
Bisimulation by Unification?

Paolo Baldan1, Andrea Bracciali2, and Roberto Bruni2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italia.
2 Dipartimento di Informatica, Università di Pisa, Italia.

baldan@dsi.unive.it, braccia@di.unipi.it, bruni@di.unipi.it

Abstract We propose a methodology for the analysis of open systems based on
process calculi and bisimilarity. Open systems are seen as coordinators (i.e. terms
with place-holders), that evolve when suitable components (i.e. closed terms) fill
in their place-holders. The distinguishing feature of our approach is the definition
of a symbolic operational semantics for coordinators that exploits spatial/modal
formulae as labels of transitions and avoids the universal closure of coordinators
w.r.t. all components. Two kinds of bisimilarities are then defined, calledstrict
andlarge, which differ in the way formulae are compared. Strict bisimilarity im-
plies large bisimilarity which, in turn, implies the one based on universal closure.
Moreover, for process calculi in suitable formats, we show how the symbolic
semantics can be defined constructively, using unification. Our approach is illus-
trated on a toy process calculus withCCS-like communication within ambients.

Introduction

The ever increasing usage and development of mobile devices raise the need of formal
models for open systems, where components can be dynamically connected to interact
with network services. Process calculi (PC) are often instrumental in focusing on certain
aspects like communications, distribution and causal dependencies. However,PC tech-
niques are mostly devised for the study ofcomponents(i.e. closed terms of the calculus)
rather thancoordinators(i.e. contexts with holes marked by process variables).

In particular, while the operational semantics and several equivalences have been
often defined for components (e.g., based on either bisimulation or traces or testing),
their extensions to coordinators usually require additional efforts. Roughly, an equiva-
lence≈ defined on components can be lifted to coordinators by lettingC[X1, ...,Xn] ≈
D[X1, ...,Xn] whenC[p1, ..., pn]≈D[p1, ..., pn] for all componentsp1, ..., pn. In the case
of bisimulation, this means that the coalgebraic techniques applicable to components
fall short for coordinators, since the definition involves universal quantification on com-
ponents. Instead, a symbolic technique for allowing contexts to “bisimulate without
instantiation” would ease the analysis and verification of coordinators’ properties.

This issue finds its dual formulation in the contextual closure needed when the
bisimilarity on components∼ is not a congruence and one defines the largest con-
gruence' contained in∼ (by letting p' q if for all contextsC[.], identity included,
C[p]∼C[q] holds). Note that in general' is not a bisimulation. The largest congruence

? Research supported by the IST programme on FET-GC ProjectsAGILE, MYTHS andSOCS.

which is also a bisimulation is calleddynamic bisimilarityand it is defined by allowing
context closure at each bisimulation step [22].

To avoid universal quantification on contexts, several authors—e.g., Sewell in [25],
Leifer and Milner in [20]—propose a symbolic transition system for components whose
labels are the “minimal” contexts needed to the component for evolving. A transition

p
C[.,X1,···,Xn]−→ D[X1, ...,Xn]

means thatC[p, p1, ..., pn] can reduce in one step toD[p1, ..., pn], and thatC is strictly
necessary to perform the step. However, in their symbolic systems, though transitions
always depart from components, they may lead also to contexts (likeD above) and
therefore bisimulation must be defined on contexts via universal quantification over all
possible closed instantiations. Thus, the problem of universal quantification is shifted
from contexts to components. Finding a sound and efficient way to face this problem is
the goal of our contribution.

Symbolic Bisimulation. It is nowadays commonly accepted that the operational se-
mantics of most process calculi can be conveniently expressed by exploiting two basic
ingredients, according to Plotkin’s SOS recipe [23]: the structure of the components
and the behaviour of their subcomponents. Thus, aPCdefinition usually involves a pro-
cess signatureΣ, a structural equivalence≡ on process terms, and a labelled transition
system (LTS) specified through a set of inductive (structural) proof rules.1

It follows that the behaviour of a coordinator can depend: (1) on the spatial struc-
ture of the components that are inserted/substituted/connected in/with it; (2) on their
behaviour, i.e. on the actions that can be observed.

The first attempt could be to define a transition system whose states are coordinators
and whose arcs are labelled with the components that allow coordinators to evolve. But
this would result in a too large transition system, making verification difficult.

To attack this problem, reducing the size of the transition system, we propose to
borrow formulae from a suitable logic for expressing the most general class of processes
with whom each coordinator can react. This leads us to the notion ofsymbolic transition
system(STS), whose states are coordinators and whose transitions have the shape

C[X1, ...,Xn]
ϕ1,..,ϕn−→ D[Y1, . . . ,Ym]

meaning that the step can be performed byC[p1, ..., pn] wheneverpi |= ϕi , for i ∈ [1,n].
The logic where the formulaeϕi ’s live and the notion of satisfaction|= must be of

course targeted to thePCunder study. In general, the logic may involve both spatial and
temporal aspects of components, i.e. it can be aspatial logic[8,11].

Fixed anSTS, two kinds of bisimilarities∼strict and∼large, referred to, respectively,
as strict and large, can be defined on coordinators, differing for the way labels (i.e.
formulae) are compared, with∼strict⇒∼large, and∼strict being an equivalence relation.
We show that, whenever theSTS satisfies suitable properties of correspondence w.r.t.
the operational semantics of components, calledcorrectnessandcompleteness, ∼large

(and thus∼strict) implies the equivalence induced by the universal closure.

1 Reduction semantics can be obviously recasted inLTS’s as the special case with a unique label.

For PC whose rules are in a quite general format, calledalgebraic format[16], we
provide a constructive way of defining a spatio-temporal logic and we give an algorithm
for building a correct and completeSTS over such a logic. The algorithm, expressed
as a Prolog program, builds labels by computing recursively the most general unifiers
between coordinators and left-hand sides of the operational rules.

Synopsis.In § 1 we fix the notation and we recall some basic definitions. In§ 2, we
overview the general ideas on which our approach relies, introducing the notion of
(correct and complete)STS, defining large and strict symbolic bisimilarities and show-
ing that both relations imply bisimilarity via universal closure. In§ 3, first we illustrate
the algorithmic construction of correct and completeSTS’s for process calculi with no
structural axioms and operational rules in thealgebraic formatof [16], and then we
show how to deal with the common AC1 axioms for the parallel composition operator.
In § 4, we test our approach against a simple case study consisting of a fragment of the
ambient calculus withCCS-like communication within ambients.

Related work.The aforementioned papers by Sewell, Leifer and Milner have motivated
and inspired our quest for a set of labels powerful enough to model the maximal classes
of components with whom coordinators can react. The papers by Caires, Cardelli and
Gordon on spatial logics have suggested us an elegant mathematical tool for expressing
both structural and temporal constraints in the labels. It is worth mentioning that spatial
formulae have many analogies with the topological modalities introduced separately by
Fiadeiroet al. in [15] when proposing a verification logic for rewriting logic.

A symbolic approach to bisimulation in the case of value passing calculi, where
actions are parametrised over a possibly infinite set, has been explored in [17].

Among other frameworks where the semantics of components and coordinators is
defined uniformly, let us mentiontile logic (TL) [16,6], conditional transition systems
(CTS) [24] and context systems(CS) [19], which come also equipped with different
formats for guaranteeing that bisimilarity is a congruence. While models based onTL,
CTSandCScan be easily translated in our framework, the use of spatial formulae makes
our approach applicable to a wider class of calculi.

The idea of using unification for building formulae comes from Logic Programming
and more precisely by its view as an interactive system presented in [7].

1 Notation

To ease the presentation we consider one-sorted signatures, but our results easily ex-
tend to the many-sorted case. Asignatureis a set ofoperatorsΣ together with an arity
functionar : Σ→ N. Forn∈ N, we letΣn = { f ∈ Σ | ar(f) = n}. We denote byTΣ(X)
the term algebra overΣ and variables in the setX (disjoint fromΣ), with TΣ = TΣ(/0).
For P ∈ TΣ(X) we denote byvar(P) the set of variablesX ∈ X that appear inP. If
var(P) = /0 thenP is calledclosed, otherwiseopen. When signatures are used for pre-
senting the syntax ofPC, closed terms define the setP of componentsp of the calculus,
while the general, possibly open, terms form the setC of coordinatorsC. Often we shall
write C[X1, . . . ,Xn] to mean thatC is a coordinator such thatvar(C)⊆ {X1, . . . ,Xn}.

P≡Q∈ E, σ(P),σ(Q) ∈ TΣ

σ(P)≡ σ(Q)
(subs)

p1 ≡ q1, · · · , pn ≡ qn, f ∈ Σn

f (p1, ..., pn)≡ f (q1, ...,qn)
(context)

p∈ TΣ
p≡ p (refl)

p≡ q
q≡ p (symm)

p1 ≡ p2, p2 ≡ p3
p1 ≡ p3

(trans)

Figure 1. Closure of structural axioms.

A structural axiomis a sentenceP≡Q for P,Q∈TΣ(X). Given a setE = {Pi ≡Qi |
i ∈ I} of structural axioms, we say that aΣ-algebraA satisfiesE if for any assignment
σ : X → A of values to the variables inX , we have thatσ(Pi) =A σ(Qi), for all i ∈ I .
The initial algebraTΣ,E is the quotient ofTΣ modulo the equivalence≡ defined in
Fig. 1, where axioms inE are closed w.r.t. substitution, contextualization, reflexivity,
symmetry, and transitivity.

Process calculi come often equipped withLTS operational semantics, where states
are components over the process signatureΣ, labels range over a suitable alphabetΛ,
and transitions model the activities of components. Commonly suchLTS is specified by
a collection of inductive (transition) proof rules. In the presence of structural axioms,
states are equivalence classes of components (modulo≡), as if proof rules included:

p′ ≡ p p
a−→ q q′ ≡ q

p′ a−→ q′
(equiv)

A bisimulationis a symmetric, reflexive relation≈ over components such that ifp≈
q, then for any transitionp

a−→ p′ there exists a componentq′ and a transitionq
a−→ q′

with p′ ≈ q′. We denote by∼ the largest bisimulation and call itbisimilarity. Note that
the rule (equiv) makesp∼ q hold wheneverp≡ q. We calluniversal bisimilaritythe
usual lifting of∼ to coordinators obtained by closing for all possible substitutions:

C[X1, ...,Xn]∼ D[X1, ...,Xn]
def⇐⇒∀p1, ..., pn ∈ P , C[p1, ..., pn]∼ D[p1, ..., pn]

2 Formulae as Labels

The definition of bisimilarity on coordinators based on the closure with respect to any
possible substitution presents obvious drawbacks. In fact, to verify the bisimilarity of
two coordinators, one is typically led to check the bisimilarity of infinitely many pro-
cesses (all the possible closed instances of the coordinators). Furthermore bisimilarity
of coordinators is not defined in a coinductive way and thus the coalgebraic techniques
applicable to components fall short for coordinators. In trying to prove the equivalence
of two coordinators it is thus convenient to perform a kind of symbolic calculation:

1. without instantiating components which do not play an active role in a step and
instantiating the active components as little as possible;

2. making assumptions not only on the structure, but (as inTL, CTS, CS) also on the
behaviour of the active components.

The above strategy is formalised by introducing a symbolic transition system whose
states are coordinators and whose labels encode the structural and/or behavioural con-
ditions (see points 1–2 above) that components should fulfill for enabling the move.

In the following, we assume that a process calculusPC is fixed with signatureΣ
and structural axiomsE, whose semantics is given by theLTS L overTΣ,E and label
alphabetΛ. We also assume that a logicL over components is given, which may have
modal operators and whose atomic formulae include the process variables inX and the
components inP (with p |= X for any p∈ P andX ∈ X , while p |= q iff p≡ q for any
p,q∈ P , where|= is satisfaction).

Definition 1 (Symbolic Transition System).A symbolic transition system(STS) S
overL for the process calculusPC is a set of transitions

C[X1, . . . ,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, . . . ,Ym]

whereC[X1, . . . ,Xn] andD[Y1, . . . ,Ym] are coordinators,a∈ Λ andϕi are formulae inL
containing only variables from{Y1, . . . ,Ym}.
The variable names in the states ofS are not relevant: they are just indexed placeholders,
whose number can vary along the computation. The correspondence between variables
in the source (e.g.Xi) and their residuals (e.g.Yj) in the target is expressed by the
formulae (e.g.ϕi), in which the residuals may occur. For example, the modal formula
ϕi = ¦a.Yj is satisfied by any process performinga (and its residual replacesYj in D).

For S to be an abstract view ofPC we must of course require some additional
properties enforcing the correspondence with the concreteLTS L . Consider a transition

system where coordinators have just one hole. Intuitively, wheneverC[X]
ϕ−→a D[Y] the

idea is that the coordinatorC, when instantiated with any component satisfyingϕ, can
perform actiona becoming an instance ofD. The process variableY, which typically
occur inϕ, is intended to represent the residual of what substituted forX, after it has
exhibited the capabilities required byϕ. More precisely, for any componentq such that
p |= ϕ[q/Y] (whereϕ[q/Y] denotes the formula obtained fromϕ by replacing all the oc-
currences ofY by q) the componentC[p] can perform an actiona becomingD[q]. On the
other hand, any concrete transition on components should have symbolic counterparts.
These two properties are formalised ascorrectnessandcompleteness, respectively.

Definition 2 (Correctness).An STSS for the process calculusPC is correctif for any
symbolic transition

C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, ...,Ym]

in S , for anyq1, ...,qm and for anypi |= ϕi [q1/Y1, ...,qm/Ym] for i ∈ [1,n], there exists a
transitionC[p1, ..., pn]

a−→ D[q1, ...,qm] in L .

Definition 3 (Completeness).An STSS for the process calculusPC is completeif for
any coordinatorC[X1, ...,Xn], for all componentsp1, ..., pn and for any transition

C[p1, ..., pn]
a−→ q

in L there exists a transitionC[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, ...,Ym] in S andq1, ...,qm such

that pi |= ϕi [q1/Y1, ...,qm/Ym] for i ∈ [1,n], andq≡ D[q1, ...,qm].

Over anySTSwe can straightforwardly define a bisimulation-like equivalence.

Definition 4 (Strict Symbolic Bisimulation). A symmetric relation≈ over the set of
coordinatorsC is astrict symbolic bisimulationif for any two coordinatorsC[X1, ...,Xn]
andD[X1, ...,Xn] such thatC[X1, ...,Xn]≈ D[X1, ...,Xn], for any transition

C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym]

there exists a transitionD[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D′[Y1, ...,Ym] such thatC′[Y1, ...,Ym] ≈

D′[Y1, ...,Ym]. The largest strict symbolic bisimulation is an equivalence relation called
strict symbolic bisimilarityand denoted by∼strict.

Our first result states that the strict symbolic bisimilarity distinguishes as much as
universal (closure) bisimilarity∼, as defined by the end of Section 1.

Theorem 1 (∼strict⇒∼). If S is a correct and completeSTS, then

C[X1, ...,Xn]∼strict D[X1, ...,Xn] ⇒ C[X1, ...,Xn]∼ D[X1, ...,Xn]

Proof. SupposeC[X1, ...,Xn]∼strict D[X1, ...,Xn]. We want to show that for anyp1, ..., pn,
we haveC[p1, ..., pn]∼ D[p1, ..., pn]. Let Rstrict be the relation defined by

C[p1, ..., pn] Rstrict D[p1, ..., pn]
def⇐⇒C[X1, ...,Xn]∼strict D[X1, ...,Xn].

We first show thatRstrict is a bisimulation forL .
For any transitionC[p1, ..., pn]

a−→ q in L , by completeness ofS , a symbolic tran-

sition C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym] andm componentsq1, ...,qm exist such that

pi |= ϕi [q1/Y1, ...,qm/Ym] andq≡C′[q1, ...,qm]. SinceC[X1, ...,Xn] ∼strict D[X1, ...,Xn]

by hypothesis, we have thatD[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a D′[Y1, ...,Ym] with C′[Y1, ...,Ym]∼strict

D′[Y1, ...,Ym]. By correctness ofS , and bypi |= ϕi [q1/Y1, ...,qm/Ym] for all i ∈ [1,n], it
holds thatD[p1, ..., pn]

a−→ D′[q1, ...,qm]. SinceC′[Y1, ...,Ym] ∼strict D′[Y1, ...,Ym], we
have thatC′[q1, ...,qm] Rstrict D′[q1, ...,qm]. The relationRstrict is obviously symmetric
and hence it is a bisimulation. Since bisimilarity∼ is the largest bisimulation, it con-
tainsRstrict and thereforeC[p1, ..., pm]∼ D[q1, ...,qm], concluding the proof. ut

2.1 Large Symbolic Bisimulation

The requirement of exact matching between formulae in the definition of strict sym-
bolic bisimulation can be too strong, especially in the presence of spatial formulae and
structural congruences. Hence, we propose a way to relax this condition.

To this aim, we assume that the logicL is a spatial logic whose operators include a
subsetΣL of Σ, with satisfaction defined by (for anyf ∈ ΣL with arity n):

p |= f (ϕ1, . . . ,ϕn) iff ∃p1, . . . , pn. p≡ f (p1, . . . , pn) ∧ ∀i. pi |= ϕi .

We call ϕ a spatial formulaif it is built by using just variablesX ∈ X and spa-
tial operatorsf ∈ ΣL. Abusing the notation, a spatial formula can be either seen as a
component/coordinator or as a logic formula, depending on the setting where it is used.

Definition 5 (Large Symbolic Bisimulation). A symmetric relation≈ over the set
of coordinatorsC is a large symbolic bisimulationif for any pair of coordinators
C[X1, ...,Xn] andD[X1, ...,Xn] such thatC[X1, ...,Xn]≈ D[X1, ...,Xn], for any transition

C[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym]

a transitionD[X1, ...,Xn]
(ψ1,...,ψn)−→ a D′[Z1, ...,Zk] and k spatial formulaeψ′1, ...,ψ

′
k ex-

ist such thatϕi = ψi [ψ′1/Z1, ...,ψ′k/Zk] andC′[Y1, ...,Ym] ≈ D′[ψ′1, ...,ψ
′
k]. The greatest

large bisimulation is calledlarge symbolic bisimilarityand denoted∼large.

Large symbolic bisimulation allows a transition to be simulated by another transi-
tion where the spatial constraints on theY’s are relaxed, so that “more general” com-
ponents can be used for theX’s. It follows that transitions inS that are dominated by
transitions with a less (spatially) specified label can be abstracted away from the system.

Example 1.Let Σ = {a, f (.),g(.)} and let the logicL include all the three corresponding

spatial operators. LetS be theSTS with transitions f (X) X−→τ X, g(X) X−→τ X, and
g(X) a−→τ a. Then it is obvious thatf (X) 6∼strict g(X), because the last transition of
g(X) cannot be matched byf (X). However, the formulaX is “more general” than the
formulaa, and thereforef (X)∼largeg(X). ut
Remark 1.While ∼strict is an equivalence relation, we only proved that, if necessary,
∼large can be guaranteed to be an equivalence by suitably saturating theSTSwith re-
dundant transitions. We also point out that the obvious way of relaxing the requirements

of ∼strict by allowing a stepC[X]
ϕ−→a C′[Y] to be simulated byD[X]

ψ−→a D′[Y] with
ϕ ⇒ ψ, would not yield a consistent formulation, as it can be seen that, contrary to
spatial operators, modal operators inϕ cannot be safely abstracted away inψ.

Proposition 1 (∼strict⇒∼large). For any symbolic transition systemS

C[X1, ...,Xn]∼strict D[X1, ...,Xn] ⇒ C[X1, ...,Xn]∼largeD[X1, ...,Xn].

Proof. It follows directly from the definition of the two bisimulations, since the spatial
formulaeψ′i ’s used in∼large when simulating the step can of course be identities.ut
Theorem 2 (∼large⇒∼). If S is correct and complete w.r.t.L , then

C[X1, ...,Xn]∼largeD[X1, ...,Xn] ⇒ C[X1, ...,Xn]∼ D[X1, ...,Xn].

Proof. The proof is similar to, but slightly more involved than, that of Theorem 1.
SupposeC[X1, ...,Xn] ∼large D[X1, ...,Xn]. We want to show that for anyp1, ..., pn, we
haveC[p1, ..., pn]∼ D[p1, ..., pn]. Let Rlarge be the relation defined by

C[p1, ..., pn] RlargeD[p1, ..., pn]
def⇐⇒C[X1, ...,Xn]∼largeD[X1, ...,Xn].

We first show thatRlarge is a bisimulation forL . For any transitionC[p1, ..., pn]
a−→ q

in L , by completeness ofS , a symbolic transitionC[X1, ...,Xn]
(ϕ1,...,ϕn)−→ a C′[Y1, ...,Ym]

andmcomponentsq1, ...,qm exist with pi |= ϕi [q1/Y1, ...,qm/Ym] andq≡C′[q1, ...,qm].
SinceC[X1, ...,Xn]∼largeD[X1, ...,Xn] by hypothesis, we have

D[X1, ...,Xn]
(ψ1,...,ψn)−→ a D′[Z1, ...,Zk]

andk spatial formulaeψ′1, ...,ψ
′
k exist such thatC′[Y1, ...,Ym] ∼large D′[ψ′1, ...,ψ

′
k] and

ϕi = ψi [ψ′1/Z1, ...,ψ′k/Zk] for all i ∈ [1,n]. Sincepi |= ϕi [q1/Y1, ...,qm/Ym] (for all i ∈
[1,n]), lettingq′i ≡ψ′i [q1/Y1, ...,qm/Ym], it follows thatpi |= ψi [q′1/Z1, ...,q′k/Zk]. There-

fore, by correctness ofS , it follows thatD[p1, ..., pn]
a−→D′[q′1, ...,q

′
k]. Moreover, since

C′[Y1, ...,Ym]∼largeD′[ψ′1, ...,ψ
′
k], we have thatC′[q1, ...,qm] RlargeD′[q′1, ...,q

′
k]. The re-

lationRlarge is clearly symmetric and hence it is a bisimulation forL . Since bisimilarity
∼ is the largest bisimulation, it containsRlargeand thusC[p1, ..., pm]∼D[q1, ...,qm]. ut

Note that Theorem 1 now follows as a corollary of Proposition 1 and Theorem 2.

3 Bisimulation by Unification

In this section we outline a methodology for deriving a correct and completeSTS for
algebraicPC, i.e. PC whose operational proof rules are in a quite general format, called
algebraic format[16], recalled below. More specifically, given aPC, a logicLPC with
spatial and modal operators in the style of [8,11] can be systematically derived. Then
the proof rules of the calculus are used to construct a Prolog program (finite if the set
of proof rules of thePC is finite) which represents anSTS overLPC for the PC, in the
sense that given any coordinator, the program allows to compute the set of its symbolic
transitions. SuchSTScan be proved to be correct and complete for the givenPC.

Definition 6 (Algebraic Format). A proof rule is inalgebraic formatif it has the form

{Xi
ai−→Yi}i∈I

C[X1, ...,Xn]
a−→ D[Z1, ...,Zn]

with I ⊆ [1,n], and whereZi = Yi if i ∈ I andZi = Xi otherwise. Analgebraic process
calculusis a PC whose proof rules are in algebraic format.

The algebraic format generalises De Simone format [14] by allowing a generic context
C, possibly involving more than one operator, (to appear) as left-hand side of the conclu-
sion of the rule. However, it is worth recalling that while De Simone format guarantees
that bisimilarity is a congruence, for algebraicPC’s this is not necessarily the case.

3.1 A Spatio-Temporal Logic for Symbolic Transition Systems

Given a process calculusPC over a signatureΣ we define the logic whose formulae
will be used as labels in theSTS. The logic must be powerful enough to be able to
express, for any coordinator, the (more general) structural and behavioural properties
which should be fulfilled by unspecified components to allow transitions to happen.

p |= X
p |= q iff p≡ q
p |= ¦a.ϕ iff ∃p′. p

a−→ p′ ∧ p′ |= ϕ
p |= f (ϕ1, . . . ,ϕn) iff ∃p1, . . . , pn. p≡ f (p1, . . . , pn) ∧ pi |= ϕi

Figure 2. Satisfaction of formulae in theSTS logic LPC.

Definition 7 (STS Logic). Let Σs be the set of operators inΣ which appear in the left-
hand side of the conclusion of a proof rule ofPC (e.g. the operators inC[X1, . . . ,Xn] for
the rule of Definition 6). TheSTS logic LPC associated toPC has as formulae

ϕ ::= X | p | ¦a.ϕ | f (ϕ, . . . ,ϕ)

whereX ∈ X , p∈ P , a∈ Λ, f ∈ Σs.

A formula f (ϕ1, . . . ,ϕn) is satisfied by any component of the shapef (p1, . . . , pn) where
eachpi satisfiesϕi . A formula ¦a.ϕ is satisfied by any component which is able to
perform ana-labelled transition, evolving in a component satisfyingϕ. Since the logic
will be used to label the transitions of anSTS, according to the general assumptions in
Section 2, process variables and (closed) components are included as atomic formulae.
Observe that, ifΣs = Σ then all components can be inductively constructed as formulae
of the kind f (ϕ1, . . . ,ϕn) with f ∈ Σ and thus there is no need to add them explicitly (but
in mostPCno rule is given for the nil component0, which is thus not inΣs). Satisfaction
is formally defined in Fig. 2 (for anyp∈ P and for any formulaϕ in LPC).

To understand the definition of theSTS logic LPC note that an instanceC[p1, . . . , pn]
of a given coordinatorC[X1, . . . ,Xn], in order to perform a transition, must match the
left-hand side of the conclusion of a rule. This might impose the componentspi ’s to
have a certain structure, hence the need of inserting the spatial operatorsf ∈ Σs in the
logic. Furthermore, the premises of the matched rule must be satisfiable. Such premises
usually require the componentspi ’s to be able to exhibit some behaviour, i.e. to perform
a certain transition. Hence the logic includes also modal operators¦a.().

3.2 AlgebraicPC without Structural Axioms

We next illustrate a constructive procedure for defining a correct and completeSTSover
the logicLPC for a given process calculusPC whose proof rules are in algebraic format.
Here we concentrate on process calculiwithout structural axioms. In Section 3.3 will
discuss the refinements needed in the presence of structural axioms.

The STSoverLPC is specified by means of a Prolog program which can be used to
compute the possible symbolic transitions of every coordinator.

Definition 8 (Prolog Program). The Prolog program Prog(PC) associated to the pro-
cess calculusPC contains as the first clause

trs(box(A,X),A,X) :- !.

wherebox is a new operator, not inΣ, and A is a variable that stands for any action.
For any proof rule inPC of the shape outlined in Definition 6 also a clause

trs(C[X1, . . .,Xn], a, D[Z1, . . .,Zn]) :- trs(Xi1,ai1,Yi1), . . .,trs(Xik,aik,Yik).

is included, where{i1, ..., ik} is the set of indexesI of the corresponding rule andZi
can be eitherYi (wheni ∈ I) or Xi (otherwise).

The programProg(PC) defines the predicatetrs(X,A,Y) whose intended meaning
is “any component satisfyingX can perform a transition labelled byA and become a
component satisfyingY”. Given a coordinatorC[X1, . . . ,Xn], if the query

?- trs(C[X1,...,Xn], A, Z)

is successful, then the corresponding computed answer substitution can be seen as a
symbolic step for the coordinatorC[X1, . . . ,Xn]: the computed answer substitutions for
the variablesX1, . . . ,Xn will represent the formulae inLPC labelling the transition,A the
action label andZ the target coordinator.

The first clause inProg(PC) can be unified only with a goaltrs(X,A,) whose
first argument is a variable (sincebox is not an operator inPC). In this case there
is no need of imposing structural requirements onX, since the only requirement for
any componentX for doing a and becomingY is exactlybox(a,Y) . Thus the goal is
refuted just imposing a behavioural constraint on the component corresponding toX,
i.e. by asking thatX can perform anA action. The cut operator in the body of the clause
avoids that subsequent refutations are tried, using different rules that could be otherwise
matched by the goaltrs(X,A,) . To this aim, it is important that modal rules be listed
first than all the other rules.

The second class of clauses inProg(PC) just represents a Prolog translation of
the operational proof rules of the calculus. Each such clause imposes (by unification)
the more general structural (spatial) constraints that the unspecified components of a
coordinator should satisfy to allow the corresponding step. The requirements on the
behaviour of the subcomponents, as expressed by the premises of the corresponding
proof rule, are represented by the subgoals in the body of the clause.

The backtracking mechanism of Prolog and the use of meta-logic operators (like
bagof) allow one to determine all the symbolic transitions for each coordinatorC
(finitely many under the assumption that the rules of the calculus and thus the pro-
gram are finite). Hence the Prolog programProg(PC) can be seen as the specification
of an STS for the process calculusPC over logicLPC. The main result of this section
states that suchSTS is correct and complete for the considered process calculus.

Theorem 3. TheSTSspecified by Prog(PC) is correct and complete.

Proof (Sketch).To prove correctness observe that ifC[X1, . . . ,Xn]
(ϕ1,...,ϕn)−→ a D[Y1, . . . ,Ym]

then there exists a refutation of the query

?- trs(C[X1, ..., Xn], a, Z)

with computed answer substitutionXi = ϕi andZ = D[Y1, ..., Yn] . An inductive
reasoning on the height of the refutation allows us to prove that for anyq1, . . . ,qm

and p1, . . . , pn such that eachpi |= ϕi [q1/Y1, . . . ,qm/Ym] there exists a derivation of
C[p1, . . . , pn]

a−→ D[q1, . . . ,qm].

trs(box(tau,X) , tau , X) :- !.
trs(a.X|‘a , tau , X).
trs(X|Y , tau , X|Z) :- trs(Y, tau, Z).

Figure 3. The Prolog program relative to the simpleCCS-like calculus.

As for completeness, ifC[p1, . . . , pn]
a−→ q then the corresponding derivation in the

proof system ofPC can be turned into a refutation witnessing thatC[X1, . . . ,Xn]
(ϕ1,...,ϕn)−→ a

D[Y1, . . . ,Ym]. Furthermoreq≡ D[q1, . . . ,qm] and eachpi |= ϕi [q1/Y1, . . . ,qm/Ym]. ut

3.3 AlgebraicPC with AC1 Parallel Composition Operator

To understand why the proposed approach must be extended to deal with structural ax-
ioms, we focus on a very common case, i.e., an algebraicPCwith aparallel composition
operator“ |”, subject to AC1 axioms (associativity, commutativity and identity)

(X |Y) | Z≡ X | (Y | Z) X |Y ≡Y | X X | 0≡ X

where0 is the inactive component. Furthermore we suppose that parallel composition
allows a single component to move autonomously, performing an action that is reflected
at topmost level, i.e., we assume that the proof rules for parallel composition include

X
a−→ X′

X |Y a−→ X′ |Y
(par)

For the construction of the Prolog programProg(PC) we first need to extend the set of
proof rules of the calculus. Due to the presence of the associativity axiom, for any proof
rule r of the calculus where “|” occurs in the left-hand side of the conclusion as topmost
operator, we have to insert a new ruler ′. The new rule is obtained fromr by adding in
parallel a generic idle component, i.e. for any rule of the kind

{Xi
ai−→Yi}i∈I

C1[X1, ...,Xn] |C2[Xn+1, ...,Xn+m] a−→ D[Z1, ...,Zn+m]

we add a new rule (analogous to the completion in rewriting systems modulo AC1)

{Xi
ai−→Yi}i∈I

C1[X1, ...,Xn] |C2[Xn+1, ...,Xn+m] | Xn+m+1
a−→ D[Z1, ...,Zn+m] | Xn+m+1

ThenProg(PC) is defined exactly as before. Of course unification must be considered
up to AC1 structural axioms (see algorithms and further references in [18,4]).

Example 2.Consider a simpleCCS-like calculus, with AC1 parallel composition and
only one rule for asynchronous communication

a.X | ā τ−→ X

The Prolog program induced by the original proof rule is shown in Fig. 3, where‘a is
the program representation for actionā. The following query

?- trs(a.0|a.0|X, A, Z)

would return the substitutionsX = ‘a for X andZ = a.0 for Z; but X = ‘a is not the
more general substitution forX that allows the context to perform the step. In fact, the
coordinatora.0|a.0|X, instantiated with a componentp satisfying the formulaϕ = ā
returned by the Prolog program (namely withp = ā), could perform only one step,
but, obviously,X could also be instantiated with the componentā | ā, allowing the
coordinator to perform two steps. Actually,X = ‘a | Y results to be the more general
substitution which, thanks to the identity axiom, “comprises” the previous one. In order
to obtain such a computed answer from the program, it is enough to extend the proof
system with the ruler ′

a.X | ā |Y τ−→ X |Y ut
It is easy to show that the new proof rulesr ′ are valid in the original proof system,

hence the extension of the proof system does not change the semantics of thePC. Due
to the presence of the identity axiom, for anyr ′ we can also remove the original rule
r without affecting the semantics of the calculus. The result expressed by Theorem 3
extends also to this case, i.e., theSTSspecified byProg(PC) is correct and complete.

An analogous approach can be followed to deal with areplication operator “!”,
subject to the structural axiom!X ≡!X | X.

4 Case Study: A Basic Calculus for Mobility

We consider a basic calculus for mobility (BCM) which can be seen as an asynchronous
version ofCCS [21], enriched with ambients, or, alternatively, as (a restriction-free ver-
sion of) the ambient calculus [12] with asynchronousCCS-like communication.

Definition 9 (BCM). Let A be a set of channels and letN be a set of ambient names.
The set ofBCM processesP is defined by the grammar:

P ::= 0 | ā | a.P | open n.P | in n.P | out n.P | n[P] | P|P
with a∈ A, n∈N , and where the parallel operator is AC1:

P|(Q|R)≡ (P|Q)|R P|Q≡Q|P P|0≡ P

The operational semantics ofBCM is defined by theSOSoperational rules in Fig. 4.
The rulesopen, in, andout are the classical rules of ambient calculus; communication
(rule com) is allowed only inside the same ambient; reductions can happen under any
ambient and in any parallel process (but not under prefixes), as stated by rulesamband
par, respectively. Since the semantics is presented as a reduction system, transitions
have no label (or equivalently they can be thought of as having all the same labelτ).

The logicLBCM over the set of components is defined as explained in Section 3.1.
The set of spatial operators of the logic includes all the operators of the signature, i.e.,
Σs = Σ, so as to characterise all the possible transitions of the semantics ofBCM (strictly
speaking,0 6∈ Σs, but its presence is harmless and makes the notation simpler). All ax-
ioms in Fig. 4 introduce the need of spatial formulae (the lefthand side of the reduction

n[P] | open n.Q → P|Q (open)
n[P]|m[in n.Q|R] → n[P|m[Q|R]]

(in)

n[P|m[out n.Q|R]] → n[P]|m[Q|R]
(out)

n[a.P|ā|Q] → n[P|Q]
(comm)

P → Q

n[P] → n[Q]
(amb)

P → Q

P|R → Q|R (par)

Figure 4. Operational semantics ofBCM.

requires a specific structure of the component). The rulesambandpar, instead, calls
for modal formulae, since their premises refer to observable behaviours and not to the
structure of the components. The formulaeϕ of the logicLBCM are:

ϕ ::= X | ¦ .ϕ | 0 | α.ϕ | n[ϕ] | ϕ1|ϕ2,

whereX ∈ X , n ∈ N andα ∈ {a, ā,open n, in n,out n}. Since transitions are not la-
belled, the modal operator does not refer to any action. The notion of satisfaction for
LBCM (P |= ϕ) is defined like in the general case (see Fig. 2). Then we can consider the
correct and completeSTS for BCM specified by the Prolog programProg(BCM).

To have a grasp of the properties of the calculus, let us consider two ambients with
different namesn[a.0 | ā.0] and m[b.0 | b̄.0]. Both processes are able to perform an
internal communication according to rulecomm, evolving to a (deadlocked) ambient
containing the nil component0. Straightforwardly,

n[a.0 | ā.0]∼m[b.0 | b̄.0],

i.e. internal actions do not distinguish ambients. It is easy to show that bisimilarity is
not a congruence for this calculus, since the above bisimilar processes are distinguished
when put in parallel withopen n.0 (it interacts withn[a.0 | ā.0] but not withm[b.0 | b̄.0]).

Processesn[a.0 | ā.0] andm[b.0 | b̄.0] are (bisimilar) instances of the coordinators
n[X] andm[X]. It is easy to verifyn[X] 6∼strict m[X], in fact, due to ruleout:

n[X]
Y|m[out n. Z|W]−→ n[Y] |m[Z |W],

while m[X] has an analogous transition but with a different label and conclusion:

m[X]
Y|n[out m. Z|W]−→ m[Y] | n[Z |W].

Actually, n[X] 6∼ m[X], since they are distinguished byX = k[out n.0], and hence, by
Theorem 2,n[X] 6∼largem[X]. An example of coordinators related by∼strict, and hence,
using Theorems 1 and 2, also by∼large and∼, is: n[m[out n.X]]∼strict n[0] |m[a | ā.X].
In fact, the two coordinators have the only symbolic transitions below, which lead to
obviously bisimilar coordinators:

n[m[out n.X]] Y−→ n[0] |m[Y] and n[0] |m[a | ā.X] Y−→ n[0] |m[Y].

Conclusions

We have illustrated a general methodology for reasoning about open systems, viewed
as coordinators in suitable process calculi, with special interest in bisimilarity. For a
PC and a process logic which characterises the structural and behavioural properties
of interest, we have introduced a notion of (correct and complete) symbolic transition
system, where states are coordinators and transitions are labelled by logic formulae
expressing the requirements which uninstantiated components should satisfy for the
transition to happen. Over anSTS two symbolic bisimilarities can be defined, thestrict
bisimilarity and the “coarser”large bisimilarity, both refining the universal bisimilarity
on coordinators which takes all possible closed instantiations. For algebraicPC, whose
rules are in a quite general format, we have also provided a constructive way of deriving
a spatio-temporal logic and a (correct and complete) symbolic transition system over
such logic. The applicability of the proposed methodology has been finally illustrated
by means of a toy process calculus withCCS-like communication within ambients.

An interesting issue which has not been faced here is the treatment of names and
name restriction, which plays a basic role in the specification of systems with fresh or
secret resources. While the notions of (correct and complete)STSand the results about
symbolic bisimulation are parametric w.r.t. the chosen process logic, the constructive
definition of the correct and completeSTS for a given process calculus, presented in
Section 3, and especially the definition of the underlying process logic, should be ex-
tended to deal with a logical notion of freshness. A source of inspiration could be the
work of Cardelli and Caires [9,10].

We already mentioned that symbolic transitions have been studied by several au-
thors, e.g. Sewell [25], and Leifer and Milner [20] in order to avoid universal quantifi-
cation over contexts. These approaches, where steps can perform contextual closures,
can be seen as the dual of our approach, where steps can instantiate contexts. It would
be interesting to give a formal account of this duality, and, in particular, to see if the
categorical approach of [20], based on relative pushouts, can be dualised in our case
resorting to a notion of relative pullback.

Recently, the symbolic approach to the verification of infinite state cryptographic
protocols has attracted a lot of interest. Some authors use logic abstractions to charac-
terise symbolic states [1,13], others exploit, in particular, the generality of unification
to devise minimal assumptions over symbolic states [5]. Pursuing further the similari-
ties of our symbolic approach to bisimulation with these approaches, so as to apply our
methodology to the field, appears to be a stimulating line of future research.

Regarding the automatic construction ofSTS, we plan to generalise it tometaand
abductiveLogic Programming. The first one should allow for the programmable defini-
tion of proofs, and hence for more specific reasoning over the structure of aPC. The sec-
ond one should provide the means for hypothetical (assumption-based) reasoning about
the properties labellingSTS, allowing to answer questions like “under which circum-
stances (assumptions) the processP | X can evolve so as to satisfy a given property?”,
typically relevant in open and dynamic system engineering [3,2].

Acknowledgements.We would like to thank Narciso Martı́-Oliet, Sabina Rossi and the
anonymous referees for their helpful comments and suggestions.

References

1. M. Abadi and M.P. Fiore. Computing symbolic models for verifying cryptographic protocols.
In Proc. 14th IEEE Computer Security Foundations Workshop, pp. 160–173. IEEE, 2001.

2. R. Allen and D.Garlan. A Formal Basis for Architectural Connectors.ACM TOSEM, 6(3),
pp. 213–249, 1997.

3. L.F. Andrade, J.L. Fiadeiro, J. Gouveia, G. Koutsoukos and M.Wermelinger. Coordination
for Orchestration. InCoordination Models and Languages,5th Int. Conference COORDI-
NATION. Lect. Notes in Comput. Sci.2315 pp. 5–13. Springer 2002.

4. F. Baader and W. Snyder. Unification theory. InHandbook of Automated Reasoning. Elsevier
Science, 2000.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. InProc. ICALP’01, Lect.
Notes in Comput. Sci.2076, pp. 667–681. Springer, 2001.

6. R. Bruni, D. de Frutos-Escrig, N. Martı́-Oliet, and U. Montanari. Bisimilarity congruences
for open terms and term graphs via tile logic. InProc. CONCUR 2000, Lect. Notes in
Comput. Sci.1877, pp. 259–274. Springer, 2000.

7. R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming.Theory
and Practice of Logic Programming, 1(6):647–690, 2001.

8. L. Caires.A Model for Declarative Programming and Specification with Concurrency and
Mobility. PhD thesis, Departamento de Informática, Universidade Nova de Lisboa, 1999.

9. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). InProc. TACS 2001, Lect.
Notes in Comput. Sci.2215, pp. 1–37. Springer, 2001.

10. L. Caires and L. Cardelli. A spatial logic for concurrency (part II). InProc. CONCUR 2002.
Lect. Notes in Comput. Sci., Springer, 2002. To appear.

11. L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile ambients. In
Proc. POPL 2000, pp. 365–377. ACM, 2000.

12. L. Cardelli and A.D. Gordon. Mobile ambients. InProc. FoSSaCS’98, Lect. Notes in Comput.
Sci.1378, pp. 140–155. Springer, 1998.

13. E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural deduc-
tion style message derivation engine to verify security protocols. InProc. PROCOMET’98.
Chapmann & Hall, 1998.

14. R. De Simone. Higher level synchronizing devices in MEIJE-SCCS.TCS, 37:245–267, 1985.
15. J.L. Fiadeiro, T. Maibaum, N. Martı́-Oliet, J. Meseguer, and I. Pita. Towards a verification

logic for rewriting logic. InProc. WADT’99, LNCS1827, pp. 438–458. Springer, 2000.
16. F. Gadducci and U. Montanari. The tile model. InProof, Language and Interaction: Essays

in Honour of Robin Milner. MIT Press, 2000.
17. M. Hennessy and H. Lin. Symbolic bisimulations.Theoret. Comp. Sci., 138:353–389, 1995.
18. A. Herold and J. Siekmann. Unification in abelian semi-groups.Journal of Automated

Reasoning, 3(3):247–283, 1987.
19. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.

In Proc. ICALP’90, Lect. Notes in Comput. Sci.443, pp. 526–539. Springer, 1990.
20. J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. InProc.

CONCUR 2000, Lect. Notes in Comput. Sci.1877, pp. 243–258. Springer, 2000.
21. R. Milner.A Calculus of Communicating Systems, LNCS92. Springer, 1980.
22. U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for CCS.

Fundamenta Informaticae, 16:171–196, 1992.
23. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,

Aarhus University, Computer Science Department, 1981.
24. A. Rensink. Bisimilarity of open terms.Inform. and Comput., 156(1-2):345–385, 2000.
25. P. Sewell. From rewrite rules to bisimulation congruences. InProc. CONCUR’98, Lect.

Notes in Comput. Sci.1466, pp. 269–284. Springer, 1998.

