
Service Oriented Architectural Design?

R. Bruni1, A. Lluch Lafuente1, U. Montanari1, E. Tuosto2

1 Department of Computer Science, University of Pisa
{bruni,lafuente,ugo}@di.unipi.it

2 Department of Computer Science, University of Leicester
et52@mcs.le.ac.uk

Abstract. We propose Architectural Design Rewriting (ADR), an ap-
proach to formalise the development and reconfiguration of software ar-
chitectures based on term-rewriting. An architectural style consists of
a set of architectural elements and operations called productions which
define the well-formed compositions of architectures. Roughly, a term
built out of such ingredients constitutes the proof that a design was
constructed according to the style, and the value of the term is the con-
structed software architecture. A main advantage of ADR is that it nat-
urally supports style-preserving reconfigurations. The usefulness of our
approach is shown by applying ADR to SRML, an emergent paradigm
inspired by the Service Component Architecture. We model the com-
plex operation that composes several SRML modules in a single one
by means of suitable rewrite rules. Our approach guarantees that the
resulting module respects SRML’s metamodel.

1 Introduction

Service orientation is becoming a standard paradigm in the development of soft-
ware applications. The paradigm is centred around the notion of service, i.e. a
computational entity whose functional and non-functional aspects can be de-
scribed in a standard document to be advertised in some service registries and
made available for discovery. Contrary to traditional applications, service ori-
ented ones are not just statically assembled. Instead, they have the potentialities
for allowing dynamic assembly via publication, discovery, selection and binding.

SENSORIA [10] (Software Engineering for Service-Oriented Overlay Com-
puters) is a research project that aims to develop a novel and comprehensive
approach for engineering service oriented computations. Key issues of SENSO-
RIA concern the early stage and development of service specification, like design
and reconfiguration of service-based architectures. In this setting, the configu-
ration of a system consists of the present components and interconnections (i.e.
the architecture), together with their current state. Architectural styles can be

? This work has been partly supported by the EU within the FETPI Global Com-
puting, project IST-2005-016004 SENSORIA (Software Engineering for Service-
Oriented Overlay Computers) and by the Italian FIRB Project Tocai.it.

2 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

applied to reuse existing design patterns and thus facilitate software develop-
ment. In addition, they offer a further benefit when architectural information is
carried over the execution of the system, since one can control whether changes
in the system imply changes in the architecture. During run-time, changes in
the configuration like dynamic binding require reconfigurations of the architec-
ture. Static reconfiguration of an architecture may also be necessary, e.g. when
deploying an existing architecture on a platform it was not originally designed
for. Often, the architectural style must be preserved or consistently changed.

In this paper, we propose Architectural Design Rewriting (ADR) [5] as a novel
formal approach to tackle some of the aforementioned issues of service-oriented
software development. A formal metamodel for static and dynamic aspects of
the SENSORIA Reference Modelling Language (SRML) [13] is given in order to
demonstrate the expressiveness and flexibility of ADR. SRML has been inspired
by various formalisms: orchestration languages such as ORC [24], transactional
process calculi such as Sagas [6], Web service conversation models [4] and, most
notably, IBM’s Service Component Architecture (SCA) which has become part
of the Open Service Oriented Application [25] initiative involving many major
industrial partners (IBM, Sun and Oracle, among others). SCA and SRML are
complementary approaches. Indeed, SRML is aimed at the definition of mathe-
matical semantics for modules while SCA focuses on implementation.

Though some aspects of architectural reconfiguration can be captured within
other type-theoretic frameworks e.g., the calculus of constructions [9], we argue
that ADR is very intuitive and more flexible with respect to other approaches.
Indeed, ADR gives software architects the possibility to avoid style-preserving
reconfigurations when necessary while usually type-theoretic frameworks impose
it or require a complex machinery to get around it.

SRML Overview. When designing an architecture, it is desirable to consider
the concept of architectural style [26], i.e. some set of rules indicating which
components can be part of the architecture and how they can be legally inter-
connected. Traditional architectural styles include client-server and pipelines.
Some of such styles have been also defined in the realm of service oriented ap-
plications, going from abstract client-server styles [21] to more concrete and
complex architectures [2]. The basic ingredients of a style are architectural el-
ements and structural constraints. For instance, the architectural elements of
SRML are drawn in Fig. 1 (borrowed from [13]) and include service modules
(square boxes), components (rounded boxes), wires (straight lines) and inter-
faces (concave and convex polygons). This graphical notation is in the line of
the traditional boxes-and-lines or component-and-connectors [8] notations and
much more inspired by the graphical notation of SCA. The structural constraints,
in their turn, require modules to be interconnected via external wires such that
one of the require interfaces (EX-R) of a module is connected to the provide in-
terface (EX-P) of another one. Inside a module, components and interfaces are
connected via internal wires (IW). An SRML architecture is given at the highest
level of abstraction by an assembly of modules with possibly some discovered
but not bound service modules interconnected via external wires. For instance,

Service Oriented Architectural Design 3

Fig. 1. An SRML diagram before (left) and after (right) composition.

Fig. 1 depicts an architecture with a service module (the leftmost square) which
requires two additional services to be attached to the external interfaces EX-R1
and EX-R2. The one corresponding to EX-R1 has been discovered and connected
via an external wire (EW).

An example of a reconfiguration in SRML is the composition of (already
discovered) interconnected modules into a single module [12]. SRML provides
a mechanism to achieve this static reconfiguration, by means of an algorithm
that manipulates SRML specifications. As an example, the assembly of Fig. 1
(left) can be composed into the service module depicted in Fig. 1 (right), where
wire IW6 is derived according to certain composition rules. Such reconfigurations
require a proof of correctness w.r.t. style preservation.

ADR Overview. ADR [5] is a recent proposal for the style-consistent design and
reconfiguration of software architectures, conceived in the spirit of initiatives
(e.g. [20]) that promote the conciliation of software architectures and process
calculi by means of graphical methods. Although not discussed here, ADR can
also represent the normal behaviour of systems (i.e., the evolution of compo-
nents). For example, a representation of π-calculus [23] based on a graphical en-
coding [15] is currently under development. ADR offers a unified setting where
design development, ordinary execution and reconfiguration are defined on the
same foot. The key features of ADR are: (i) rule-based approach; (ii) hierarchi-
cal and graphical design; (iii) algebraic presentation; and (iii) inductively-defined
reconfigurations. Architectures are suitable modelled by so-called designs: a kind
of graphs whose items suitably represent the architectural components and their
interconnections. Architectures are designed hierarchically by a set of composi-
tion operators called design productions which enable: (i) top-down design by
refinement, (ii) bottom-up typing of actual architectures, and (iii) well-formed
composition of architectures. An architectural style is defined as a set of design
productions such that a design is style-consistent whenever it can be defined by
a design term which makes use of the corresponding design productions. Recon-
figuration and behaviour are given as rewrite rules that are defined over design
terms rather than over designs. The main advantages of ADR are that: (i) in-
stead of reasoning on flat architectures (designs), ADR specifications provide a
convenient hierarchical structure (design terms), by exploiting the architectural
classes introduced by the style, (ii) complex reconfiguration schemes can be de-

4 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

∗+[F−]r r

��

p

��
c // ◦ ioo // . eoo // I ioo // ◦ coo

p

i

��

OO

r

��
I ioo // ◦ ioo // .

c

OO

W

OO

c // ◦ ioo // ◦ coo

p

��

i

��

OO

r

��
I ioo // ◦ ioo // .

c

OO

W

OO

Fig. 2. Two SRML diagrams in the graphical representation of ADR.

fined inductively at any level of abstraction, and (iii) style-guarantees during
reconfiguration or execution are ensured by construction.

Contribution. Our main goal is to define an ADR-based architectural style to
support the development and reconfiguration of SRML diagrams according to the
SRML metamodel. We shall define an architectural style given by a vocabulary
of architectural elements and a set of operations for the construction of SRML
diagrams. More precisely, we build an algebra where the evaluation of a design
term is a design representing an SRML diagram. It is worth mentioning that
any SRML diagram can be represented by a design. For instance, Fig. 2 depicts
ADR designs for the SRML diagrams of Fig. 1: the correspondence is explained
in § 3. SRML reconfigurations are then modelled as ADR rewrite rules over the
design terms rather than over plain designs, guaranteeing style preservation and,
thus, metamodel conformance.

Structure of the Paper. § 2 overviews ADR. § 3 describes an ADR style for
SRML. § 4 addresses the problem of reconfiguration of SRML diagrams, fo-
cusing on module composition. § 5 summarises our work, draws conclusions and
sketches interesting research avenues. For reader’s convenience the graphical rep-
resentation of the most complex reconfiguration rule is included in appendix A.

2 Architectural Design Rewriting

In this section we summarise the key features of ADR. We refer the reader
to [5] for a detailed technical presentation. Roughly, ADR adheres to three main
principles: (i) architectural designs are modelled by suitable graphs called designs
and come equipped with their proofs of construction called design terms; (ii)
architectures are designed hierarchically by a set of composition operations called
productions out of which design terms are built and architectural styles are
basically given by sets of such productions such that an architectural design is
compliant with a style if its design term uses the corresponding productions only;
(iii) reconfigurations are powerful, expressive, hierarchical and style-consistent
rewrite rules defined over design terms instead of designs.

We illustrate the principles of ADR with a simple example where a local
network architecture admits two styles where each network hub has respectively

Service Oriented Architectural Design 5

two and three degrees of connectivity. Connections between hubs are also driven
by the style, so that, for instance, the only legal 2-degree networks are rings.

Principle i), i.e. modelling architectural designs by suitable graphs, has been
widely exploited in the literature (e.g. [2, 22]). For instance, in the well estab-
lished component and connector view, software architectures are modelled by
graphs of components and connectors. In ADR one can represent such graphs as
follows. A component is modelled by a hyperedge whose outgoing tentacles rep-
resent the components interface, i.e. its ports. Similarly, a connector is modelled
by a hyperedge whose outgoing tentacles represent the connector’s interface, i.e.
its roles. Attaching a port to a role is done by connecting the respective tentacles
to the same node. The main actor of ADR are designs (see Definition 2), which
are used to model components, connectors and architectural configurations.

The choice of graphs as the domain of our algebra is inherited from the pre-
viously mentioned approaches, but it is well justified by the immediate user-
friendly visual representation and the expressive power of graphs and their
rewritings which have been used for years as a model, not only of software
architectures, but of many other things ranging from data structures to process
calculi.

Definition 1. A graph is tuple G = 〈V,E, θ〉 where V is the set of nodes, E is
the set of edges and θ : E → V ∗ is the tentacle function.

The different classes of edges used in the network example are drawn in Fig. 3
where an explicit numbering or naming of tentacles is avoided in favour of an im-
plicit convention that assumes that the order of tentacles exiting from each edge
is given by considering the leftward tentacle as the first one and the remaining
tentacles as clockwise ordered.

More generally, we could consider the association of semantic information
to graph items. For example, nodes can represent variables taking values over
a finite domain and edges can express suitable constraints over them. Another
example is the association of theories to nodes and theory morphisms to edges
(e.g. a theory of interaction signatures). Then, this additional information can
be exploited to drive the development and reconfiguration phases. We shall not
give special emphasis to such aspects. However, we shall return to this issue
along with the paper suggesting how we could capture semantical aspects of
SRML in addition to the structural ones, on which we shall focus.

Principle ii), i.e the hierarchical design of architectures, is also not particu-
larly original in itself [18], but it is here enhanced by a novel algebraic presen-
tation. An architectural style consists of a vocabulary of architectural elements
(represented by a type graph), and a set of production rules indicating how they
can be legally interconnected. We distinguish two kinds of edges in the type
graph: terminals T and non-terminals NT . Likewise string grammars, terminal
edges represent basic, non-refinable, concrete components of the architecture,
while non-terminal edges, represent complex, refinable, abstract components.

In the network example we have T = {2hub, 3hub} andNT = {2N, 3N,NET}.
Our graphical notation uses single-framed and double-framed boxes for terminals
and non-terminals, respectively (see Fig. 3).

6 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

• 2huboo // •

•

• 3huboo //

OO

• • 2Noo // •

•

• 3Noo //

OO

•

•

NET

OO

2-hub 3-hub 2-network 3-network network

Fig. 3. Architectural elements of the network example.

In ADR, software architectures are not just specified by graphs. Instead,
they are represented by designs. A design is a well-formed architecture with a
typed interface (represented by a non-terminal edge) and an internal structure
(represented by a graph). The interface is an abstract view of the design as a
single component, thus hiding the internal representation except for those nodes
that are exposed in the interface.

Definition 2. A design is a triple d = 〈Ld, Rd, id〉, where Ld is the interface
graph consisting a single non-terminal edge (called interface) whose tentacles are
attached to distinct nodes; Rd is the body graph; and id : VLd

→ VRd
is the total

function associating body nodes to interface nodes.

A design d is partial (resp. concrete) if Rd contains (resp. does not contain)
non-terminal edges. In service-oriented applications dealing with partial designs
is natural and essential: the architecture of services is only instantiated when
needed after a proper discovery, selection and binding.

Designs are assembled by means of composition operations, called design
productions.

Definition 3. A production is a tuple p = 〈Lp, Rp, ip, lp〉 where 〈Lp, Rp, ip〉 is
a design with np occurrences of non-terminal edges in Rp that are mapped by the
bijection lp on segment [1, 2, . . . , np].

Each production p has a functional reading p : A1 × A2 × . . . × An → Anp ,
where × has precedence on →, Ap is the type of the interface and Ak is the
type of the k-th non-terminal edge ek of Rp (i.e. ek = l−1

p (k)). In fact, p can
be considered as the obvious graph pasting that, when applied to a tuple of
designs 〈d1, d2, . . . , dnp

〉 (of types A1, A2, . . . Anp
, respectively), returns a design

p(d1, d2, . . . , dnp) of type Ap obtained by replacing each non-terminal edge ek in
Rp with the graph Rdk

(preserving the correspondence of tentacles).
Our network example uses production link2 = 〈Llink2, Rlink2, ilink2, llink2〉

whose functionality is link2 : 2N1 × 2N2 → 2N. Intuitively, link2 specify an
operator of the algebra that arranges two designs of type 2N into a new 2N design.
In hyperedge replacement style (see [16] for details) link2 can be written as

•u1 e:2Noo // •u2 ///o/o/o •u1 e1:2Noo // •v e2:2Noo // •u2

where the left-hand side graph can be replaced by the right-hand side one. A
compact and elegant graphical representation of link2 is drawn in Fig. 4 where

Service Oriented Architectural Design 7

e:2N

•u1 /o/o/o/o •v1 e1:2Noo // •v3 e2:2Noo // •v2 •u2o/ o/ o/

Fig. 4. Graphical representation of production link2

the left-hand side (i.e., the interface edge) is represented by the outermost dot-
ted box whose nodes u1 and u2 are outside the dotted box. The right-hand
side graph of link2 is depicted in the dotted box and the nodes v1 and v2 are
exposed in the interface through waved lines. Finally, the order of arguments
of each production is implicit: from top to bottom, and left to right if on the
same row, e.g. llink2 = {e1 7→ 1, e2 7→ 2}. In the rest of the paper we will ne-
glect the textual representation of productions as well as the identities graph
items in their visual representation. The rest of the productions of our example
are depicted in Fig. 5. For example, a 2-network is either a network with just
one 2-hub (basic2) or the chaining of two 2-networks (link2). For 3-degree
networks the composition involves three arguments of type 3N. For instance,
production link3 has type 3N × 3N × 3N → 3N. Finally, a network is either a
2-network (net2) or a 3-network (net3), whose interface nodes are merged to-
gether. To illustrate the operations associated to productions, consider the term
net2(link2(link2(basic2, basic2), basic2)). Subterm link2(basic2, basic2)
evaluates to a 2-network made of two concatenated 2-hubs. Such value is used in
the subterm link2(link2(basic2, basic2), basic2) to obtain a 2-network made
of three 2-hubs. Finally the whole term evaluates to the design on the right of
Fig. 6. Similarly, the term net3(link3(basic3, basic3, basic3)) evaluates to
the design on the left of Fig. 6. Instead an expression like net2(basic3) is not
valid, because types mismatch.

The use of productions offers a mechanism that supports the construction
of architectural designs both in a top-down way by refinement of terms and a
bottom-up way by composition of terms. A typing mechanism can be used as a
reverse engineering method to obtain a design term for a given design.

A crucial benefit of the use of productions regards the concept of architec-
tural style, i.e. a certain set of architectural designs considered to be valid or
in conformance with some design pattern. In fact, while changes in the ar-
chitecture are acceptable and even necessary, the architectural style should be
preserved in most cases. For instance, in a system with client-server architectural
style clients connecting and disconnecting from the server are permitted, while a
client connecting to a client is not. Changes in style are also interesting, take for
instance, a token ring architecture configuring into a star-shaped one to achieve
a most efficient communication. Typical architecture description languages de-
fine a style in terms of architectural constraints to be checked after or during
the construction of a design. Instead in ADR, an architectural design is defined
by a set of productions. Any design term that uses those productions defines an
architectural design that is consistent with the corresponding style. As a conse-

8 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

net3 : 3N→ NET

•

�O
�O
�O

NET

•

3N

00 nn
OO

net2 : 2N→ NET

•

�O
�O
�O

NET

•

2N

00 nn

link3 : 3N× 3N× 3N→ 3N

•

�O
�O
�O

3N

•

• 3Noo //

OO

•

• /o/o/o/o • 3Noo //

OO

• 3Noo //

OO

• •o/ o/ o/

basic3 : 3N

•�O

3N •

• /o/o/o/o • 3huboo //

OO

•• •o/ o/ o/

basic2 : 2N

2N

• /o/o/o/o • 2huboo // • •o/ o/ o/

Fig. 5. Design productions of the network example.

•

�O
�O
�O

NET

•

• 3huboo //

OO

•

3hub

00

//

OO

• 3huboo

nn

OO

•

�O
�O
�O

NET

•

• 2huboo // •

2hub

00

aa

2hub

==

nn

Fig. 6. Two network designs: with three-degrees (left) and two-degrees (right) hubs.

quence, no proof of style-consistency is needed. Designs are style-consistent by
construction.

We say that a design d is well-formed if there is a well-typed design term
whose value is d, while we say that d is consistent w.r.t. to a style (or style-
consistent) if the design term uses design productions of the style. Note that
style-conformance implies well-formedness, but the contrary is not true. For in-
stance, one could construct an architecture mixing productions of two different
styles. However, for the sake of simplicity we assume that mixing styles is not
possible. This is achieved by requiring the set of types used in each pair of styles
to be disjoint, in which case the style of a design term is automatically given by
its type and thus well-formedness and style-consistency coincide.

Principle iii), i.e. reconfigurations defined over design terms instead of ac-
tual architectures, exploits the algebraic presentation of ADR. This enables a
straightforward definition of hierarchical and inductive reconfigurations as ordi-
nary term rewriting and conditional SOS rules. The main guarantee offered by
ADR is that reconfigurations are style-preserving by construction.

Service Oriented Architectural Design 9

basic3to2 : basic3
3to2−→ basic2 net3to2 :

x
3to2−→ x′

net3(x) −→ net2(x′)

link3to2 :
x1

3to2−→ x′
1 x2

3to2−→ x′
2 x3

3to2−→ x′
3

link3(x1, x2, x3)
3to2−→ link2(link2(x′

2, x
′
1), x′

3)

Fig. 7. Conditional reconfigurations of the network example.

A reconfiguration rule is seen as a rewrite rule L→ R. There is a very simple
sufficient condition for enforcing style preservation, namely that both L and R
are terms of the same type. Then, it is possible to apply the rule in any larger
architecture t(Lη), where η assigns design terms to variables and where t is
any term with one hole with the same type as L. After the reconfiguration, the
well-typed architecture t(Rη) is obtained.

For example, the rule link2(x1, x2) → link2(x2, x1) where x1 and x2 have
type 2N, reconfigures any 2N chain by switching the order of its two components.

In case certain local changes in the architecture are subordinated to the
corresponding adaptation of the adjacent environment, we can use conditional
reconfiguration rules, expressing that a composed architecture can be rewritten
only if its sub-components are suitably transformed first. This step makes the
formalism very powerful. Simple conditional rewrites take the form:

t1 → t′1 . . . tn → t′n
L→ R

meaning that, given an assignment η, the architecture Lη can be reconfigured
according to Rη only if each tiη can be reconfigured to t′iη.

The reconfiguration rules needed to downgrade the hubs of any 3-network are
defined in Fig. 7. Note that types are not preserved by rewrites labelled 3to2,
which change the type from 3N to 2N. But this is not a problem because rules
are intended to be applied in appropriate (inductively defined) contexts. This is
particularly clear in the rule net3to2 where the conclusion actually transforms
a network into a network: the silent label makes it applicable in any larger
context. The rule link3to2 is graphically represented in Fig. 8. By applying
net3to2 (once), link3to2 (once) and basic3to2 (three times), we obtain a
style-preserving rewrite from the leftmost design in Fig. 6 to the rightmost one.

For another simple but illustrative example of the ADR modelling of a road
assistance scenario we refer the reader to [5].

3 Design of SRML diagrams

The metamodel of SRML is defined in terms of some class diagrams. Roughly,
a module is an abstraction of a business entity that can either perform a task
(in which case it is called an activity module) or provide a service (called a
service module). Modules consist of components and external interfaces, possibly

10 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

∀i∈{1,2,3} •
�O

3N •

• /o/o/o/o/o • xi:3Noo //

OO

•• •o/ o/ o/
3to2

Þ

2N

• /o/o/o • x′i:2Noo // • •o/ o/ o/

•�O

3N •

• x1:3Noo //

OO

•

• /o • x2:3Noo //

OO

• x3:3Noo //

OO

• •o/

3to2

Þ

2N

• x′1:2Noo // •

• /o • x′2:2Noo

``

x′3:2N //

>>

• •o/

Fig. 8. Graphical representation of rule link3to2.

linked via internal wires. Components abstract the computational aspects of
modules, while interfaces model the interaction with the external world. There
are two kinds of external interfaces: provide and require. The former are present
in service modules and indeed they specify the service provided by modules.
Require interfaces, instead, specify the services needed. A needed service can be
identified during static- or run-time. The latter being the open-frontier of the
service-oriented paradigm, but static binding is interesting too as we shall see.

In this section we define an ADR architectural style that is compliant with the
SRML metamodel. The encoding of SRML composition as ADR reconfiguration
is deferred until § 4.

3.1 Architectural Elements of SRML

Service components, wires and interfaces are concrete architectural elements that
we represent as terminal edges (see Fig. 2, for instance). A service component is
represented by an edge of type c with a unique tentacle representing its interac-
tion port attached to a node of type ◦ (a component port). Require and provide
interfaces are edges of type r and p, respectively, whose tentacles are attached to
nodes of type . (required port) and I (provided port), respectively. Internal and
external wires are represented with edges respectively typed by i and e. Internal
wires must be attached to a node of type ◦ or I and another node of type ◦ or
.. This means that the left (resp. right) tentacle of an internal wire cannot be of
type . (resp. I). External wires are attached to one node of type . via its left
tentacle and another one of type I via its right tentacle.

Typing imposes syntactical restrictions not present in the (less-accurate)
UML metamodel (e.g., it does not make sense to connect two require interfaces
via an internal wire). Further syntactical and semantic aspects are enforced by
suitable mechanisms that impose restrictions on the actual use of wires in a dia-
gram. For instance, the ports of components and interfaces and the roles of wires

Service Oriented Architectural Design 11

amod smod wrap

AM

AB //

//

. Woo

. Woo

M

B

pp

//

..

. Woo

I /o I

. Woo

W

. /o . E //oo I Moo

ewire

E

. /o . e //oo I Io/

Fig. 9. An activity (left), a service (center) and a wrapped service (right).

have associated suitable interaction signatures. Then, a component or interface
can share a node with an internal wire only if their respective ports and roles
have the same signature. External wires, instead require both attached signa-
tures to be compatible and the behaviour of the required service to be entailed
from the provided one. We deal only with the most abstract structural aspects of
SRML; insights on aforementioned restrictions are in [13] where suitable models
of interaction signatures and service behaviour entailment are fully detailed.

The non-terminal architectural elements of the SRML style are present in
the various figures of this section where families of architectural elements are
actually represented. In fact, designs and productions are parametrised by the
rank of their constituents. For simplicity, our graphical notation abstracts away
from ranks and a dotted line between two nodes for representing any number of
them. In other words, we overload the name of (ranked) productions and assume
the application of production exploits polymorphism in a suitable way.

The presented architectural elements are the basic ingredients to build graphs
that represent SRML diagrams such as those in Fig. 2.

3.2 Design Productions for SRML

We follow a top-down presentation of the ADR productions for SRML (from
modules to wires and components).

Service and activity Modules. An SRML module consists of a body (to be identi-
fied during development) and some wrapped services (to be refined at run-time).
Productions smod and amod in Fig. 9 model this structure. For instance, we could
have amod(t, x1, x2), t being a concrete design of type AB (the complete speci-
fication of the body of the activity), while x1 and x2 are variables of type W .

Remarkably, the ADR modelling of SRML binding is performed in two steps.
First, the selected service is wrapped in the module via an external wire and
then the internal wires of both the activity and the service are rearranged to
internalise the connection (cf. Section 4). Here, the wrapping step is modelled
by production wrap : E ×M → W in Fig. 9, that wraps a service module by

12 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

abod sbod

AB

C

��

��

r

��
◦ . .o/ o/ o/

◦ I\\

oo //

??

r

��
. .o/ o/ o/

B

p

��

I

�� ��

��

r

""
I /o/o/o I C

��

��

. .o/ o/ o/

◦

I

[[

//

00 ◦ I\\

oo

BB

00

. .o/ o/ o/

r

PP

Fig. 10. The body of an activity module (left) and a service module (right).

means of a binding wrapper that connects the require interface port with the
interface port provided by the service. The only binding considered here is a
single external wire (see production ewire).

Module Bodies. The body of a module consists of a collection of service com-
ponents and interfaces connected via internal wires. The difference between the
body of an activity and a service module is that the former does not have a
provide interface. In the body of a service module it is convenient to distinguish
three collections of internal wires connecting, respectively, the provide interface
with the require interfaces, the provide interface with the service components
and the service components with the require interfaces. This distinction leads to
three arguments of type I, that partition internal wires depending on the types
of the ports their tentacles are attached to. Correspondingly, production sbod
has type I × C × I × I → B (see Fig. 10). Production abod is very similar, but
requires only a collection of internal wires. Its type is C × I → AB.

Again, suitable restrictions should be imposed on connecting wires when
further aspects are in order. For instance, assume/guarantee relations between
a require and a provide interfaces can be given as an entailment of the provide
interface from the require one.

Service Components and Internal Wires. Service components are the main com-
putational entities of SRML modules. We define two design productions to con-
struct collections of such, possibly interconnected, service components: comp (of
type → C) to create a single component, and comps (of type C × C × I → C)
to compose two collections of components via internal wires (see Fig. 11).

Productions iwire :→ I and wires : I × I → I respectively build a single
wire and a collection of wires (out of two collections of wires). Regarding iwire,
observe that Fig. 12 actually represents all the productions obtained by attaching
the leftward and rightward tentacles of the edge of type i to any of the exposed
nodes. Production nowire accounts for empty wire collections.

Service Oriented Architectural Design 13

comp comps

C

◦ ◦o/ o/ o/

c

OO

C

C

��

��

C

��

||
◦ ◦o/ o/ o/ o/ o/

◦ ◦o/ o/ o/ o/ o/ o/ o/

◦ ◦o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

◦ ◦o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

I

]]

^^

BB

CC

Fig. 11. An interconnection of service components.

wires iwire nowire

I

I

��

�� ��

��

I/◦ /o I/◦ ./◦ ./◦o/

I/◦ /o I/◦ ./◦ ./◦o/

I

[[

mm
AA

CC

I

I/◦ /o I/◦ ./◦ ./◦o/

I/◦ /o I/◦ ioo // ./◦ ./◦o/

I/◦ /o I/◦ ./◦ ./◦o/

I

I/◦ /o I/◦ ./◦ ./◦o/

I/◦ /o I/◦ ./◦ ./◦o/

Fig. 12. Internal wires.

The ADR designs in Fig. 2 that encode the SRML diagrams in Fig. 1 are
well-formed by the design terms m1 = smod(b1, w1, x) and m2 = smod(b2, x),
where x is a variable of type W that models the non-discovered service, and:

b1 = sbod(nowire, comps(comp, iwire, comp), iwire, wires(iwire, iwire))
w1 = wrap(ewire, smod(sbod(nowire, comp, iwire, nowire)))
b2 = sbod(nowire, comps(comps(comp, iwire, comp), iwire, comp), iwire, iwire).

4 Reconfiguration of SRML Diagrams

Rewriting of architectural designs can be used to define interesting reconfigura-
tion mechanisms in SRML, like turning an assembly of modules into a composite
module. The reconfiguration of an assembly into a module is called composition.
It is typically applied during run-time while needed services are discovered and
bound, but it can be applied at static time too, in order to avoid the run-time
computational effort required for service discovery, selection and binding in dy-
namic composition.

The composition operation has already been sketched in § 1, where the as-
sembly of the two modules on the left of Fig. 1 yields the single module on the

14 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

I

◦ /o/o/o ◦ ioo // . eoo // I ioo // ◦ ◦o/ o/ o/ int

Þ

I

◦ /o/o/o ◦ ioo // ◦ ◦o/ o/ o/

Fig. 13. Base rule that internalises a wires.

right. The only external wire EW has been internalised : the linked interfaces
disappear and the components of both modules that were previously connected
via those interfaces and the external wire are now directly connected via internal
wires. SRML defines an algorithm that performs the composition by manipulat-
ing the involved SRML diagrams. The main idea is that each pair of internal
wires connected via an external wire becomes an internal wire. However, no
formal proof of compliance w.r.t. SRML’s metamodel is provided.

Here, we encode internalisation of wrapped modules as proper ADR reconfig-
urations. The corresponding ADR rewrite rules transform a term representing
any SRML diagram with a wrapped service into a term representing the dia-
gram where the wrapped service has been internalised. We exploit an auxiliary
design production link, which is very simple: it connects two collections of wires
via an external wire (see, e.g. its use in Figure 14). Production link was not
presented in § 3 because it is not really used to construct SRML diagrams and
modules, but just needed in some rule premises to compute the internal wires
to be inserted in the module.

The basic rule transforms the indirect connection of two ports into a direct,
internal connection (see Fig. 13): link(iwire, iwire) int−→ iwire.

Recall that we are dealing with the most abstract structural aspects, but
SRML imposes further syntactical restriction on these rule as well semantic re-
strictions in binding services. Indeed, the interaction signature of the internal
wire obtained by the rule should be the result of properly combining the inter-
action signatures of the wires appearing in the left-hand side of the rewrite.

The premises of the second rule (see Fig. 14) require each possible combina-
tion of internal wires to be properly internalised. If this is possible separately,
then the overall internalisation is performed.

link(u1, v1)
int−→ w1

1 link(u1, v2)
int−→ w2

1 link(u2, v1)
int−→ w1

2 link(u2, v2)
int−→ w2

2

link(wires(u1, u2), wires(v1, v2))
int−→ wires(wires(w1

1, w
1
2), wires(w2

1, w
2
2))

Once we have presented the rule for internalising wires, we are ready to give
the general rule for internalising a wrapped service (see Appendix A for the
graphical representation). The rule takes into account the more general form of
a design term with a wrapped service to be internalised:

link(w3, w4)
int−→ w4

3 link(w2, w4)
int−→ w4

2 link(w3, w5)
int−→ w5

3 link(w2, w4)
int−→ w5

2

smod(sbod(c1, w1, wires(w2, w
′
2), wires(w3, w

′
3)),

wrap(smod(sbod(c2, w5, w6, w4), sn+1, . . . , sm), s1, . . . , sn))
−→ smod(sbod(comps(c1, w

5
2, c2), wires(w1, w

4
2), wires(wires(w′

2, w6), w5
3),

wires(w′
3, w

4
3), s1, . . . , sn, sn+1, . . . , sm)

Service Oriented Architectural Design 15

∀i,j∈{1,2} I

◦ /o ◦ ◦ ◦o/

ui:I

oo

oo

// . eoo // I vj :Ioo

//

//◦ /o ◦ ◦ ◦o/

int

Þ

I

◦ /o ◦ ◦ ◦o/

w
j
i
:I

oo

oo

//

//◦ /o ◦ ◦ ◦o/

I

◦ /o ◦ u1:I
��

��

��

v1:I

��

��

��

◦ ◦o/

. eoo // I

◦ /o ◦ u2:I

^^

]]

AA

v2:I

\\

AA

AA ◦ ◦o/

int

Þ

I

w1
1:I

��

�� ��

��

◦ /o ◦ w1
2:I

oo

�� ��

//

◦ ◦o/

◦ /o ◦ w2
1:I^^

oo //

@@ ◦ ◦o/

w2
2:I

OO

^^ @@

OO

Fig. 14. Rule that internalises a wires: recursive case.

As an example of reconfiguration, it can be verified that m1 is reconfigured
into m2 (cf. end of § 3 and Fig. 2) in one rewrite step by applying the above
rule, where the only required premise is link(iwire, iwire) int−→ iwire (which
is trivially satisfied).

It is worth noting that the composition rule can be applied in any context
thus ensuring well-typedness and style-preservation.

5 Conclusion

We have proposed Architectural Design Rewriting as a framework for hierarchical
style-based reconfigurations of software architectures. The approach is based
on algebras of typed graphs with interfaces, yielding a unifying treatment of
style-based design and reconfiguration. Its hierarchical and inductive features
allows us to compactly represent complex reconfiguration rules. While in other
approaches (e.g. [22]) correctness of each reconfiguration rule must be formally
proved, in ADR correctness is automatically given by the fact that rewrites
act on design terms, rather than on designs. Comparing ADR to architectural
description languages, ADR offers a unifying model to represent architectural
design, reconfiguration, and ordinary behaviour too. A deeper comparison of
ADR against similar approaches can be found in [5].

In this paper we have defined an ADR style to support the design and re-
configuration of service-oriented specifications given in SRML whose choice is
justified by the fact that it aims at providing a formal approach to service-
oriented modelling that is close to SCA [25]. The model of SRML consists of an

16 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto

ADR-based architectural style that is compliant with the SRML metamodel so
that it can suitably define SRML complex reconfigurations with the main benefit
they are compliant with the metamodel by construction.

We plan to analyse and eventually enrich our approach to support further
issues inherent to the design and management of service-oriented architectures,
like the treatment of modes [17] or the semantical information of SRML [14].
In addition we plan to perform a deeper comparative analysis of ADR against
similar approaches like process calculi to deal with reconfigurable component
based architectures [1], architectural metaprogramming initiatives [3] that pro-
mote the unifying treatment of software refactoring, synthesis and development
as algebras over programs, and graphical representation of concurrent systems
such as those based on process calculi encodings [15], Synchronized Hyperedge
Replacement [11], and bigraphs [19]. An implementation of ADR in Maude [7]
is also under development.

References

1. N. Aguirre and T. S. E. Maibaum. Hierarchical temporal specifications of dynami-
cally reconfigurable component based systems. Electr. Notes Theor. Comput. Sci.,
108:69–81, 2004.

2. L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based modeling and refinement
of service-oriented architectures. Software and Systems Modeling, 5(2):187–207,
June 2006.

3. D. S. Batory. Program refactoring, program synthesis, and model-driven develop-
ment. In S. Krishnamurthi and M. Odersky, editors, CC, volume 4420 of Lecture
Notes in Computer Science, pages 156–171. Springer, 2007.

4. B. Benatallah, F. Casati, and F. Toumani. Web service conversation modeling:
A cornerstone for e-business automation. IEEE Internet Computing, 8(1):46–54,
2004.

5. R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Style based reconfig-
urations of software architectures. Technical Report TR-07-17, Dipartimento di
Informatica, Università di Pisa, 2007.

6. R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for com-
pensations in flow composition languages. In J. Palsberg and M. Abadi, editors,
POPL, pages 209–220. ACM, 2005.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude - A High-Performance Logical Framework, volume 4350 of
Lecture Notes in Computer Science. Springer Verlag, 2007.

8. P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.
Documenting Software Architectures: Views and Beyond. Pearson Education, 2002.

9. T. Coquand and G. Huet. The calculus of constructions. Inf. Comput., 76(2-3):95–
120, 1988.

10. FETPI Global Computing project IST-2005-016004 SEnSOria (Software Engi-
neering for Service-Oriented Overlay Computers). http://sensoria.fast.de.

11. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised
hyperedge replacement as a model for service oriented computing. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, FMCO, volume 4111 of
Lecture Notes in Computer Science, pages 22–43. Springer, 2005.

Service Oriented Architectural Design 17

12. J. L. Fiadeiro, A. Lopes, and L. Bocchi. Algebraic semantics of service component
modules. In J. L. Fiadeiro and P.-Y. Schobbens, editors, WADT, volume 4409 of
Lecture Notes in Computer Science, pages 37–55. Springer, 2006.

13. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service component
architecture. In Proceedins of WS-FM’06, 3rd International Workshop on Web
Services and Formal Methods, volume 4184 of Lecture Notes in Computer Science,
pages 193–213. Springer, 2006.

14. J. L. Fiadeiro and V. Schmitt. Structured co-spans: An algebra of interaction
protocols. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors, CALCO,
volume 4624 of Lecture Notes in Computer Science, pages 194–208. Springer, 2007.

15. F. Gadducci. Graph rewriting for the π-calculus. Mathematical Structures in
Computer Scence, 17(3):407–437, 2007.

16. A. Habel. Hyperedge Replacement: Grammars and Languages. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1992.

17. D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for software architectures.
In V. Gruhn and F. Oquendo, editors, Proceedings of EWSA’06, 3rd European
Workshop on Software Architectures, volume 4344 of Lecture Notes in Computer
Science, pages 113–126. Springer, 2006.

18. D. Hirsch and U. Montanari. Shaped hierarchical architectural design. Electronic
Notes on Theoretical Computer Science, 109:97–109, 2004.

19. O. H. Jensen and R. Milner. Bigraphs and mobile processes. Technical Report
570, Computer Laboratory, University of Cambridge, 2003.

20. B. König, U. Montanari, and P. Gardner, editors. Graph Transformations and
Process Algebras for Modeling Distributed and Mobile Systems, 6.-11. June 2004,
volume 04241 of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2005.

21. I. Loulou, A. H. Kacem, and M. Jmaiel. Consistent reconfiguration for pub-
lish/subscribe architecture styles. In Proc. of the First International Workshop
on Verification and Evaluation of Computer and Communication Systems (VE-
CoS 2007), 2007.

22. D. L. Métayer. Describing software architecture styles using graph grammars.
IEEE Trans. Software Eng., 24(7):521–533, 1998.

23. R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, 1992.

24. J. Misra and W. Cook. Orchestration computation: A basis for wide area comput-
ing. Software and Systems Modeling, 6(1):83–110, 2006.

25. Service Component Architecture. http://osoa.org.
26. M. Shaw and D. Garlan. Software Architectures: Perspectives on an emerging

discipline. Prentice Hall, 1996.

18 R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto
A

R
e
co

n
fi
g
u
ra

tio
n

ru
le

fo
r

m
o
d
u
le

co
m

p
o
sitio

n

T
h
e

fi
g
u
re

b
elow

d
ep

icts
th

e
left-

(to
p
)

a
n
d

rig
h
t-h

a
n
d

sid
es

o
f

th
e

ru
le

fo
r

co
m

p
o
sin

g
m

o
d
u
les.

T
h
e

p
rem

ises
l
i
n
k
(w

3 ,w
4)

i
n
t
−→

w
43 ,

l
i
n
k
(w

2 ,w
4)

i
n
t
−→

w
42 ,

l
i
n
k
(w

3 ,w
5)

i
n
t
−→

w
53

a
n
d
l
i
n
k
(w

2 ,w
4)

i
n
t
−→

w
52

a
re

n
eg

lected
fro

m
th

e
fi
g
u
re

d
u
e

to
sp

a
ce

co
n
stra

in
ts

(th
ey

a
re

sim
ila

r
to

th
o
se

in
F

ig
.

1
4
).

M

r��

p��

w
4
:I

��

����

w
3
:I

��

##
.

e
//

oo
I

c
2
:C

��

��

r��
w
′3
:I

||

����

◦
.

s
n
+

1
:W

oo

I
/o

/o
/o

/o
I

c
1
:C

��

��

r��

w
5
:I

[[

//

00◦
w

6
:I

OO

PP
>>@@ .

s
m

:W
oo

◦
w

2
:I

pp

oo

22

.
s
1
:W

oo
p OO

w
1
:I

[[

//

00◦
w
′2
:I

OO

PP
>>@@ .

s
n

:W
oo

r OO

M

w
43
:I

��

!!##

w
53
:I

--

.. c
2
:C

��

��

r��
w
′3
:I

||

����

w
42
:I

qq

��

..

JJ

◦
.

s
n
+

1
:W

oo

I
/o

/o
/o

/o
I

c
1
:C

��

��

r��

w
52
:I

gg

||

<<

== ◦
w

6
:I

OO

PP
>>@@ .

s
m

:W
oo

◦
.

s
1
:W

oo
p

``

w
1
:I

[[

//

00◦
w
′2
:I

OO

PP
>>@@ .

s
n

:W
oo

r OO

