Bisimulation by Unification*

Paolo Baldah, Andrea Bracciafi, and Roberto BruRi

1 Dipartimento di Informatica, UniversitCa’ Foscari di Venezia, Italia.
2 Dipartimento di Informatica, Universitdi Pisa, Italia.
baldan@dsi.unive.it, braccia@di.unipi.it, bruni@di.unipi.it

Abstract We propose a methodology for the analysis of open systems based on
process calculi and bisimilarity. Open systems are seen as coordinators (i.e. terms
with place-holders), that evolve when suitable components (i.e. closed terms) fill
in their place-holders. The distinguishing feature of our approach is the definition
of a symbolic operational semantics for coordinators that exploits spatial/modal
formulae as labels of transitions and avoids the universal closure of coordinators
w.r.t. all components. Two kinds of bisimilarities are then defined, caitadt
andlarge, which differ in the way formulae are compared. Strict bisimilarity im-
plies large bisimilarity which, in turn, implies the one based on universal closure.
Moreover, for process calculi in suitable formats, we show how the symbolic
semantics can be defined constructively, using unification. Our approach is illus-
trated on a toy process calculus witkks-like communication within ambients.

Introduction

The ever increasing usage and development of mobile devices raise the need of formal
models for open systems, where components can be dynamically connected to interact
with network services. Process calc#d) are often instrumental in focusing on certain
aspects like communications, distribution and causal dependencies. Hometeth-

niques are mostly devised for the studycomponentsi.e. closed terms of the calculus)
rather tharcoordinators(i.e. contexts with holes marked by process variables).

In particular, while the operational semantics and several equivalences have been
often defined for components (e.g., based on either bisimulation or traces or testing),
their extensions to coordinators usually require additional efforts. Roughly, an equiva-
lence~ defined on components can be lifted to coordinators by le€ipq, ..., Xn] ~
D[X, ..., Xn] whenC|[pa, ..., pn] = D[p1, ..., pn] for all componentsy, ..., pr. In the case
of bisimulation, this means that the coalgebraic techniques applicable to components
fall short for coordinators, since the definition involves universal quantification on com-
ponents. Instead, a symbolic technique for allowing contexts to “bisimulate without
instantiation” would ease the analysis and verification of coordinators’ properties.

This issue finds its dual formulation in the contextual closure needed when the
bisimilarity on components- is not a congruence and one defines the largest con-
gruence~~ contained in~ (by letting p ~ q if for all contextsC]|.], identity included,

C[p] ~ C|[q] holds). Note that in generat is not a bisimulation. The largest congruence

* Research supported by the IST programme on FET-GC Projects, MYTHS andsocs

which is also a bisimulation is calledy/namic bisimilarityand it is defined by allowing
context closure at each bisimulation step [22].

To avoid universal quantification on contexts, several authors—e.g., Sewell in [25],
Leifer and Milner in [20]—propose a symbolic transition system for components whose
labels are the “minimal” contexts needed to the component for evolving. A transition
p X b X
means tha€|p, p1, ..., Pn] can reduce in one step B(py, ..., pn), and thatC is strictly
necessary to perform the step. However, in their symbolic systems, though transitions
always depart from components, they may lead also to contextslisbove) and
therefore bisimulation must be defined on contexts via universal quantification over all
possible closed instantiations. Thus, the problem of universal quantification is shifted
from contexts to components. Finding a sound and efficient way to face this problem is
the goal of our contribution.

Symbolic Bisimulation. It is nowadays commonly accepted that the operational se-
mantics of most process calculi can be conveniently expressed by exploiting two basic
ingredients, according to Plotkin’s SOS recipe [23]: the structure of the components
and the behaviour of their subcomponents. Thus; definition usually involves a pro-

cess signaturg, a structural equivalence on process terms, and a labelled transition
system (Ts) specified through a set of inductive (structural) proof rdles.

It follows that the behaviour of a coordinator can depend: (1) on the spatial struc-
ture of the components that are inserted/substituted/connected in/with it; (2) on their
behaviour, i.e. on the actions that can be observed.

The first attempt could be to define a transition system whose states are coordinators
and whose arcs are labelled with the components that allow coordinators to evolve. But
this would result in a too large transition system, making verification difficult.

To attack this problem, reducing the size of the transition system, we propose to
borrow formulae from a suitable logic for expressing the most general class of processes
with whom each coordinator can react. This leads us to the notisynolbolic transition
systen(sTS), whose states are coordinators and whose transitions have the shape

CiXe, ... %] 22 DL, . Yo

meaning that the step can be performediy, ..., pn] whenevep; |= ;, fori € [1,n].

The logic where the formulag’s live and the notion of satisfactios: must be of
course targeted to thec under study. In general, the logic may involve both spatial and
temporal aspects of components, i.e. it can Bpatial logic[8,11].

Fixed ansTs, two kinds of bisimilaritiesvsyict and~jarge, referred to, respectively,
as strict andlarge, can be defined on coordinators, differing for the way labels (i.e.
formulae) are compared, Withsyrict = ~large, aNd~stict DEING an equivalence relation.
We show that, whenever th&rs satisfies suitable properties of correspondence w.r.t.
the operational semantics of components, catiedectnessand completeness-iarge
(and thus~gyict) implies the equivalence induced by the universal closure.

1 Reduction semantics can be obviously recasted &s as the special case with a unique label.

For Pc whose rules are in a quite general format, caliégkbraic formaf16], we
provide a constructive way of defining a spatio-temporal logic and we give an algorithm
for building a correct and completers over such a logic. The algorithm, expressed
as a Prolog program, builds labels by computing recursively the most general unifiers
between coordinators and left-hand sides of the operational rules.

Synopsis.In § 1 we fix the notation and we recall some basic definitiong & we
overview the general ideas on which our approach relies, introducing the notion of
(correct and completeyTs, defining large and strict symbolic bisimilarities and show-

ing that both relations imply bisimilarity via universal closure 818, first we illustrate

the algorithmic construction of correct and complstess for process calculi with no
structural axioms and operational rules in @igebraic formatof [16], and then we

show how to deal with the common AC1 axioms for the parallel composition operator.
In § 4, we test our approach against a simple case study consisting of a fragment of the
ambient calculus witltcslike communication within ambients.

Related work.The aforementioned papers by Sewell, Leifer and Milner have motivated
and inspired our quest for a set of labels powerful enough to model the maximal classes
of components with whom coordinators can react. The papers by Caires, Cardelli and
Gordon on spatial logics have suggested us an elegant mathematical tool for expressing
both structural and temporal constraints in the labels. It is worth mentioning that spatial
formulae have many analogies with the topological modalities introduced separately by
Fiadeiroet al.in [15] when proposing a verification logic for rewriting logic.

A symbolic approach to bisimulation in the case of value passing calculi, where
actions are parametrised over a possibly infinite set, has been explored in [17].

Among other frameworks where the semantics of components and coordinators is
defined uniformly, let us mentiotile logic (TL) [16,6], conditional transition systems
(cT9) [24] and context systemé&cs) [19], which come also equipped with different
formats for guaranteeing that bisimilarity is a congruence. While models based on
cTsandcscan be easily translated in our framework, the use of spatial formulae makes
our approach applicable to a wider class of calculi.

The idea of using unification for building formulae comes from Logic Programming
and more precisely by its view as an interactive system presented in [7].

1 Notation

To ease the presentation we consider one-sorted signatures, but our results easily ex-
tend to the many-sorted case sfynatureis a set ofoperatorsZ together with an arity
functionar: ¥ — N. Forn € N, we letZ, = {f € Z | ar(f) = n}. We denote byl's (X)

the term algebra oveX and variables in the sef (disjoint from), with Ts = Ts(0).

For P € Ts(X) we denote byar(P) the set of variableX € X that appear irP. If

var(P) = 0 thenP is calledclosed otherwiseopen When signatures are used for pre-
senting the syntax afc, closed terms define the gBtof componentg of the calculus,

while the general, possibly open, terms form thecget coordinatorsC. Often we shall

write C[Xy, ..., Xn] to mean tha€ is a coordinator such thaar(C) C {Xy,...,Xn}.

PEQEE,O(P),G(Q)GTZ plEQl»"':anmeezn

sub. contex
o(P) =0(Q) (subg f(p1,..-,pPn) = f(q,.--,0n) ()
peTs pP=q P1= P2, P2=P3
P=p (refl) q=p (symm) T h=ps (trans)

Figure 1. Closure of structural axioms.

A structural axioms a sentencP = Qfor PQ € Ts(X). GivenaseE={R =Q; |
i €1} of structural axioms, we say thataalgebraA satisfiesE if for any assignment
0 : X — A of values to the variables i, we have that(R) =4 0(Q;), foralli € 1.
The initial algebral's g is the quotient ofT's modulo the equivalence= defined in
Fig. 1, where axioms ilE are closed w.r.t. substitution, contextualization, reflexivity,
symmetry, and transitivity.

Process calculi come often equipped witts operational semantics, where states
are components over the process signakyrabels range over a suitable alphabet
and transitions model the activities of components. Commonly sueis specified by
a collection of inductive (transition) proof rules. In the presence of structural axioms,
states are equivalence classes of components (megukas if proof rules included:

P=p p-—q d=q

p/ i>q/

(equiv)

A bisimulationis a symmetric, reflexive relation over components such thatits

. a . " a_

g, then for any transitiop — p’ there exists a componegtand a transitiom — ¢
with p’ =~ . We denote by the largest bisimulation and callbisimilarity. Note that
the rule €quiy) makesp ~ g hold wheneverp = g. We calluniversal bisimilaritythe
usual lifting of ~ to coordinators obtained by closing for all possible substitutions:

ClX1, .-, Xn] ~ D[Xt, ..., Xn] 22X py, .o, pn € P, C[p1,..., Pn] ~ D[P, ... pr]

2 Formulae as Labels

The definition of bisimilarity on coordinators based on the closure with respect to any
possible substitution presents obvious drawbacks. In fact, to verify the bisimilarity of
two coordinators, one is typically led to check the bisimilarity of infinitely many pro-
cesses (all the possible closed instances of the coordinators). Furthermore bisimilarity
of coordinators is not defined in a coinductive way and thus the coalgebraic techniques
applicable to components fall short for coordinators. In trying to prove the equivalence
of two coordinators it is thus convenient to perform a kind of symbolic calculation:

1. without instantiating components which do not play an active role in a step and
instantiating the active components as little as possible;

2. making assumptions not only on the structure, but (ag.jrcTs, cs) also on the
behaviour of the active components.

The above strategy is formalised by introducing a symbolic transition system whose
states are coordinators and whose labels encode the structural and/or behavioural con-
ditions (see points 1-2 above) that components should fulfill for enabling the move.

In the following, we assume that a process calciasis fixed with signature&
and structural axiomg, whose semantics is given by thes £ over Ts g and label
alphabet\. We also assume that a lodicover components is given, which may have
modal operators and whose atomic formulae include the process varialMemith the
components i? (with p = X for any p € 2 andX € X, while p = qiff p=qfor any
p,q € P, wherel= is satisfaction).

Definition 1 (Symbolic Transition System).A symbolic transition systenisTts) §
overL for the process calculugC is a set of transitions
C[Xy,.. ,Xn] """

whereC[X, ..., Xy) andD[Y1,.. ., Yy| are coordinatorsa € A and; are formulae inL
containing only variables fronfYs, ..., Ym}.

"aD[Y1, ..., Yol

The variable names in the statessadre not relevant: they are justindexed placeholders,
whose number can vary along the computation. The correspondence between variables
in the source (e.gX) and their residuals (e.gy;) in the target is expressed by the
formulae (e.g9i), in which the residuals may occur. For example, the modal formula
di = oa.Y] is satisfied by any process performiagand its residual replacés in D).

For S to be an abstract view d#C we must of course require some additional
properties enforcing the correspondence with the concreteL. Consider a transition

system where coordinators have just one hole. Intuitively, Whe@[\)@rLa D[Y] the

idea is that the coordinat@, when instantiated with any component satisfyingan
perform actiona becoming an instance &. The process variablé, which typically

occur in¢, is intended to represent the residual of what substituteX fafter it has
exhibited the capabilities required Iy More precisely, for any componegsuch that

p = ¢[g/Y] (whered[g/Y] denotes the formula obtained fraprby replacing all the oc-
currences oY by g) the componertE[p] can perform an actioabecomingd[q]. On the

other hand, any concrete transition on components should have symbolic counterparts.
These two properties are formalisedcasrectnesandcompletenessespectively.

Definition 2 (Correctness).AnsTs S for the process calculugC is correctif for any
symboalic transition

[Xla axn] ‘) aD[Yla"'aYm]

in 5, for anyqs, ..., 0m and for anyp; = ¢i[d1/Y1, ..., dm/Ym] fori € [1,n], there exists a
transitionC[py, ..., pn] — D[, ...,] in L.

Definition 3 (Completeness)An sTs .S for the process calculuBC is completeif for
any coordinatoiC[Xy, ..., Xy, for all componentgs, ..., p, and for any transition

C[pl,--.,pn] 2.q

in L there exists a transitio@[X, .. ,Xn] """ >a D[Y1,...,Ym] in S andqj,...,qm such
that pi ': ¢i [ql/Yla ~-~7Qm/Ym] for S [17 n}, andq - D[qla ---7qm]-

Over anysTswe can straightforwardly define a bisimulation-like equivalence.

Definition 4 (Strict Symbolic Bisimulation). A symmetric relatior over the set of
coordinators(is astrict symbolic bisimulatioiif for any two coordinator€[Xy, ..., X
andD([Xy, ..., Xn] such thatC[Xy, ..., Xy] = D[Xy, ..., Xa], for any transition

ClX, .. ,Xn] Lrode)

aC'[Y1, ..., Yl

there exists a transitio[Xy, .. ,Xn] """)a D'[Y1, ..., Ym] such thatC'[Ys, ..., Y| ~
D’'[Y1, ..., Ym]. The largest strict symbollc bisimulation is an equivalence relation called
strict symbolic bisimilarityand denoted byeggict.

Our first result states that the strict symbolic bisimilarity distinguishes as much as
universal (closure) bisimilaritye, as defined by the end of Section 1.

Theorem 1 (~syrict = ~). If S is a correct and completeTs, then
C[Xla axn] ~strict D[X17 7Xn] = C[Xl; 7Xn] ~ D[X17 7Xn]

Proof. Suppos€[X, ..., Xn] ~strict D[X1, ..., Xn]. We want to show that for ar, ..., pn,
we haveC[pi, ..., Pn] ~ D[p1, ..., Pn]. Let Rsrict be the relation defined by
C[pla'ua pn] RstrictD[plv) pn] <g>C[Xla ,Xn} NStriCtD[le'“vxn]'

We first show thatRsict is a bisimulation for”.
For any transitiorC[py, ..., Pn) -2, gin £, by completeness qof, a symbolic tran-

sition C[Xg, ..., X (¢1 """ $r) a C'[Y1,...,Ym] andm componentsy;, ..., gm exist such that
pi): ¢i [ql/Ylv man/Ym] andq = C/ [q17 «-«»Qm]- Sincec[xla ,xn} ~strict D[le »Xn]

by hypothesis, we have thB{X;, ..., X;] wﬂ")a D'[Y1, ..., Y] With C'[Y1, ..., Yin] ~strict
D’'[Y1, ..., Ym]. By correctness af, and byp; = ¢i[01/Y1, .-.,0m/Ym] for all i e [1,n], it
holds thatD[py, ..., pn] 2, D'[a1,---,qm]. SinceC'[Y1,...,Ym] ~strict D'[Y1, ..., Ym], we
have thatC'[qs, .., Om] Rstrict D'[01, ---,Om]. The relationRsyict is obviously symmetric
and hence it is a bisimulation. Since bisimilarityis the largest bisimulation, it con-
tains Rswrict and therefor€[py, ..., Pm] ~ D[d4, ..., dm|, concluding the proof. a

2.1 Large Symbolic Bisimulation

The requirement of exact matching between formulae in the definition of strict sym-
bolic bisimulation can be too strong, especially in the presence of spatial formulae and
structural congruences. Hence, we propose a way to relax this condition.

To this aim, we assume that the logids a spatial logic whose operators include a
subset | of 2, with satisfaction defined by (for anfye >, with arity n):

p': (¢17 © n) Iﬁ Elpla"'vpn.pzf(p17"'apn) /\VIpI':q)I

We call ¢ a spatial formulaif it is built by using just variablexX € X and spa-
tial operatorsf € 2. Abusing the notation, a spatial formula can be either seen as a
component/coordinator or as a logic formula, depending on the setting where it is used.

Definition 5 (Large Symbolic Bisimulation). A symmetric relatiorr: over the set
of coordinatorsC is a large symbolic bisimulationf for any pair of coordinators
C[X1, ..., Xn] @andD[X4, ..., Xn] such thalC[Xy, ..., Xy] = D[X4, ..., Xa], for any transition

[X17 ,Xn] ¢17 7¢I’1)

a transition D[Xg, .. ,Xn] """)a D'[Z1,...,Z] and k spatial formulaey, ...,y ex-
ist such thath; = [Lpl/Zl,...,qu/Zk] andC'[Yy,...,Ym| = D'[W, ...,y]. The greatest
large bisimulation is calledarge symbolic bisimilarityand denoted-jarge

aC/[Y]_,...7Ym]

Large symbolic bisimulation allows a transition to be simulated by another transi-
tion where the spatial constraints on tfis are relaxed, so that “more general’ com-
ponents can be used for ties. It follows that transitions inS that are dominated by
transitions with a less (spatially) specified label can be abstracted away from the system.

Example 1.LetZ = {a, f(.),g(.)} and letthe logit include all the three corresponding
spatial operators. Lef be thesTts with transitionsf(X) LT X, g(X) LT X, and

g(X) =% a. Then it is obvious thaf (X) syict 9(X), because the last transition of
g(X) cannot be matched bf/(X). However, the formul is “more general” than the
formulaa, and thereford (X) ~jarge 9(X). a

Remark 1.While ~gyict IS an equivalence relation, we only proved that, if necessary,
~large CaN be guaranteed to be an equivalence by suitably saturatir@niBevith re-
dundant transitions. We also point out that the obvious way of relaxing the requirements
of ~stict by allowing a stefC[X] La C'[Y] to be simulated by [X] LI, D’[Y] with

¢ = Y, would not yield a consistent formulation, as it can be seen that, contrary to
spatial operators, modal operatorgigannot be safely abstracted awayjin

Proposition 1 (~strict = ~large)- FOr any symbolic transition systeg
C[Xla--~7xn] NstrictD[le---axn} = C[Xla---7xn] NIargeD[xla~-~»Xr“|]-

Proof. It follows directly from the definition of the two bisimulations, since the spatial
formulaey’s used in~jage When simulating the step can of course be identitiesO

Theorem 2 (~jarge = ~). If S is correct and complete w.r.L, then
C[X1, ..., %n] ~large D[X1, ..., Xn] = C[Xq,...,%n] ~ D[Xq, ..., Xn].

Proof. The proof is similar to, but slightly more involved than, that of Theorem 1.
SupposeC(Xy, ..., Xn] ~large D[X1, ..., Xn]. We want to show that for angy, ..., pn, we
haveC[ps, ..., pn] ~ D[p1, ..., Pn). Let Riarge be the relation defined by

Clp1,..., Pn] ﬂlargeD[plw--a Pn] <g>C[Xl,-n,)(n} NlargeD[Xlwnyxn]-

We first show thatRiarge is @ bisimulation forz. For any transitiorC|py, ..., pn] — q

in £, by completeness o, a symbolic transitiorC[X, ..., Xn] (b,4) aC'[Y1, ..., Ym]

andm componentsy, ..., gm exist with p; = ¢i[01/Y1, ..., dm/Ym] @andq=C'[qy, ..., 0m]-
SinceC[Xy, ..., Xn] ~large D[X1, ..., Xn] by hypothesis, we have

D[X1, ... %o = D (24, .., 2]

andk spatial formulaa)y, ..., exist such tha€'[Y1,...,Ym| ~jarge D'[W], ..., Y] and
di = WilW)/Z1, ..., W /Zd] for all i € [1,n]. Sincep; = ¢i[d1/Y1,...,0m/Ym] (for all i €
[1,n]), lettingqf = Wi[01/Ya, ..., 0m/Ym)], it follows thatp; = Wi[d; /Zy, ..., 0 /Z]. There-
fore, by correctness o, it follows thatD[py, ..., pn] —— D'[df, ..., 0] Moreover, since
C'IY1,...,Ym| ~large D' (W3, ..., Y], we have tha€'[qy, ..., m] Rarge D' [y, -, O] The re-
lation Riarge is clearly symmetric and hence it is a bisimulation forSince bisimilarity
~ is the largest bisimulation, it contaitfgrge and thusC[py, ..., pm] ~ D[d1, ...,0m]. O

Note that Theorem 1 now follows as a corollary of Proposition 1 and Theorem 2.

3 Bisimulation by Unification

In this section we outline a methodology for deriving a correct and complesdor
algebraicrc, i.e. Pcwhose operational proof rules are in a quite general format, called
algebraic format[16], recalled below. More specifically, givenrar, a logic Lpc with
spatial and modal operators in the style of [8,11] can be systematically derived. Then
the proof rules of the calculus are used to construct a Prolog program (finite if the set
of proof rules of therc is finite) which represents asirs over Lpc for the PC, in the

sense that given any coordinator, the program allows to compute the set of its symbolic
transitions. SuclsTscan be proved to be correct and complete for the gh@n

Definition 6 (Algebraic Format). A proof rule is inalgebraic formaif it has the form

X 25 Yidie
CIX1, ..., Xn] = D[Z4, ..., Zn]

with I C [1,n], and whereZ; =; if i € | andZ; = X; otherwise. Aralgebraic process
calculusis a pcwhose proof rules are in algebraic format.

The algebraic format generalises De Simone format [14] by allowing a generic context
C, possibly involving more than one operator, (to appear) as left-hand side of the conclu-
sion of the rule. However, it is worth recalling that while De Simone format guarantees

that bisimilarity is a congruence, for algebra&icC’s this is not necessarily the case.

3.1 A Spatio-Temporal Logic for Symbolic Transition Systems

Given a process calculuaC over a signature& we define the logic whose formulae

will be used as labels in theTs. The logic must be powerful enough to be able to
express, for any coordinator, the (more general) structural and behavioural properties
which should be fulfilled by unspecified components to allow transitions to happen.

Pl X

PEQ iff p=q

pl=oad iff Ip.p-pApED

pE f(d1,...,0n) iff 3p1,....pn. p=f(p1,....Pn) A Pi =i

Figure 2. Satisfaction of formulae in theTslogic Lpc.

Definition 7 (sTsLogic). Let 25 be the set of operators B which appear in the left-
hand side of the conclusion of a proof rulerRe (e.g. the operators i€[Xy, ..., Xy] for
the rule of Definition 6). TheTslogic Lpc associated t&C has as formulae

o=X|pload|f(d,...0)
whereX € X, pe P,ace A, f €%,

Aformula f(ds,...,¢n) is satisfied by any component of the shdge, . .., pn) where
eachp; satisfiesp;. A formula ca. is satisfied by any component which is able to
perform ana-labelled transition, evolving in a component satisfygngsince the logic
will be used to label the transitions of ams according to the general assumptions in
Section 2, process variables and (closed) components are included as atomic formulae.
Observe that, its = 3 then all components can be inductively constructed as formulae
of the kindf(¢1,...,0n) with f € Z and thus there is no need to add them explicitly (but
in mostPcno rule is given for the nil compone@f which is thus not irkg). Satisfaction
is formally defined in Fig. 2 (for anp € P and for any formula in Lpc).

To understand the definition of tegslogic Lpc note that an instand@[py, ..., pn)
of a given coordinato€[Xy,...,X], in order to perform a transition, must match the
left-hand side of the conclusion of a rule. This might impose the compomgatt
have a certain structure, hence the need of inserting the spatial opdratdsin the
logic. Furthermore, the premises of the matched rule must be satisfiable. Such premises
usually require the componergs to be able to exhibit some behaviour, i.e. to perform
a certain transition. Hence the logic includes also modal operago(s).

3.2 AlgebraicPC without Structural Axioms

We next illustrate a constructive procedure for defining a correct and congalstever

the logicLp¢ for a given process calcul®C whose proof rules are in algebraic format.

Here we concentrate on process caleuithout structural axioms. In Section 3.3 will

discuss the refinements needed in the presence of structural axioms.
ThesTsoverlLpc is specified by means of a Prolog program which can be used to

compute the possible symbolic transitions of every coordinator.

Definition 8 (Prolog Program). The Prolog program Pro@C) associated to the pro-
cess calculu®C contains as the first clause

trs(box(A,X),AX) - L

wherebox is a new operator, not iz, andA is a variable that stands for any action.
For any proof rule inPC of the shape outlined in Definition 6 also a clause

trs(C[X1, ...Xn], a, D[Z1,Zn]) :- trs(Xil,ail,Yil), .. trs(Xik,aik, Yik).

is included, wherdiy,...,ik} is the set of indexelsof the corresponding rule andi
can be eitheli (wheni € 1) or Xi (otherwise).

The programProg(PC) defines the predicaties(X,A,Y) whose intended meaning
is “any component satisfyini can perform a transition labelled Byand become a
component satisfyiny”. Given a coordinato€[X, ..., Xy, if the query

?- trs(C[X1,....Xn], A, Z)

is successful, then the corresponding computed answer substitution can be seen as a
symbolic step for the coordinat@{Xy, ..., X,]: the computed answer substitutions for

the variable, ..., Xn will represent the formulae ibp¢ labelling the transitiori the

action label and the target coordinator.

The first clause irProg(PC) can be unified only with a goais(X,A, _) whose
first argument is a variable (sind®x is not an operator ifPC). In this case there
is no need of imposing structural requirements)Xgrsince the only requirement for
any componenX for doinga and becoming is exactlybox(a,Y) . Thus the goal is
refuted just imposing a behavioural constraint on the component corresponding to
i.e. by asking thaX can perform ar action. The cut operator in the body of the clause
avoids that subsequent refutations are tried, using different rules that could be otherwise
matched by the goais(X,A,). To this aim, it is important that modal rules be listed
first than all the other rules.

The second class of clausesnog(PC) just represents a Prolog translation of
the operational proof rules of the calculus. Each such clause imposes (by unification)
the more general structural (spatial) constraints that the unspecified components of a
coordinator should satisfy to allow the corresponding step. The requirements on the
behaviour of the subcomponents, as expressed by the premises of the corresponding
proof rule, are represented by the subgoals in the body of the clause.

The backtracking mechanism of Prolog and the use of meta-logic operators (like
bagof) allow one to determine all the symbolic transitions for each coordinator
(finitely many under the assumption that the rules of the calculus and thus the pro-
gram are finite). Hence the Prolog progr&mg(PC) can be seen as the specification
of an sTsfor the process calculudC over logicLpc. The main result of this section
states that suchTsis correct and complete for the considered process calculus.

Theorem 3. ThesTsspecified by Prog®>C) is correct and complete.

Proof (Sketch)To prove correctness observe th&[Ky, ..., Xn] (01,9 ”>a D[Y1,...,Ym]

then there exists a refutation of the query
?- trs(C[X1, ..., Xn], a, 2)

with computed answer substitutioi = ¢; andZ = D[Y1, ..., Yn] . An inductive
reasoning on the height of the refutation allows us to prove that forgany.,qm
and py, ..., pn such that eachp; = ¢i[d1/Y1,...,0m/Ym there exists a derivation of

C[pla"'vpn] i> D[ql?'--aqm]'

trs(box(tau,X) , tau , X) :- L
trs(a.X|a , tau , X))
trs(XY , tau , X|Z) - trs(Y, tau, Z).

Figure 3. The Prolog program relative to the simgeslike calculus.

As for completeness, &[py,. .., pn] — q then the corresponding derivation in the

proof system oPC can be turned into a refutation witnessing 8%, . . ., Xp] <¢1"—”’?”)a

D[Y1,...,Yn]. Furthermorey = D[qy,...,0qm| and eachp; = ¢i[01/Y1, ..., 0m/Ym]. O

3.3 AlgebraicPC with AC1 Parallel Composition Operator

To understand why the proposed approach must be extended to deal with structural ax-
ioms, we focus on a very common case, i.e., an algebi@idith aparallel composition
operator“|”, subject to AC1 axioms (associativity, commutativity and identity)

X|Y)[Z=X[(Y]|Z) X|Y=Y|X X|0=X

where0 is the inactive component. Furthermore we suppose that parallel composition
allows a single component to move autonomously, performing an action that is reflected
at topmost level, i.e., we assume that the proof rules for parallel composition include

a /
% (ar)
XY —=X1]Y
For the construction of the Prolog progrd@rog(PC) we first need to extend the set of
proof rules of the calculus. Due to the presence of the associativity axiom, for any proof
ruler of the calculus where|™ occurs in the left-hand side of the conclusion as topmost

operator, we have to insert a new ridleThe new rule is obtained fromby adding in
parallel a generic idle component, i.e. for any rule of the kind

{xi i’ Yi}iel
Ca[X1, o, Xn] | Co[Xns1s s Xngm] —— DIZ1, ..., Znpm)
we add a new rule (analogous to the completion in rewriting systems modulo AC1)
{xi i’ Yi}iel
Ca[X1, s Xn] | Co[Xnr1, s Xnem] | Xnemi1 —— D[Z1, o, Znsm] | Xnrmet

ThenProg(PC) is defined exactly as before. Of course unification must be considered
up to AC1 structural axioms (see algorithms and further references in [18,4]).

Example 2.Consider a simplecslike calculus, with AC1 parallel composition and
only one rule for asynchronous communication
= T
aXla—X

The Prolog program induced by the original proof rule is shown in Fig. 3, where
the program representation for actiarT he following query

?- trs(a.0ja.0[X, A, 2)

would return the substitutions = ‘a for XandZ = a.0 for Z; butX = ‘a is not the

more general substitution fot that allows the context to perform the step. In fact, the
coordinatora.0la.0|X, instantiated with a componemptsatisfying the formulap = a
returned by the Prolog program (namely wiph= a), could perform only one step,

but, obviously,X could also be instantiated with the componarita, allowing the
coordinator to perform two steps. Actuall,= ‘a | Y results to be the more general
substitution which, thanks to the identity axiom, “comprises” the previous one. In order
to obtain such a computed answer from the program, it is enough to extend the proof
system with the rule’

aX|alY =X|Y 0

It is easy to show that the new proof rulésare valid in the original proof system,
hence the extension of the proof system does not change the semantice of Ehee
to the presence of the identity axiom, for arfiywe can also remove the original rule
r without affecting the semantics of the calculus. The result expressed by Theorem 3
extends also to this case, i.e., #es specified byProg(PC) is correct and complete.

An analogous approach can be followed to deal witle@ication operator “!”,
subject to the structural axiohX =!X | X.

4 Case Study: A Basic Calculus for Mobility

We consider a basic calculus for mobilitggm) which can be seen as an asynchronous
version ofccs[21], enriched with ambients, or, alternatively, as (a restriction-free ver-
sion of) the ambient calculus [12] with asynchronauss-like communication.

Definition 9 (BCM). LetA be a set of channels and I be a set of ambient names.
The set ofsBCM processe® is defined by the grammar:

P = 0|alaP|opennP|inn.P|outnP|n[P||P|P
witha € A, ne A, and where the parallel operator is AC1:
PIQR)=(PIQIR PQ=QP P0=P

The operational semantics BEM is defined by thesosoperational rules in Fig. 4.
The rulesopen in, andout are the classical rules of ambient calculus; communication
(rule com is allowed only inside the same ambient; reductions can happen under any
ambient and in any parallel process (but not under prefixes), as stated bgmbesd
par, respectively. Since the semantics is presented as a reduction system, transitions
have no label (or equivalently they can be thought of as having all the same)abel

The logicLgcm over the set of components is defined as explained in Section 3.1.
The set of spatial operators of the logic includes all the operators of the signature, i.e.,
>s= 2, So as to characterise all the possible transitions of the semantcsi(strictly
speakingD € X, but its presence is harmless and makes the notation simpler). All ax-
ioms in Fig. 4 introduce the need of spatial formulae (the lefthand side of the reduction

WP [openna — plo (°Pe" WPlmin QR nPmQR] "

nPImout nQIR] — niPmaR naPaq — npiQ o™
P—-Q P—-Q
Pl - g ™ PR Qr P

Figure 4. Operational semantics afcm.

requires a specific structure of the component). The raleband par, instead, calls
for modal formulae, since their premises refer to observable behaviours and not to the
structure of the components. The formudaef the logicLgcym are:

=X |o.0]0|a.¢0|nd]| d1]d2,

whereX € X, ne€ AL anda € {a,a,open nin n,out n}. Since transitions are not la-
belled, the modal operator does not refer to any action. The notion of satisfaction for
Lecm (P = ¢) is defined like in the general case (see Fig. 2). Then we can consider the
correct and completsTsfor BCM specified by the Prolog prograRtog(BCMm).

To have a grasp of the properties of the calculus, let us consider two ambients with
different names[a.0 | a.0] and mb.0 | b.0]. Both processes are able to perform an
internal communication according to rubl@mm evolving to a (deadlocked) ambient
containing the nil compone® Straightforwardly,

nja.0|a0] ~ mb.0| b.0],

i.e. internal actions do not distinguish ambients. It is easy to show that bisimilarity is

not a congruence for this calculus, since the above bisimilar processes are distinguished

when put in parallel witto pen nO (it interacts withn[a.0 | a.0] but not withm[b.0 | b.0]).
Processes[a.0 | a.0] andm[b.0 | b.0] are (bisimilar) instances of the coordinators

n[X] andm(X]. It is easy to verifyn[X] #£swict MX], in fact, due to ruleut:

Y|mlout n Z|W
—

n[X] DoY) | miz |w,

while m[X] has an analogous transition but with a different label and conclusion:

m[X] Y\n[out_rn> Z|W| m
Actually, n[X] 7 m[X], since they are distinguished By= k[out n0|, and hence, by
Theorem 2n[X] iargeMX]. An example of coordinators related byyict, and hence,
using Theorems 1 and 2, also Byarge and~, is: njm{out nX]] ~syict N[O] | ma | a.X].

In fact, the two coordinators have the only symbolic transitions below, which lead to
obviously bisimilar coordinators:

[Y] [n[z [W].

nimlout nX]] —— n[0]|mY] and n[0] |ma|aX] — n[0]|mY].

Conclusions

We have illustrated a general methodology for reasoning about open systems, viewed
as coordinators in suitable process calculi, with special interest in bisimilarity. For a
pc and a process logic which characterises the structural and behavioural properties
of interest, we have introduced a notion of (correct and complete) symbolic transition
system, where states are coordinators and transitions are labelled by logic formulae
expressing the requirements which uninstantiated components should satisfy for the
transition to happen. Over aTstwo symbolic bisimilarities can be defined, thtgict
bisimilarity and the “coarserlarge bisimilarity, both refining the universal bisimilarity

on coordinators which takes all possible closed instantiations. For algetmaihose

rules are in a quite general format, we have also provided a constructive way of deriving
a spatio-temporal logic and a (correct and complete) symbolic transition system over
such logic. The applicability of the proposed methodology has been finally illustrated
by means of a toy process calculus withs-like communication within ambients.

An interesting issue which has not been faced here is the treatment of names and
name restriction, which plays a basic role in the specification of systems with fresh or
secret resources. While the notions of (correct and compateand the results about
symbolic bisimulation are parametric w.r.t. the chosen process logic, the constructive
definition of the correct and comple&ss for a given process calculus, presented in
Section 3, and especially the definition of the underlying process logic, should be ex-
tended to deal with a logical notion of freshness. A source of inspiration could be the
work of Cardelli and Caires [9,10].

We already mentioned that symbolic transitions have been studied by several au-
thors, e.g. Sewell [25], and Leifer and Milner [20] in order to avoid universal quantifi-
cation over contexts. These approaches, where steps can perform contextual closures,
can be seen as the dual of our approach, where steps can instantiate contexts. It would
be interesting to give a formal account of this duality, and, in particular, to see if the
categorical approach of [20], based on relative pushouts, can be dualised in our case
resorting to a notion of relative pullback.

Recently, the symbolic approach to the verification of infinite state cryptographic
protocols has attracted a lot of interest. Some authors use logic abstractions to charac-
terise symbolic states [1,13], others exploit, in particular, the generality of unification
to devise minimal assumptions over symbolic states [5]. Pursuing further the similari-
ties of our symbolic approach to bisimulation with these approaches, so as to apply our
methodology to the field, appears to be a stimulating line of future research.

Regarding the automatic constructionsafs, we plan to generalise it tmetaand
abductiveLogic Programming. The first one should allow for the programmable defini-
tion of proofs, and hence for more specific reasoning over the structuremfide sec-
ond one should provide the means for hypothetical (assumption-based) reasoning about
the properties labellingTs allowing to answer questions like “under which circum-
stances (assumptions) the procBgsX can evolve so as to satisfy a given property?”,
typically relevant in open and dynamic system engineering [3,2].

AcknowledgementdNe would like to thank Narciso MérDliet, Sabina Rossi and the
anonymous referees for their helpful comments and suggestions.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.

24.
25.

M. Abadi and M.P. Fiore. Computing symbolic models for verifying cryptographic protocols.
In Proc. 14th IEEE Computer Security Foundations Worksipgp 160-173. IEEE, 2001.

R. Allen and D.Garlan. A Formal Basis for Architectural Connecté&df6é M TOSEM 6(3),

pp. 213-249, 1997.

L.F. Andrade, J.L. Fiadeiro, J. Gouveia, G. Koutsoukos and M.Wermelinger. Coordination
for Orchestration. InCoordination Models and Languagéesth Int. Conference COORDI-
NATION. Lect. Notes in Comput. S@315 pp. 5-13. Springer 2002.

. F. Baader and W. Snyder. Unification theoryHandbook of Automated Reasoniidsevier

Science, 2000.

. M. Boreale. Symbolic trace analysis of cryptographic protocolsProt. ICALP’0], Lect.

Notes in Comput. Sc2076, pp. 667-681. Springer, 2001.

. R. Bruni, D. de Frutos-Escrig, N. M&®liet, and U. Montanari. Bisimilarity congruences

for open terms and term graphs via tile logic. Pmoc. CONCUR 2000Lect. Notes in
Comput. Scil877, pp. 259-274. Springer, 2000.

. R.Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programiftiregpry

and Practice of Logic Programming.(6):647—690, 2001.

. L. Caires.A Model for Declarative Programming and Specification with Concurrency and

Mobility. PhD thesis, Departamento de Infdatica, Universidade Nova de Lisboa, 1999.

. L. Caires and L. Cardelli. A spatial logic for concurrency (part I)Phoc. TACS 2001 ect.

Notes in Comput. Sc2215, pp. 1-37. Springer, 2001.

L. Caires and L. Cardelli. A spatial logic for concurrency (part Il)Ploc. CONCUR 2002

Lect. Notes in Comput. ScEpringer, 2002. To appear.

L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile ambients. In
Proc. POPL 2000pp. 365-377. ACM, 2000.

L. Cardelliand A.D. Gordon. Mobile ambients.Rroc. FoSSaCS’'9& ect. Notes in Comput.
Sci.1378, pp. 140-155. Springer, 1998.

E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural deduc-
tion style message derivation engine to verify security protocol®rdbec. PROCOMET’98
Chapmann & Hall, 1998.

R. De Simone. Higher level synchronizing devices in MEIJE-SACS, 37:245-267, 1985.

J.L. Fiadeiro, T. Maibaum, N. Ma©Oliet, J. Meseguer, and |. Pita. Towards a verification
logic for rewriting logic. InProc. WADT'99 LNCS1827, pp. 438-458. Springer, 2000.

F. Gadducci and U. Montanari. The tile model Pimof, Language and Interaction: Essays

in Honour of Robin MilnerMIT Press, 2000.

M. Hennessy and H. Lin. Symbolic bisimulatiof$ieoret. Comp. S¢i138:353-389, 1995.

A. Herold and J. Siekmann. Unification in abelian semi-groupsurnal of Automated
Reasoning3(3):247-283, 1987.

K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.
In Proc. ICALP’9Q Lect. Notes in Comput. Sei43, pp. 526-539. Springer, 1990.

J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systen®sodn
CONCUR 2000Lect. Notes in Comput. Sdi877, pp. 243—-258. Springer, 2000.

R. Milner. A Calculus of Communicating SystemBICS92. Springer, 1980.

U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for CCS.
Fundamenta Informaticad 6:171-196, 1992.

G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, Computer Science Department, 1981.

A. Rensink. Bisimilarity of open terménform. and Comput.156(1-2):345-385, 2000.

P. Sewell. From rewrite rules to bisimulation congruencesPrbt. CONCUR’98 Lect.
Notes in Comput. Scl466, pp. 269—-284. Springer, 1998.

