated t@ is not
an accident. In factp can be considered a function that when applied to a tuple
(dq, o, ..., dnp> of designs of type#\;, A, .. Ay, respectively, returns a design
d = p(dy, dz,...,dnp) of type A,. The definition is obviousd = (Lp, Ry, ip),
whereRy is obtained fronR, by replacing edgey in it with graphRy, respecting
the tentacle functiony, k= 1,...,n,.

This view corresponds to a bottom-up design developmenes#yd is con-
structed by putting together some component designs. Hawie dual view is
also possible: a production can be seen as refinement of &nra@bsomponent
of type A as an assembly of concrete and abstract components, teedathg
of type A, Ay, .. .An,- As a matter of fact, design productions can be seen as
hyperedge replacement rules which are the essence of thie grammar based
approaches to architectural styles (e.gl [18] and [11]).

Example.The design productions and their corresponding types foexam-
ple are illustrated in Figur 3. Let us briefly comment jusbame of them (see
also Exampl&311). Productia@hain takes any two designs of tyg2 and returns
a design of typé&. In words, it connects two chain of cells resulting in a chafin
cells. The figure can also be interpreted as a refinementtatieg that a chain of
cells can be decomposed into two consecutive chains of ¢alsluctiorbikes



is analogous and used to build larger collections of bikesteNhat, unlike in the
chain rule, here the order of bikes in the collection is ieassl.

The construction above yields a many-sorted algedravhere sorts are non-
terminal symbols\N7, values are designs and operations are productions of the
corresponding types. A set of productiofisdetermines an architectural style,
where software architectures of typeare those in the carrie¥, corresponding
to sortA. (Carriers are not necessarily disjoint.) Furthermore, iermt of type
A of M evaluates to a desigh t itself can be considered a typing proofabf

Once we have established our algebraic setting, we can trapeeral useful
concepts from the standard algebraic machinery. A striaghiird construction
introduces free typed variablesnto terms. As usual, an assignmerf variables
to values can be uniquely extended to an evaluafiginof terms with variables.
Furthermore, term substitutidft’/x] can be defined. The latter construction has
an obvious meaning: given a partial dest¢x) with a componenk to be refined,
and a refinement tert (which can be considered a derived operation) of the right
type, the (partial) desigt{t’/x] is the result of the refinement step. Conversely,
givent[t’/x], the identification of a subsystethof t[t'/X], such that” andt(x) are
terms inM, is an abstraction step. ferent levels of complexity of the construc-
tion depend on terms being linear (one occurrence of eachblaj or not. In this
paper we consider just the linear case.

Our algebraic approach is very general. For instance, tegderocess can
be seen as the process of writing a term for a design. A refinedesign process
can be seen as a top-down writing of a term of a given type. Apasttional
design process can be seen as applying operations to giggmants (bottom-
up). A style check, i.e. checking whether an architecturetsa certain style,
reduces to writing a term. Note that the same graph can hasgadaliferent
proofs, possibly accommodating even foftdient types. Each proof provides an
admissible justification for the well-typedness of the atarchitecture, yielding
a way to parse the graph and reason on it accordingly.

Example.Consider the productions in Figure 3. Releation builds a chain
of cells (consisting of a single cell, obviously) from a eaftion of bikes. An
empty chain of cells is constructed via operatimtell. Complex chains are
obtained via the concatenation operatatrain. Clearly, for anyx of type®, the
termschain(x, nocell) andx define the same architecture. Similarly, operations
bike, nobike andbikes are used to construct (possibly empty) collections of
bikes. Finally, a chain of cells (consisting of a single calyjain) can also be
constructed by a bike in cell mode (given by the construbiikestation). A
term of type® defining the architecture in Figuké 1 is

chain( chain( station(bikes(bike,bike)), station(bike))
, chain(bikestation, chain(bikestation, station(bike))))
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Figure 3: Design productions.

3.2 Architectural Properties

Indeed the type of an architecture explains how the ardhiteés or can be con-
structed, i.e. by means of the operations that have tha&typgedomain. Such op-
erations implicitly respect some structural constraimtgroperties, thus types are
not merely symbolic labels. However, not all interestingssles of architectures
are represented as non terminals. Recall that, as we havenséne introduction,
our flavour of structural constraints is that of a graph graanmmstead of some
logical formalism describing architectures that are or pait of the style. The
benefits of the latter approach is that architectural priggeare explicitly stated,
while in our approach they are implicit. For instance, with eéxplicit mecha-
nism we can formally state that any system of t¢pés indeed a connected chain
of cells. In ADR, instead, this is still true by constructiewen if not explicitly
stated. However, the operations of the architectural sifjés the formal basis for
proving many architectural properties by structural intlue.



Example. In our running example, consider the propeﬁynformall)ﬂ ex-
pressed as “the graph of a cell is a unique (possibly empty) gannecting the
chain ports of the interface with either stations or bikeseifl mode”. By struc-
tural induction it is very easy to show (possibly relying omadel checker) that
¢ holds true for any architectune of type . For instance, ifx is nocell the
proof is trivial since both the left and right chainports #ne same. I is either
station(y) or bikestation the proof is given by the fact that both ports are
connected via an edge of tygein the first case anéls# in the second one. Fi-
nally, consider the case whetis chain(y, zZ) and assume that bothandz (with
type®) satisfy¢. Then the left chain port is connected to the middle node whic
is in his turn connected to the right chain port. Thus, we aae thatx satisfies
¢ t00, because the propeyis preserved under concatenation.

4  Architectural Reconfiguration

Architectures are not static but might evolve iffdirent dimensions. We have seen
that architectures can be designed at static-time by refalastract components or
assembling subsystem architectures. During run-timeatstarchitectures might
evolve due to actions of normal behaviour or reconfiguration

Components leaving or joining the system can require cong@actions that
lead the system into a proper state. Such actions are qalbedfigurationsand
are specially common in systems with dynamic architectures

For instance, in our example, the system must deal with bakeks stations
leaving and joining the system or with collections of bikkeattmigrate from one
cell to another or join and leave the system. We also needhfigemations to deal
with a station shutting down, by migrating the collectiorbd{es in its cell to the
adjacent ones or constructing an ad-hoc chain of bikes imuzde.

While sometimes a reconfiguration rule can be naively desdrias a direct
manipulation of a design or its corresponding term (witheariables), we argue
that reconfigurations arise more naturally and in a weltigisned way at the ab-
stract level of the architecture, i.e. as manipulationsasfipl designs (terms with
variables). Indeed, the reconfigurations informally meméid above have been
written in terms of collections of bikes (abstract classelgvrather than single
bikes (basic element level). An additional issue that oneld/dike to have in
a reconfiguration mechanism is the capacity to give guaeanédout the archi-
tectural style. For instance, whether it is preserved or mbe rest of the section
discusses these issues in deeper detail and presésteni reconfiguration mech-
anisms, starting from basic graph rewrite rules (and thisaalvantages), to more

! Formally,¢ can be stated in e.g. Courcelle’s monadic second-ordez.logi



sophisticated style-based rules.

4.1 Reconfigurations as graph transformations

Since our architectures are represented by graphs, recoaigns acquire the
taste of graph transformations. An eminent way to formadjesgph transforma-
tions is the use of graph rewrite rules. This can be done iars¢¥Wlavours([2D],
of which the most prominent examples are the single-pusfijuand double-
pushoutl[4] approaches.

Basically the rules come with left- and right-hand side ¢i&@, , Gr. Oper-
ationally, the rewrite can be applied to any gragharger thanG, by finding a
suitable match (i.e. an occurrence@f in G) and the result is the graph obtained
from G by removing that instance @, and releasing a fresh instance Gg.
There can be items shared By andGg that are required to trigger the rewrite,
but are just preserved by the transformation (some sort teffecce, needed to
properly attach the fresh copy G to the existing items i®).

This view takes the actual architecture as a flat, unstradtgraph, thus dis-
regarding the architectural information. Consider, fostance, the problem of
dealing with migrating bikes. One could define: i) a grapmsfarmation rule to
migrate one bike and then apply this rule a certain numbenwdg to migrate any
collection of bikes, or ii) infinitely many rules (one for daaatural number) to
migrate a collection in one step. Such solutions, howevemat abstract enough,
since they consider concrete numbers of bikes, while a abalstraction is that
of migrating any collection of bikes (disregarding of itdw@el number). In other
words, one should define a reconfiguration as a single acfierating at the most
appropriate abstraction level, i.e. the rewrite rules $thaavolve both class ele-
ments and architectural elements, according to the fixeiduléserarchy.

In the example, by exploiting the design class, we can write a unique
rule for handling the splitting of arbitrarily large colliéans of bikes inside a cell.
Figurel4 sketches a reconfiguration by means of a schemapti ¢nansformation
rules. The reconfiguration is tackled by detaching any ctibe of bikesc from a
cell and attaching it to an adjacent station. Yet, an apfinaof this rule cannot
guarantee that all bikes migrate, because it can be appliadyer contexts where
other bikes are connected to the leftmost station.

We have already stated that using architectural styles baveral benefits.
One of such benefits is that they mighiiey guarantees about the execution of the
system. If one wants to preserve such benefits, then styteddsbhe preserved
during run-time. A naive way to guarantee style preservaitdo check the style
of the architecture after the application of a reconfigamatiThis solution, how-
ever, is not desirable since there is no guarantee that asegestyle-preserving
reconfiguration is possible.
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Figure 4: Graph transformation rule for migrating a colientof bikes.

Our methodology takes style preservation as a must. We egscat mecha-
nism that ensures style preserviagriori, i.e. a mechanism that ensures that any
application of a reconfiguration preserves the architetistyle.

Now, while we can be convinced that the rule in Figure 4 presethe style,
this is not obvious when observing the rule itself withounsidering all possible
contexts. We shall see that enforcing style preservatidhaow us to use a
neater algebraic notation for reconfigurations.

4.2 Style-preserving reconfigurations as term rewriting

We have seen that design rules can be given an algebraic latraruin terms of
many-sorted operations over a suitable algebra of typeghgréwith interfaces),
with terms describing a particular style-proof. Note thathis way it is possible
that: (i) the same well-defined architecture can be desdridyedifferent terms;
(ii) the same well-defined architecture can be assignffdrdnt classes.

Since style-preserving reconfigurations essentially aijgeat the level of style-
proofs (the abstract elementslinandR can be seen as typed variables), the al-
gebraic view can be pushed further by term rewriting oveylésjproof terms: a
graph transformation rule is seen as a rewrite dule> R, whereL andR are
M-terms of the same type. Typically, bdtrandR are linear and all the variables
in Rappear irL. This is the case when reconfigurations do not add abstrat co
ponents to the system. These variables can be instantrated/iway consistent
with the types, and botR andL can be freely contextualized. Then, it is possible
to apply the rule in any larger architectui@&r,), wheren assigns proof terms to
variables and whereis any term with one hole with the same typelad\fter the
reconfiguration, the architectutéRn) is obtained.

There is a very simple sticient condition for enforcing style preservation,
namely that both the left-hand sidleand the right-hand sidR of the reconfigu-
ration can be assigned the same proper abstract class. Rotghway we are
guaranteed that whenevieroccurs,R would be also allowed by the style. More-
over, sincd. andR can themselves contain class elements, we are guarangged th
such elements can be consistently refined by any actualrdesigpliant to those



classes, keeping the generality of hierarchical reconditgoms.

For instance, to deal with the simple reconfigurations oebikoining and
leaving the system we just need the two simple rgkeim(x,) andleave below.
(Obviously all terms that appear in the rules are propenhetybut we neglect the
explicit typing in favour of a cleaner presentation.)

join(xp) : X1 —  bikes(Xx, Xp)
leave : bikes(Xg, X)) — X1

The rulejoin(xy) is used for a collection, of bikes to join a cell. Dually, the
rule leave is used for a collection of bikes to leave the cell.

We now consider the migration of bikes caused by their mbiClearly, the
problem can be tackled by a sequence of leave and join recoafigns. How-
ever, it would be better (and sometimes necessary) to peiiton a single step as
expressed by the ruteigrater below for the rightwards migration:

migrater : chain( station(bikes(xy, Xp), station(xz)))
— chain( station(X;), station(bikes(Xp, X3)) )

The rulemigrater (together with the similar rule for leftwards migration)irs
Figure[®. In comparison with the sketch of Figlllemdgrater considers the
general context of a cell, where the source cell might condgaiother stationary
collection of bikes and the target cell might already camtrcollection of bikes.
The key is that now both the left- and the right-hand sidesefrules are typed
terms and have typ@. Moreover, by typability the rule takes into account all the
bikes connected to the stations.

Another interesting reconfiguration deals with the probleina station shut-
ting down. Assuming that the station notifies this situatmits adjacent stations,
these react bypassing the connection. Orphan bikes of théhaeis going to
disappear are adopted by the adjacent cells. (Start-updidhsimilarly.)

shut . chain(station(X;), chain(station(bikes(X,, X3)), station(Xs)))
— chain( station(bikes(Xy, X)), station(bikes (X3, X4))))

By typability the rule takes into account all the bikes carted to the stations.

4.3 Inductive reconfigurations

The reconfigurations seen so far can be applied in any lacggext with their pa-

rameters instantiated according to the specified types.adeyit is often the case
that a composed architecture can be reconfigured only itsaBub-components
are suitably reconfigured first. Stretching the analogy betwreconfigurations
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Figure 5. Rulesmigrater (top-down) andnigratel (bottom-up).

and rewrite systems the expressiveness of our reconfigarddinguage is in-
creased by considering conditional labelled rewrites néefiinductively over the
terms encoding style proofs. As mentioned in the introdurtithis technique
has been largely inspired from the area of process calcuierevit provides a
well-established mechanism for defining the operationaias#ics of concurrent
processes.

The first extension allows to limit the applicability of a sediguration to spe-
cific contexts, so that a complex architecture is reconfiguiéhe second exten-
sion allows to tag dferent families of rewrites depending on their role. Simple
conditional rewrites take the form

X1 = X .o Xy X
L(X1,..., %) = R(X,,...,X)

whereL takesx, ..., X, as parameters, whilg takesx/, ..., X,. The meaning is
that, given an assignmentof concrete architectures to the parameterfkaind
L, the architecturén can be reconfigured accordingRg only if eachx;z can be
reconfigured tan. Of course, more powerful forms of conditional rewrites are
possible, e.g. where premises are arbitrary rewtitest’. However, for the sake
of our example the simple form presented iffisient.

For instance, recall the problem of a station shutting dowke.assumed that
it was possible for the adjacent stations to bypass the abiomeand adopt the
orphan bikes. We now consider the case in which this is nogiptesand bikes
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Figure 7: Reconfiguratiohikes2cells.

react by switching from their normal mode to a cell mode inethihey become
independent cells. The idea is that the bikes in the celle$thtion that is shutting
down will be connected as a chain. Since we need to reconfigwee step all
the bikes, we cannot provide just one ordinary style-prgsgrrule. Instead we
can give an easy recursive definition via conditional reseréis below.

The base reconfiguration involves a single bike (see Figure 6

bike2cell : bike =% bikestation

The inductive case we consider is illustrated in Figre 7emhthe union
of two collections of bikes is reconfigured as the concatenaif the respective

reconfigured cells, provided that these are possible:
tocell tocell
X3 — X X2 — X

bikes(Xq, Xp) rocet chain(x], X))

bikes2cells :

The cell with the station shutting down is reconfigured by tihle (see Fig-
ureld):



Figure 8: Reconfigurationell2chain.

tocell
X — X

station(X) — X

cell2chain:

Obviously, types are not preserved by some of these caseahasthe right-
and left-hand sides of the rewriting rule cannot be applrethe same contexts.
But this is not a problem because rules are intended to beealpipl appropriate
(inductively defined) contexts. Consider the last case lef¢call2chain where
the premise is for a collection of bikes to become a chain adilile the conclusion
actually transforms a chain of cells into a chain of cellse Biient label makes it
applicable in any larger context (unlike rewrites labehecell).

4.4 Runtime issues of reconfigurations

It is important to remark again that in our setting reconfagions happen at the
level of style proofs. Several scenarios are thus possi@jethe architectural

information is available at run-time and it is exploited etreconfiguration; (ii)

the architectural information is available at run-time g want (or need) to
construct a dterent proof term in order to apply a convenient reconfigorati

(i) no architectural information is available and we ndedconstruct a proper
proof in order to apply the reconfiguration.

Note that byarchitectural informationwe intend typically the proof term,
but it might be also possible to consider an approximationt dfat disregards
of irrelevant details. Technically, this is achieved bytdly evaluated terms
which implicitly use derived design productions. For imgte, in our exam-
ple we might want to ignore the way chains were actually coiegtd and con-
sider a derived productiochain; that putsi designs of typewss in a sequence



of i stations, such that e.g. for a design consisting of threks cafined by
termchain(station(X;), chain(station(xy), station(xz))) the runtime infor-
mation is reduced tahainz(Xy, %o, X3). Of course, the reconfiguration rules must
be defined accordingly. In the particular example this waelguire families of
reconfigurations for joining, adding and migrating with tevantage of not need-
ing to re-parse a design as it occurs if we use the original.t€n the other hand,
it would be very dificult to deal with the shutdown scenario where bikes change
mode. In other words, there is a range of architectural métdion that goes from
the original design construction (the entire proof termatoabstraction of it (the
proof term partially evaluated) to the actual architect(tree proof term com-
pletely evaluated). As the next paragraph discusses teadrade-f between
different aspects.

Case (i) is rather straightforward and computationallg kespensive, with the
advantage that even in a largely distributed system, alflicktes to the recon-
figurations can be statically marked and locally monitorédis however less
flexible, because when ftierent reconfigurations are possible that are dependent
on different proof terms for the same architecture, then no opétium is pos-
sible. Instead, case (ii) and (iii) require some additiaglabal monitoring but
can allow to improve the performance of the reconfiguredesydby taking into
account non-structural aspects like those related to QualService (Qo0S).

For instance, in our example one might want each cell to athaste orphan
bikes which are nearest to it. Considering non-structuspeats such as QoS is a
current research activity that we do not report due to lackpafce, but it is worth
highlighting that our approach puts the basis for those ates in which several
reconfigurations are possible and given bffetent but still equivalent proofs for
the same architecture and one can choose the most appeopniattaking into
account some criteria (based on QoS measures, for instance)

5 Conclusion

We have presentedirchitectural Design Rewritingan approach to deal with the
structural aspects of hierarchical style-based recordiguns of software archi-
tectures. The approach is based on a simple algebra of ty@thgwith inter-
faces, which allows for a unifying treatment of style-badedign, style checking,
execution and reconfiguration. This results in a simple amch&l mechanism for
designing architectures according to a style, for checltiagan architecture is an
instance of a style and for ensuring style preservatiomguieconfigurations.

We believe that ADR has multiple applications. First, it kcbserve as a for-
mal basis for extending existing methodologies or ADLs. i;hie can also be
used as the basis of graphical representations of procgsbrak. For instance,



a representation of-calculus [19] based on the graphical encoding [8] is cur-
rently being defined. Pushing further the connection witbcpss algebras, we
are investigating suitable notions of architectural egléxaces. For instance, two
architectural terms can be regarded as structurally etprivd they evaluate to the
same architecture (graph), and equivalent w.r.t. to therfeguration rules if they
are bisimilar (any possible reconfiguration of one architee can be mimicked
by the second one resulting again in equivalent architesjur

We plan to analyse and eventually enrich our approach to®stippe de-
sign and management of service-oriented architecturesremrchitectural con-
cepts regard service assembly and composilibn [6], reaanafigpns dealing with
modes[[12] and service invocation, discovery and bindifjgd6d non-structural
aspects like QoS become crucial. A firgticet [2] in this direction consists of the
encoding of SRMLIIB], an emergent service-oriented modgllanguage inspired
by the Service Component Architecture[21].
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