

S-B A
R∗

Roberto Bruni Alberto Lluch Lafuente Ugo Montanari
Department of Computer Science, University of Pisa

bruni,lafuente,ugo@di.unipi.it

Emilio Tuosto
Department of Computer Science, University of Leicester

et52@mcs.le.ac.uk

Abstract

We introduceArchitectural Design Rewriting(ADR), an approach to the
design of reconfigurable software architectures whose key features are: (i)
rule-based approach (over graphs); (ii) hierarchical design; (iii) algebraic
presentation; and (iv) inductively-defined reconfigurations. Architectures
are modelled by graphs whose edges and nodes represent components and
connection ports. Architectures are designed hierarchically by a set of edge
replacement rules that fix the architectural style. Depending on their reading,
productions allow: (i) top-down design by refinement, (ii) bottom-up typing
of actual architectures, and (iii) well-formed composition of architectures.
The key idea is to encode style proofs as terms and to exploit such informa-
tion at run-time for guiding reconfigurations. The main advantages of ADR
are that: (i) instead of reasoning on flat architectures, ADRspecifications
provide a convenient hierarchical structure, by exploiting the architectural
classes introduced by the style, (ii) complex reconfiguration schemes can be
defined inductively, and (iii) style-preservation is guaranteed.

1 Introduction

Autonomous and adaptive systems challenge software engineering to deal with
issues like scalability, dynamicity and openness at the right level of abstraction.

∗Supported by the EU within the FET-GC II Project IST-2005-016004 SENSORIA (Software
Engineering for Service-Oriented Overlay Computers) and by the Italian FIRB Project T..

bruni,lafuente,ugo@di.unipi.it

et52@mcs.le.ac.uk

In this context, software architectures can help in the specification, formalization
and manipulation of such systems by restricting and disciplining the admissible
shapes and patterns to be considered.

The architecture of a software system basically consists ofthe structure of
components and the way they are interconnected. The configuration of a system
consists of the present components and interconnections (i.e. the architecture), to-
gether with their current state. Ordinary computation can change the state, but not
the architecture. Changes in the configuration that compromise the system might
trigger a proper reaction, which is calledreconfiguration, aimed to re-establish a
non-compromised configuration by restructuring the architecture.

When designing an architecture, it is desirable to considerthe concept ofar-
chitectural style[22], i.e. some set of rules indicating which components canbe
part of the architecture and how they can be legally interconnected. Typical ar-
chitectural styles include client-server and pipelines. Architectural styles can be
applied to reuse existing design patterns. More importantly, they offer a further
benefit when architectural information is carried over the execution of the system,
since: (i) it can be used to better localize and isolate the small parts of the system
to be reconfigured, and (ii) one can control whether changes in the system imply
changes in the architecture and eventually in its style. While changes in the ar-
chitecture are acceptable and even necessary, in most casesthe architectural style
should be preserved by reconfigurations. For instance, in a system with client-
server architectural style, clients connecting and disconnecting from the server
are permitted, while a client connecting to a client is not.

The use of graphs and graphs transformations to model architectural styles
has been proposed by several authors (see [22], for instance) who based their
approaches on the concept ofshapesin programming languages [7]. Amongst
such works our paper is closely related to the approach of [13] which we extend
with a simpler, more intuitive and flexible formalism (roughly speaking, we use
an algebra of proof terms instead of higher-orderλ-expressions). Within this re-
search line, our algebraic approach is original. In comparison with [18], which
proposes software architectural styles as graph grammars and reconfigurations as
graph transformations our approach has several advantages. First, our hierarchical
and inductively based approach allows us to compactly represent complex recon-
figuration rules. Second, while in [18] one has to formally prove the correctness
of each reconfiguration rule (which in some cases can be done by means of an al-
gorithm), in our approach such correctness is automatically given by the fact that
proof terms, rather than architectures, are rewritten.

The paper is also related to approaches that deal with reconfigurations in soft-
ware architectures defined by an ADL. As far as we are aware of,our approach
differs from such frameworks in that they do not consider hierarchical and induc-
tive reconfigurations. Another difference is that we use graph rewriting as a unify-

ing model to represent architectural design, behaviour andreconfiguration, while
most ADLs use different, separated formalisms for such issues. For instance,vari-
ous approaches [10] mix the ingredients of a concrete ADL andthe Alloy [14, 15]
language to respectively describe the vocabulary and constraints that define an ar-
chitectural style. In addition, we think that our proposal provides a formal basis
for extending existing architectural description languages (ADLs) [17] with the
novel concepts of our approach.

The main contribution of our approach is the proposal of a simple algebraic
formalism calledArchitectural Design Rewriting(ADR). It can be used for de-
scribing development issues like refinement, abstraction and composition, and
run-time issues like execution and reconfiguration. The methodology associated
with ADR guarantees that all reconfigurations are style-preserving and can be
conveniently formulated by structural induction on hierarchical designs.

We represent software architectures by suitable graphs, whose edges model
components and whose nodes model the ports through which components are
connected. We see architectural styles not just as a “flat” typing (e.g. a graph
morphism from the actual architecture to the type graph representing the style),
but rather as the way to impose some hierarchy over the architecture (e.g. to better
parse it and reason on it). In general, it can be the case that,within a fixed style,
several different readings are possible for the same actual architecture.

In the spirit of initiatives that promote the conciliation of software architec-
tures and process calculi by means of graphical methods [16]we have taken inspi-
ration from the use of process calculi in the modelling of communicating mobile
systems and specify architectural styles in terms of suitable algebras, interpreted
over a specific graph-based model. We emphasize here the algebraic reading of
both style-based design and reconfiguration rules. Design rules (or productions)
are seen as the basic operations for composing well-defined architectures accord-
ing to their types, yielding well-typed results. Hence, architectural information
can be kept at run-time just by recording (possibly an abstraction of) the term as-
sociated with the well-typedness proof from the design phase. Style-preserving
reconfigurations can then be expressed as ordinary term rewrite rules on such
architectural information. The hierarchical nature of ADRallows for the specifi-
cation of rules that take typed architectures as parameters.

Thanks to the fact that term rewrites can always occur in any larger context,
ADR reconfigurations span over the least part of the system involved in the re-
configuration. In case certain local changes in the architecture are subordinated
to the corresponding adaptation of the adjacent environment, then we can use
conditional reconfiguration rules, expressing that a composed architecture can
be rewritten only if its sub-components are suitably transformed first. This step
makes the formalism very powerful. For example, complex reconfigurations like
the nested wrappings of a hierarchy of components are easy toexpress and check.

n

• • Hoo //

��

• Hoo //

��

• • Hoo //

��

• •

◦ ◦ ◦

®

OO

®

bb

®

OO

E®E

\\

// • E®Eoo

BB

®

OO

Figure 1: The road assistance scenario.

Although not discussed here, by pushing further this mechanism, ADR can
also represent the normal behaviour of systems. Thus ADR offers a unified set-
ting where design development, runtime execution and reconfiguration could be
defined on the same foot.

We illustrate our approach with a simple scenario, where bikes access wireless
services via ad-hoc stations that are situated along a road.Figure 1 depicts a
simple configuration of such a system. Each bike (®) is connected to the service
access point (◦) of a station (H) which is possibly shared with other bikes (attached
to the same station). A station and its accessing bikes form acell (n). Bikes can
move away from the range of the station of their current cell and enter the range
of another cell. A handover protocol permits bikes to migrate to adjacent cells
as in standard cellular networks. Stations, in addition to the service access point,
use two other communication ports that we call chaining ports (•). Such ports are
used to link cells in larger cell-chains (n). Stations can shut down, in which case
their orphanbikes are connected to other stations. This is tackled by appropriate
system reconfigurations. We shall consider two shutting down situations: one in
which the adjacent stations are able to bypass the connection and adopt all orphan
bikes and another in which the bypassing is not possible and orphan bikes switch
from their normal mode of operation to a cell mode (E®E), in which they become
standalone stations.

We give an incremental presentation of the main features of ADR. Section 2
defines our notion of software architectures asdesigns, which are basically graphs
with a typed interface. Section 3 explains how to definearchitectural stylesby
a set of design productions. Section 4 presents the main contribution of our ap-
proach, namely, hierarchical style-based reconfigurations via term rewriting. Sec-
tion 5 concludes the paper and outlines future work.

2 Software Architectures

An architecture is an abstraction or view of the implementation of a system. The
basic view describes the present components and their interconnections but other

aspects (e.g. behaviour) can also be considered, leading toan aspect oriented
development. In this paper we focus on structural aspects. This section explains
our domain for representing and manipulating software architectures.

2.1 Architectural Models

Graphs offer a natural model for software architectures. Take, for instance, the
typical component and connector view of software architectures [3] which is at
the base of architectural description languages (ADLs) like ACME [9]. Basically,
an architecture is viewed as a collection of interconnectedcomponents which rep-
resent the main computational entities. The interface of a component is repre-
sented by ports whereconnectorsare attached. Connectors model the pathways
of communication and their interfaces consist of roles. Connectors are attached
to components by assigning ports to roles. The corresponding graph has com-
ponents and connectors as hyperedges whosetentaclesrepresent roles and ports.
The nodes of the graph are the attach points.

Example.The components of our running example appearing in Figure 1 are
bikes and stations and are represented as hyperedges. For simplicity connectors
are not considered and nodes model interconnections of components, namely two
components are connected when their tentacles (outgoing arrows) share a node.
For instance, a station is a hyperedge with three tentacles:the leftward and the
rightward are attached to chain ports (type•) for communicating in each direction
along the chain, while the downward tentacle connects the station to bicycles and
is thus attached to access ports (type◦).

Of course, other choices like representing a component as a node are possible
and have been indeed proposed (e.g. in [18]). Anyway, the suitability of graphs
as a modelling formalism for software architectures has become accepted. In
addition, because our refinement mechanism is based on hyperedge replacement,
we shall typically prefer to see complex, refinable architectural entities as edges,
rather than nodes. Let us now give a formal definition for graphs.

Definition 1. A graphis a a tuple G= 〈V,E, t〉 where V is the set of nodes, E is
the set of edges and t: E→ V∗ is the tentacle function.

We leave implicit the order of tentacles exiting from each edge since in our
example their order is clearly given by the outoging direction of the tentacles (say
that the first one is the leftwards tentacle and the rest are ordered clockwise).

2.2 Architectural Elements

The vocabulary of an architectural style consists of a set ofarchitectural elements.
For instance, in a client-server architecture the obvious choice is to take two

classes of architectural elements: clients and servers. Inour example, we have
bikes, stations, cells and ports. A suitable way to represent architectural elements
consists of using type graphs, which have one edge and node for each different
type of edge and node elements, respectively. One can also have a type hierarchy
with sub- and super-types relations as in [1] but we restrictto a one-level typing
hierarchy for the sake of simplicity. The relationship between actual elements of
an architecture and their abstract classes is suitably represented by graph mor-
phisms, mapping each instance to its type. In our graphical representation, edge
types are explicitly represented as labels inside the corresponding box.

Example.The architectural elements of our running example are in Figure 2.
The types of edges areH, n,®, E®E and®® which respectively represent sta-
tions, chains of cells, bikes in normal mode, bikes in cell mode and collections
of bikes. The nodes have either type◦ (ports where bikes in normal mode and
cell stations are attached to), or• (nodes connecting stations). Bikes have one
connection port only (of type◦) while stations have three of them (one of type
• on both its left and right tentacle and one of type◦ on the bottom one). Now,
in our approach we distinguish two kind of architectural components: abstract
(or non-terminal, refinable) and concrete (or terminal, basic, non refinable). A
doubly-boxed edge represents a non-terminal edge. Non-terminal edges labelled
by ®® andn are used to represent collections of bikes and chains of stations,
respectively. For instance, we shall see that a chain of cells can be refined as a
concatenation of chains of cells or as a single cell (cf. Figure 3).

Typed graphs are hence defined as graphs equipped with a typing morphism.

Definition 2. Let G and H be two graphs. A pair of functions〈 fV, fE〉 where
fV : VG → VH and fE : EG → EH is a graph morphism fromG to H if fV and fE
preserves the tentacle functions, i.e. f∗

V◦tG = tH◦ fE, where f∗V is the homomorphic
extension of fV to V∗G.

Definition 3. Let T be a graph. Atyped graphG over T is a graph|G|, together
with a graph morphismτG : |G| → T. A morphismbetween T-typed graphs
f : G1 → G2 is a graph morphism f: |G1| → |G2| consistent with the typing, i.e.
such thatτG1 = τG2 ◦ f .

The type graph of our running example is in Figure 2. Technically, edge types
(i.e., edgesET of the type graphT) are partitioned into several alphabets. A first
distinction is due to the tentacle function:ET is partitioned into families indexed
by tuples of node types. Even if there is only one node type, edge types are
ranked according to the number of tentacles. An additional distinction is between
terminalsT and nonterminalsNT . As for ordinary string grammars, (non) termi-
nal edges, namely edges labelled by a (non) terminal symbol,represent abstract

H
##
//

��

• E®E
{{
oo

◦

®

;;

®®

OO

n

OO ``

Figure 2: Architectural elements as a type graph.

components which cannot (can) be refined. Thus, terminal edges represent basic
components of the architecture.

A designis an assembly of basic components that have a typed interface, la-
belled by a non-terminal edge. The idea is that the type of theinterface edge
represents the abstract component class, while its tentacles represent the exposed
nodes.

Definition 4. A designis a graph with interface, i.e a triple d= 〈Ld,Rd, id〉,
where Ld is a (typed) graph consisting only of a nonterminal and by distinct nodes
attached to its tentacles; Rd is a (typed) graph without nonterminal edges; and
id : VLd → VRd is a total function.

The notion of graph morphism is trivially extended to morphisms between
designs. The nodes ofRd in the image ofid are the interface nodes of the design,
ordered according to the tentacles of the nonterminal edge in Ld, while the label
Ld gives the type (or role, meaning, etc.) of the design. We shall see that this
notion of design is suited for system development by refinement, abstraction or
composition. By abuse of notation, we shall use the termgraph for both a typed
graph with interface and its underlying graph. In addition we sometimes say that
a graph is of typeA meaning that the interface of the graph is an edge of typeA.

Example. Figure 1 depicts a design of typen: the graph inside the dotted
box is the architecture. The interface edge is represented by the dotted box itself,
whose type is indicated by at its upper-left corner. The tentacles are represented
by the dotted lines, which also represent the edge morphisms.

3 Architectural Design

Designing a software architecture is a process that might consist of putting to-
gether existing designs (composition), describing the internal structure of an ab-
stract component (refinement) or specifying that an assembly of components is
actually an abstract component (abstraction). When considering styles, all these
operations should be governed by a mechanism consistent with the style of the

system. Graph grammars are a suitable formalism to achieve this (see e.g [11] for
an early work proposing graph transformations as architectural design formalism).

3.1 Architectural Styles

An architectural style consists of the set of components that can be part of the
architecture (the vocabulary), and a set of rules indicating how they can be legally
interconnected. In ADR the vocabulary of a style is given by the type graph, while
the legal interconnections are defined by productions. Theyare very much like
designs (see Definition 4), but where the underlying graph can have non-terminal
edges. Any architecture constructed following a style corresponds to a term built
out from such productions: the term represents the way in which the architecture
was constructed and its value is the architecture itself.

Definition 5. A (design) productionp is a tuple〈Lp,Rp, ip, l〉where Lp is a (typed)
graph consisting only of a nonterminal labelled by say Ap and by distinct nodes at-
tached to its tentacles; Rp is a (typed) graph with both terminal and non-terminal
edges; ip : VLp → VRp is a function; and l is a bijection mapping the non-terminal
edges of Rp on an initial segment[1, 2, . . . , np] of positive numbers.

The type of a productionp is A1 × A2 × . . . × Anp → Ap, whereAk is the
nonterminal symbol labelling thek-th nonterminal edgeek of Rp, namely with
l(ek) = k. The functional typeA1 × A2 × . . . × Anp → Ap associated top is not
an accident. In fact,p can be considered a function that when applied to a tuple
〈d1, d2, . . . , dnp〉 of designs of typesA1,A2, . . .Anp, respectively, returns a design
d = p(d1, d2, . . . , dnp) of type Ap. The definition is obvious:d = (Lp,Rd, ip),
whereRd is obtained fromRp by replacing edgeek in it with graphRdk respecting
the tentacle functionidk, k = 1, . . . , np.

This view corresponds to a bottom-up design development: a design is con-
structed by putting together some component designs. However, the dual view is
also possible: a production can be seen as refinement of an abstract component
of type A as an assembly of concrete and abstract components, the latter being
of type A1,A2, . . .Anp. As a matter of fact, design productions can be seen as
hyperedge replacement rules which are the essence of the graph grammar based
approaches to architectural styles (e.g. [18] and [11]).

Example.The design productions and their corresponding types for our exam-
ple are illustrated in Figure 3. Let us briefly comment just a couple of them (see
also Example 3.1). Productionchain takes any two designs of typen and returns
a design of typen. In words, it connects two chain of cells resulting in a chainof
cells. The figure can also be interpreted as a refinement rule stating that a chain of
cells can be decomposed into two consecutive chains of cells. Productionbikes

is analogous and used to build larger collections of bikes. Note that, unlike in the
chain rule, here the order of bikes in the collection is inessential.

The construction above yields a many-sorted algebraM, where sorts are non-
terminal symbolsNT , values are designs and operations are productions of the
corresponding types. A set of productionsP determines an architectural style,
where software architectures of typeA are those in the carrierMA corresponding
to sortA. (Carriers are not necessarily disjoint.) Furthermore, ifa termt of type
A ofM evaluates to a designd, t itself can be considered a typing proof ofd.

Once we have established our algebraic setting, we can import several useful
concepts from the standard algebraic machinery. A straightforward construction
introduces free typed variablesx into terms. As usual, an assignmentη of variables
to values can be uniquely extended to an evaluationt[η] of terms with variables.
Furthermore, term substitutiont[t′/x] can be defined. The latter construction has
an obvious meaning: given a partial designt(x) with a componentx to be refined,
and a refinement termt′ (which can be considered a derived operation) of the right
type, the (partial) designt[t′/x] is the result of the refinement step. Conversely,
givent[t′/x], the identification of a subsystemt′ of t[t′/x], such thatt′ andt(x) are
terms inM, is an abstraction step. Different levels of complexity of the construc-
tion depend on terms being linear (one occurrence of each variable) or not. In this
paper we consider just the linear case.

Our algebraic approach is very general. For instance, the design process can
be seen as the process of writing a term for a design. A refinement design process
can be seen as a top-down writing of a term of a given type. A compositional
design process can be seen as applying operations to given arguments (bottom-
up). A style check, i.e. checking whether an architecture meets a certain style,
reduces to writing a term. Note that the same graph can have several different
proofs, possibly accommodating even for different types. Each proof provides an
admissible justification for the well-typedness of the actual architecture, yielding
a way to parse the graph and reason on it accordingly.

Example.Consider the productions in Figure 3. Rulestation builds a chain
of cells (consisting of a single cell, obviously) from a collection of bikes. An
empty chain of cells is constructed via operationnocell. Complex chains are
obtained via the concatenation operationchain. Clearly, for anyx of typen, the
termschain(x, nocell) andx define the same architecture. Similarly, operations
bike, nobike andbikes are used to construct (possibly empty) collections of
bikes. Finally, a chain of cells (consisting of a single cell, again) can also be
constructed by a bike in cell mode (given by the constructorbikestation). A
term of typen defining the architecture in Figure 1 is

chain(chain(station(bikes(bike, bike)) , station(bike))
, chain(bikestation , chain(bikestation, station(bike))))

station :®®→ n

n

• • Hoo //

��

• •

◦

®®

OO

chain : n ×n→ n

n

• • noo // • noo // • •

nocell :→ n bikestation :→ n

n

• • •

n n

• • E®Eoo // • •

nobike :→®® bike :→®® bikes :®® ×®®→ ®®
◦

®®

◦

◦

®®

◦

®

OO

◦

®®

◦

®®

<<

®®

bb

Figure 3: Design productions.

3.2 Architectural Properties

Indeed the type of an architecture explains how the architecture is or can be con-
structed, i.e. by means of the operations that have that typeas codomain. Such op-
erations implicitly respect some structural constraints or properties, thus types are
not merely symbolic labels. However, not all interesting classes of architectures
are represented as non terminals. Recall that, as we have seen in the introduction,
our flavour of structural constraints is that of a graph grammar instead of some
logical formalism describing architectures that are or notpart of the style. The
benefits of the latter approach is that architectural properties are explicitly stated,
while in our approach they are implicit. For instance, with an explicit mecha-
nism we can formally state that any system of typen is indeed a connected chain
of cells. In ADR, instead, this is still true by constructioneven if not explicitly
stated. However, the operations of the architectural styleoffer the formal basis for
proving many architectural properties by structural induction.

Example. In our running example, consider the propertyφ informally1 ex-
pressed as “the graph of a cell is a unique (possibly empty) path connecting the
chain ports of the interface with either stations or bikes incell mode”. By struc-
tural induction it is very easy to show (possibly relying on amodel checker) that
φ holds true for any architecturex of typen. For instance, ifx is nocell the
proof is trivial since both the left and right chainports arethe same. Ifx is either
station(y) or bikestation the proof is given by the fact that both ports are
connected via an edge of typeH in the first case andE®E in the second one. Fi-
nally, consider the case whenx is chain(y, z) and assume that bothy andz (with
typen) satisfyφ. Then the left chain port is connected to the middle node which
is in his turn connected to the right chain port. Thus, we conclude thatx satisfies
φ too, because the propertyφ is preserved under concatenation.

4 Architectural Reconfiguration

Architectures are not static but might evolve in different dimensions. We have seen
that architectures can be designed at static-time by refining abstract components or
assembling subsystem architectures. During run-time instead, architectures might
evolve due to actions of normal behaviour or reconfigurations.

Components leaving or joining the system can require correcting actions that
lead the system into a proper state. Such actions are calledreconfigurations, and
are specially common in systems with dynamic architectures.

For instance, in our example, the system must deal with bikesand stations
leaving and joining the system or with collections of bikes that migrate from one
cell to another or join and leave the system. We also need reconfigurations to deal
with a station shutting down, by migrating the collection ofbikes in its cell to the
adjacent ones or constructing an ad-hoc chain of bikes in cell mode.

While sometimes a reconfiguration rule can be naively described as a direct
manipulation of a design or its corresponding term (withoutvariables), we argue
that reconfigurations arise more naturally and in a well-disciplined way at the ab-
stract level of the architecture, i.e. as manipulations of partial designs (terms with
variables). Indeed, the reconfigurations informally mentioned above have been
written in terms of collections of bikes (abstract class level), rather than single
bikes (basic element level). An additional issue that one would like to have in
a reconfiguration mechanism is the capacity to give guarantees about the archi-
tectural style. For instance, whether it is preserved or not. The rest of the section
discusses these issues in deeper detail and presents different reconfiguration mech-
anisms, starting from basic graph rewrite rules (and their disadvantages), to more

1 Formally,φ can be stated in e.g. Courcelle’s monadic second-order logic.

sophisticated style-based rules.

4.1 Reconfigurations as graph transformations

Since our architectures are represented by graphs, reconfigurations acquire the
taste of graph transformations. An eminent way to formalizegraph transforma-
tions is the use of graph rewrite rules. This can be done in several flavours [20],
of which the most prominent examples are the single-pushout[5] and double-
pushout [4] approaches.

Basically the rules come with left- and right-hand side graphsGL, GR. Oper-
ationally, the rewrite can be applied to any graphG larger thanGL by finding a
suitable match (i.e. an occurrence ofGL in G) and the result is the graph obtained
from G by removing that instance ofGL and releasing a fresh instance ofGR.
There can be items shared byGL andGR that are required to trigger the rewrite,
but are just preserved by the transformation (some sort of interface, needed to
properly attach the fresh copy ofGR to the existing items inG).

This view takes the actual architecture as a flat, unstructured graph, thus dis-
regarding the architectural information. Consider, for instance, the problem of
dealing with migrating bikes. One could define: i) a graph transformation rule to
migrate one bike and then apply this rule a certain number of times to migrate any
collection of bikes, or ii) infinitely many rules (one for each natural number) to
migrate a collection in one step. Such solutions, however, are not abstract enough,
since they consider concrete numbers of bikes, while a natural abstraction is that
of migrating any collection of bikes (disregarding of its actual number). In other
words, one should define a reconfiguration as a single action operating at the most
appropriate abstraction level, i.e. the rewrite rules should involve both class ele-
ments and architectural elements, according to the fixed design hierarchy.

In the example, by exploiting the design class®®, we can write a unique
rule for handling the splitting of arbitrarily large collections of bikes inside a cell.
Figure 4 sketches a reconfiguration by means of a schema of graph transformation
rules. The reconfiguration is tackled by detaching any collection of bikesc from a
cell and attaching it to an adjacent station. Yet, an application of this rule cannot
guarantee that all bikes migrate, because it can be applied in larger contexts where
other bikes are connected to the leftmost station.

We have already stated that using architectural styles haveseveral benefits.
One of such benefits is that they might offer guarantees about the execution of the
system. If one wants to preserve such benefits, then styles should be preserved
during run-time. A naive way to guarantee style preservation is to check the style
of the architecture after the application of a reconfiguration. This solution, how-
ever, is not desirable since there is no guarantee that a necessary style-preserving
reconfiguration is possible.

• Hoo //

��

• Hoo //

��

•

◦ ◦

c:®®

OO
−→

• Hoo //

��

• Hoo //

��

•

◦ ◦

c:®®

OO

Figure 4: Graph transformation rule for migrating a collection of bikes.

Our methodology takes style preservation as a must. We need thus a mecha-
nism that ensures style preservinga priori, i.e. a mechanism that ensures that any
application of a reconfiguration preserves the architectural style.

Now, while we can be convinced that the rule in Figure 4 preserves the style,
this is not obvious when observing the rule itself without considering all possible
contexts. We shall see that enforcing style preservation will allow us to use a
neater algebraic notation for reconfigurations.

4.2 Style-preserving reconfigurations as term rewriting

We have seen that design rules can be given an algebraic formulation in terms of
many-sorted operations over a suitable algebra of typed graphs (with interfaces),
with terms describing a particular style-proof. Note that in this way it is possible
that: (i) the same well-defined architecture can be described by different terms;
(ii) the same well-defined architecture can be assigned different classes.

Since style-preserving reconfigurations essentially operate at the level of style-
proofs (the abstract elements inL andR can be seen as typed variables), the al-
gebraic view can be pushed further by term rewriting over (style-)proof terms: a
graph transformation rule is seen as a rewrite ruleL → R, whereL andR are
M-terms of the same type. Typically, bothL andRare linear and all the variables
in R appear inL. This is the case when reconfigurations do not add abstract com-
ponents to the system. These variables can be instantiated in any way consistent
with the types, and bothRandL can be freely contextualized. Then, it is possible
to apply the rule in any larger architecturet(Lη), whereη assigns proof terms to
variables and wheret is any term with one hole with the same type asL. After the
reconfiguration, the architecturet(Rη) is obtained.

There is a very simple sufficient condition for enforcing style preservation,
namely that both the left-hand sideL and the right-hand sideR of the reconfigu-
ration can be assigned the same proper abstract class. Roughly, this way we are
guaranteed that wheneverL occurs,R would be also allowed by the style. More-
over, sinceL andRcan themselves contain class elements, we are guaranteed that
such elements can be consistently refined by any actual design compliant to those

classes, keeping the generality of hierarchical reconfigurations.
For instance, to deal with the simple reconfigurations of bikes joining and

leaving the system we just need the two simple rulesjoin(x2) andleave below.
(Obviously all terms that appear in the rules are properly typed but we neglect the
explicit typing in favour of a cleaner presentation.)

join(x2) : x1 −→ bikes(x1, x2)
leave : bikes(x1, x2) −→ x1

The rulejoin(x2) is used for a collectionx2 of bikes to join a cell. Dually, the
ruleleave is used for a collection of bikes to leave the cell.

We now consider the migration of bikes caused by their mobility. Clearly, the
problem can be tackled by a sequence of leave and join reconfigurations. How-
ever, it would be better (and sometimes necessary) to perform it in a single step as
expressed by the rulemigrater below for the rightwards migration:

migrater : chain(station(bikes(x1, x2) , station(x3)))
−→ chain(station(x1) , station(bikes(x2, x3)))

The rulemigrater (together with the similar rule for leftwards migration) isin
Figure 5. In comparison with the sketch of Figure 4,migrater considers the
general context of a cell, where the source cell might contain another stationary
collection of bikes and the target cell might already contain a collection of bikes.
The key is that now both the left- and the right-hand sides of the rules are typed
terms and have typen. Moreover, by typability the rule takes into account all the
bikes connected to the stations.

Another interesting reconfiguration deals with the problemof a station shut-
ting down. Assuming that the station notifies this situationto its adjacent stations,
these react bypassing the connection. Orphan bikes of the cell that is going to
disappear are adopted by the adjacent cells. (Start-up is handled similarly.)

shut : chain(station(x1), chain(station(bikes(x2, x3)), station(x4)))
−→ chain(station(bikes(x1, x2)), station(bikes(x3, x4))))

By typability the rule takes into account all the bikes connected to the stations.

4.3 Inductive reconfigurations

The reconfigurations seen so far can be applied in any larger context with their pa-
rameters instantiated according to the specified types. However, it is often the case
that a composed architecture can be reconfigured only if all its sub-components
are suitably reconfigured first. Stretching the analogy between reconfigurations

n

• • Hoo //

��

• Hoo //

��

• •

◦ ◦

x1:®®

OO

x2:®®

cc

x3:®®

OO

•

−→

n

• • Hoo //

��

• Hoo //

��

• •

◦ ◦

x1:®®

OO

x2:®®

;;

x3:®®

OO

Figure 5: Rulesmigrater (top-down) andmigratel (bottom-up).

and rewrite systems the expressiveness of our reconfiguration language is in-
creased by considering conditional labelled rewrites, defined inductively over the
terms encoding style proofs. As mentioned in the introduction, this technique
has been largely inspired from the area of process calculi, where it provides a
well-established mechanism for defining the operational semantics of concurrent
processes.

The first extension allows to limit the applicability of a reconfiguration to spe-
cific contexts, so that a complex architecture is reconfigured. The second exten-
sion allows to tag different families of rewrites depending on their role. Simple
conditional rewrites take the form

x1→ x′1 . . . xn→ x′n
L(x1, . . . , xn)→ R(x′1, . . . , x

′
n)

whereL takesx1, . . . , xn as parameters, whileR takesx′1, ..., x
′
n. The meaning is

that, given an assignmentη of concrete architectures to the parameters ofR and
L, the architectureLη can be reconfigured according toRη only if eachxiη can be
reconfigured tox′iη. Of course, more powerful forms of conditional rewrites are
possible, e.g. where premises are arbitrary rewritest → t′. However, for the sake
of our example the simple form presented is sufficient.

For instance, recall the problem of a station shutting down.We assumed that
it was possible for the adjacent stations to bypass the connection and adopt the
orphan bikes. We now consider the case in which this is not possible and bikes

◦

®®

◦

®

OO
tocell
−→

n

• • E®Eoo // • •

Figure 6: Reconfigurationbike2cell.

◦

x1:®®

OO

tocell
−→ • x′1:noo // •

◦

x2:®®

OO

tocell
−→ • x′2:noo // •

◦

®®

◦

x1:®®

;;

x2:®®

OO
tocell
−→

n

• • x′1:noo // • x′2:noo // • •

Figure 7: Reconfigurationbikes2cells.

react by switching from their normal mode to a cell mode in which they become
independent cells. The idea is that the bikes in the cell of the station that is shutting
down will be connected as a chain. Since we need to reconfigurein one step all
the bikes, we cannot provide just one ordinary style-preserving rule. Instead we
can give an easy recursive definition via conditional rewrites as below.

The base reconfiguration involves a single bike (see Figure 6):

bike2cell : bike
tocell
−→ bikestation

The inductive case we consider is illustrated in Figure 7, where the union
of two collections of bikes is reconfigured as the concatenation of the respective
reconfigured cells, provided that these are possible:

bikes2cells :
x1
tocell
−→ x′1 x2

tocell
−→ x′2

bikes(x1, x2)
tocell
−→ chain(x′1, x

′
2)

The cell with the station shutting down is reconfigured by therule (see Fig-
ure 8):

◦

x:®®

OO

tocell
−→

• x′ :noo // •

n

• • Hoo //

��

• •

◦

x:®®

OO

−→ • x′ :noo // •

Figure 8: Reconfigurationcell2chain.

cell2chain : x
tocell
−→ x′

station(x) −→ x′

Obviously, types are not preserved by some of these cases andthus the right-
and left-hand sides of the rewriting rule cannot be applied in the same contexts.
But this is not a problem because rules are intended to be applied in appropriate
(inductively defined) contexts. Consider the last case of rule cell2chain where
the premise is for a collection of bikes to become a chain cell, while the conclusion
actually transforms a chain of cells into a chain of cells. The silent label makes it
applicable in any larger context (unlike rewrites labelledtocell).

4.4 Runtime issues of reconfigurations

It is important to remark again that in our setting reconfigurations happen at the
level of style proofs. Several scenarios are thus possible:(i) the architectural
information is available at run-time and it is exploited in the reconfiguration; (ii)
the architectural information is available at run-time butwe want (or need) to
construct a different proof term in order to apply a convenient reconfiguration;
(iii) no architectural information is available and we needto construct a proper
proof in order to apply the reconfiguration.

Note that byarchitectural informationwe intend typically the proof term,
but it might be also possible to consider an approximation ofit that disregards
of irrelevant details. Technically, this is achieved by partially evaluated terms
which implicitly use derived design productions. For instance, in our exam-
ple we might want to ignore the way chains were actually constructed and con-
sider a derived productionchaini that putsi designs of type®® in a sequence

of i stations, such that e.g. for a design consisting of three cells defined by
termchain(station(x1), chain(station(x2), station(x3))) the runtime infor-
mation is reduced tochain3(x1, x2, x3). Of course, the reconfiguration rules must
be defined accordingly. In the particular example this wouldrequire families of
reconfigurations for joining, adding and migrating with theadvantage of not need-
ing to re-parse a design as it occurs if we use the original term. On the other hand,
it would be very difficult to deal with the shutdown scenario where bikes change
mode. In other words, there is a range of architectural information that goes from
the original design construction (the entire proof term) toan abstraction of it (the
proof term partially evaluated) to the actual architecture(the proof term com-
pletely evaluated). As the next paragraph discusses there is a trade-off between
different aspects.

Case (i) is rather straightforward and computationally less expensive, with the
advantage that even in a largely distributed system, all candidates to the recon-
figurations can be statically marked and locally monitored.It is however less
flexible, because when different reconfigurations are possible that are dependent
on different proof terms for the same architecture, then no optimization is pos-
sible. Instead, case (ii) and (iii) require some additionalglobal monitoring but
can allow to improve the performance of the reconfigured system by taking into
account non-structural aspects like those related to Quality of Service (QoS).

For instance, in our example one might want each cell to adoptthose orphan
bikes which are nearest to it. Considering non-structural aspects such as QoS is a
current research activity that we do not report due to lack ofspace, but it is worth
highlighting that our approach puts the basis for those scenarios in which several
reconfigurations are possible and given by different but still equivalent proofs for
the same architecture and one can choose the most appropriate one taking into
account some criteria (based on QoS measures, for instance).

5 Conclusion

We have presentedArchitectural Design Rewriting, an approach to deal with the
structural aspects of hierarchical style-based reconfigurations of software archi-
tectures. The approach is based on a simple algebra of typed graphs with inter-
faces, which allows for a unifying treatment of style-baseddesign, style checking,
execution and reconfiguration. This results in a simple and formal mechanism for
designing architectures according to a style, for checkingthat an architecture is an
instance of a style and for ensuring style preservation during reconfigurations.

We believe that ADR has multiple applications. First, it could serve as a for-
mal basis for extending existing methodologies or ADLs. Then, it can also be
used as the basis of graphical representations of process algebras. For instance,

a representation ofπ-calculus [19] based on the graphical encoding [8] is cur-
rently being defined. Pushing further the connection with process algebras, we
are investigating suitable notions of architectural equivalences. For instance, two
architectural terms can be regarded as structurally equivalent if they evaluate to the
same architecture (graph), and equivalent w.r.t. to the reconfiguration rules if they
are bisimilar (any possible reconfiguration of one architecture can be mimicked
by the second one resulting again in equivalent architectures).

We plan to analyse and eventually enrich our approach to support the de-
sign and management of service-oriented architectures, where architectural con-
cepts regard service assembly and composition [6], reconfigurations dealing with
modes [12] and service invocation, discovery and binding [6], and non-structural
aspects like QoS become crucial. A first effort [2] in this direction consists of the
encoding of SRML [6], an emergent service-oriented modelling language inspired
by the Service Component Architecture [21].

References

[1] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-basedmodeling and refinement
of service-oriented architectures.Software and Systems Modeling, 5(2):187–207,
June 2006.

[2] R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto.Service oriented archi-
tectural design. Submitted to Trustworthy Global Computing (TGC’07), 2007.

[3] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.Docu-
menting Software Architectures: Views and Beyond. Pearson Education, 2002.

[4] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation - part i: Basic conceptsand double pushout
approach. In Rozenberg [20], pages 163–246.

[5] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation - part ii: Single pushout approach and
comparison with double pushout approach. In Rozenberg [20], pages 247–312.

[6] J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approachto service component
architecture. InProceedins of WS-FM’06, 3rd International Workshop on Web Ser-
vices and Formal Methods, volume 4184 ofLecture Notes in Computer Science,
pages 193–213. Springer, 2006.

[7] P. Fradet and D. L. Métayer. Shape types. InProceedings of POPL ’97, 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 27–
39, New York, NY, USA, 1997. ACM Press.

[8] F. Gadducci. Graph rewriting for theπ-calculus.Mathematical Structures in Com-
puter Science, 17(3):407–437, 2007.

[9] D. Garlan, R. T. Monroe, and D. Wile. ACME: an architecture description inter-
change language. In J. H. Johnson, editor,Proceedings of CASCON’97, conference
of the Centre for Advanced Studies on Collaborative Research, page 7. IBM, 1997.

[10] I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for
distributed systems. In D. Garlan, J. Kramer, and A. L. Wolf,editors,Proceedings
of WOSS’02, 1st Workshop on Self-Healing Systems, pages 33–38. ACM, 2002.

[11] D. Hirsch, P. Inverardi, and U. Montanari. Modeling software architecures and styles
with graph grammars and constraint solving. In P. Donohoe, editor, Proceedings of
WICSA1, TC2 First Working IFIP Conference on Software Architecture, volume 140
of IFIP Conference Proceedings, pages 127–144. Kluwer, 1999.

[12] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes forsoftware architectures. In
V. Gruhn and F. Oquendo, editors,Proceedings of EWSA’06, 3rd European Work-
shop on Software Architectures, volume 4344 ofLecture Notes in Computer Science,
pages 113–126. Springer, 2006.

[13] D. Hirsch and U. Montanari. Shaped hierarchical architectural design. InProceed-
ings of GT-VMT’04, 4th Workshop on Graph Transformation andVisual Modelling
Techniques, volume 109, pages 97–109, 2004.

[14] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering Methodologies, 11(2):256–290, 2002.

[15] J. S. Kim and D. Garlan. Analyzing architectural styleswith alloy. In Proceedings
of ROSATEA’06, ISSTA 2006 workshop on Role of software architecture for testing
and analysis, pages 70–80, New York, NY, USA, 2006. ACM Press.

[16] B. König, U. Montanari, and P. Gardner, editors.Graph Transformations and Pro-
cess Algebras for Modeling Distributed and Mobile Systems,6.-11. June 2004, vol-
ume 04241 ofDagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2005.

[17] N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages.IEEE Transactions on Software Engi-
neering, 26(1):70–93, 2000.

[18] D. L. Métayer. Describing software architecture styles using graph grammars.IEEE
Trans. Software Eng., 24(7):521–533, 1998.

[19] R. Milner. Communicating and Mobile Systems: Theπ-calculus. Cambridge Uni-
versity Press, 1992.

[20] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[21] Service Component Architecture.http://osoa.org, 2007.

[22] M. Shaw and D. Garlan.Software Architectures: Perspectives on an emerging dis-
cipline. Prentice Hall, 1996.

http://osoa.org

		Introduction

		Software Architectures

		Architectural Models

		Architectural Elements

		Architectural Design

		Architectural Styles

		Architectural Properties

		Architectural Reconfiguration

		Reconfigurations as graph transformations

		Style-preserving reconfigurations as term rewriting

		Inductive reconfigurations

		Runtime issues of reconfigurations

		Conclusion

