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Abstract. The notion of a session is fundamental in service-oriented applica-
tions, as it serves to separate interactions between clients and different instances
of the same service, and to group together logical units of work. Recently, the Ser-
vice Centered Calculus (SCC) has been proposed as a process calculus designed
around the concept of a dyadic session between a service sideand an invoker
side, where interaction protocols and service orchestration can be conveniently
expressed. In this paper we propose a generic type system to collect services’
behaviours and then we fix a class of well-typed processes that are guaranteed to
be deadlock free, in the sense that they either diverge by invoking new service
instances or reach a normal form. The type system is based on previous research
on traditional mobile calculi, here conveniently extendedand simplified thanks
to the neat discipline imposed by the linguistic primitivesof SCC.

1 Introduction

The success of service orientation is attracting the interest of both industry and academy.
On the one hand, important standardisation bodies and industrial consortia are devel-
oping the WS-* stack, targeting the engineering of web services technologies from a
pragmatic perspective. The related documentation is oftencentred around common pro-
gramming patterns: it is more focused on technical details of some case-studies, than on
the overall methodology, leaving many ambiguities open. Onthe other hand, several ef-
forts are posed on mathematical foundations, by developingformal languages and mod-
els tailored to service-oriented architectures. The main aim is to provide current stan-
dards with unambiguous semantics, but hopefully, tacklingthe scenarios from a more
abstract perspective, the formalisation can lay the basis for sound service orchestration
methodologies. Within this research thread, many process calculi have emerged ([6, 5,
17, 4, 2, 16], to cite a few), that are enhanced with service-specific primitives.

The aim of this paper is to study a type system for one of the above proposals, called
Service Centered Calculus (SCC) [2]. More precisely, we study a calculus derived from
SCC and from its refined variant CaSPiS [3] in which service invocation encompasses
one-wayand request-responseprotocols available in current WS-technology and al-
lows for more sophisticated message exchanges, according to the protocol exposed by
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the service. The key feature is considering the messages exchanged between caller and
callee as correlated, enclosed in special units of work, calledsessions, and isolated from
messages belonging to different invocations to the same service. Differently from other
session languages inspired by pi-calculus [11, 12, 19, 8], object-orientation [9, 7] and
correlation sets [17], here the programmers should not bother with the manipulation of
sessions: they are created automatically, in a transparentmanner, upon service invoca-
tion. In particular, in SCC the communication media for exchanging messages is always
implicit and determined by the context surrounding active abstractions and concretions.
For this reason, we allow service name mobility, but not session name mobility.

The automatic teller machine example in [12] can serve well to illustrate our ap-
proach to the typing of SCC. The ATM offers three options to choose from: deposit,
withdraw and balance. Once the user chooses one option the ATM establishes a new
direct connection with the bank to account for the operation. Afterwards, the result is
returned by the ATM to the user who can choose another option.At the type system
level, even if the connection with the bank is reiterated each time the user chooses an
option, it is only necessary to check a single instance to guarantee safety of the com-
munication, because each interaction belongs to a distinctsession. For SCC we show
that, by constraining the communication activities, well-typedness not only guarantees
safety but a much stronger property such as deadlock freedom.

Since sessions can be nested but cannot be addressed explicitly in communication
primitives, the language is endowed with children-to-parent communications and with
in-session communications. These two communication patterns not only are expressive
enough to encode lazyλ-calculus [2] but also makes it possible that typing a single
instance of a session suffices to guarantee deadlock freedom of recursive processes
such as the factorial service (see Example 2). Another feature of SCC is the presence of
a pipe construct, inspired by Orc [6], an elegant language for structured orchestration.
Pipelines offer a basic mechanism for composing processes: it is more general and
better suited w.r.t. concurrency than sequential composition and it does not require the
improper use of channels for a task that pertains to orchestration. As far as we know,
our type system is the first one to address the direct typing ofsuch a pipe primitive.

The resulting language is somehow too permissive to be dealtwith using session
types [11, 19, 12] directly, as they would require, e.g., each input in a session to be
matched by only an output. This condition is violated (and consequently subject reduc-
tion does not hold) if, for example, in the presence of an input we introduce parallel
outputs of different types. Our type system extends ordinary session typesto work cor-
rectly with our language. Differently from [13], this permits each variable to be stati-
cally assigned a basic type or a service type (in the case of service name mobility).

The type system characterises a subclass of SCC processes typical of the service-
oriented scenarios (e.g., service declarations are top level and replicated) for which we
show the main theorem of this paper: we prove that these processes are deadlock free
in the sense that they either diverge by invoking service instances and opening new
sessions or reach a normal form in which only service declarations remain; that is,
every client terminates its computation unless someone diverges, but the entire system
cannot block on pending communications. The proof technique makes an extensive use
of types to limit the number of possible cases, resulting less error prone.
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A similar type system exists for SSCC (a variant of SCC based on named streams
instead of pipelines) [16] that guarantees session safety.Streams introduce some sort
of global buffers for extra-session communication and permit only a single type of val-
ues for each stream. Likewise, the type system described in [1] resembles ours but it
deals asymmetrically with services and clients, by guaranteeing only client progress.
Concerning deadlock freedom we use definitions in [14, 15] asmain references for our
definition, which is slightly different because tailored to the service-oriented scenario.

Synopsis.Section 2 introduces our SCC-like calculus. Section 3 presents the type sys-
tem and the subject reduction result. Section 4 defines the class of initial processes and
proves the main theorem: every well-typed initial process is deadlock free. Section 5
summarises the results and points out directions for further work. Due to space limita-
tion proofs are just sketched or omitted.

2 Session Centered Calculus

2.1 SCC Overview: Room Reservation Example

Consider the following reservation servicereservefor hotel rooms:

R = reserve.
(

(double).(x,y).〈code(x,y)〉 + (single).(x).〈code(x,"")〉
)

reserveoffers two kinds of rooms,double or single, depending on the client choice.
If the client after an invocationreservesends the labeldouble to the service then the
service waits for a pair of namesx andy (both of typestr), and after receiving them,
generate a numeric reservation code (typeint) derived fromx andy that is sent back to
the client. Herecode : str × str→ int is a function only available on service side.

C = reserve.if(test) then 〈single〉.〈"Bob"〉.(x).return x
else 〈double〉.〈"Bob","Leo"〉.(y).return y

The above client, after invokingreserveand depending on some conditiontest, chooses
between the two available options. The situation of the freshly established sessionr after
the client’s choice ofdouble is the following:

(ν r)
(

r− ⊲ 〈"Bob","Leo"〉.(y).return y | r+ ⊲ (x,y).〈code(x,y)〉 | R
)

where the client protocol is running on the left (the sessionsider− with negative po-
larity) and the service protocol on the right (the session sider+ with positive polarity).
Abstractions (e.g., (x, y)) and concretions (e.g.,〈”Bob” , ”Leo”〉) running on opposite
sides (r+ andr−) of the same session (bound namer) can exchange data, leading to

(ν r)
(

r− ⊲ (y).return y | r+ ⊲ 〈code("Bob","Leo")〉 | R
)

Saycode(”Bob” , ”Leo”) evaluates to 556047. Then, after another interaction, the
client side (r− ⊲return 556047) can return the result outside ofr (to the parent session,
if any). For examplereserve.〈single〉.〈”Bob”〉.(x).return x > y > Q invokesreserve
and delivers the result iny to Q. As many instances ofQ are spawn as the number of
values that are issued. Since the execution of an invocationprefix opens a nested session,
the conjunct use of return and pipe is the easiest way to continue the computation within
the pre-existing session.
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P,Q,R ::= 0 (nil)
| s.P (service definition)
| v.P (invocation)
| if v = v1 then P else Q (if-then-else)
| (x̃).P (tuple input)
| 〈ṽ〉.P (values output)
| Σn

i=1(l i).Pi (label-guarded sum)
| 〈l〉.P (label choice)
| return ṽ.P (return)
| (νm)P (restriction)
| r p ⊲ P (session)
| P > x̃ > Q (pipe)
| P|Q (parallel)

v ::= f(ṽ) (function call)
| x (variable)
| m (service/session)
| b (basic data value)

p,q ::= + | − (polarities)

Fig. 1. Syntax of our service calculus

2.2 Syntax

The set of processes is defined by the grammar in Fig. 1. We letP,Q,R range over
processes,sover service names,r over session names,m over both session and service
names,l over labels,x over variables (for service names and data), andv over values,
which include an elsewhere specified set of basic data and expressions (possibly with
names, variables and functions). Tuples are denoted by ˜·. Operators are listed in Fig. 1
in decreasing order of precedence, e.g.,r− ⊲ P > x̃ > Q|R reads ((r− ⊲ P) > x̃ > Q)|R.

As usual,0 is the nil process, the trailing of0 is often omitted, parallel composition
is denoted byP|Q and restriction by (νm)P. The constructr p ⊲ P indicates a generic
session side with polarityp (taking values in{+,−}). Sessions are mostly intended as
run-time syntax. In fact, differently from other languages that provide primitives for
explicit session naming and creation, here all sessions could be built automatically,
resulting in a more elegant and disciplined style of writingprocesses. A fresh session
namer and two polarised session endsr− ⊲ P andr+ ⊲ Q are generated (on client and
service sides, respectively) upon each service invocations.P of the services.Q. We say
r− ⊲P is the dual session side ofr+ ⊲Q and vice versa. AsP andQ share a session, their
I/O communications are directed toward the dual session side.We let p, q range over
polarities andp, q are the opposite polarities ofp andq, where+ = − and− = +.

Labelsl allow for expressing a choice on one side among a set of available options
at the other side. The primitivereturn is used to output values to the parent session
and the pipeP > x̃ > Q is a construct for on-side communications, i.e., for propagating
values in the same side of a session. Pipe is inspired by Orc [6] to activate a fresh
instance ofQ on any value produced byP.

Processes are taken up toα-equivalence considering ( ˜x).Q andP > x̃ > Q as binders
for variables ˜x in Q and (νm)P as the binder form in P. The setfn(P) of free names ofP
is defined as expected. It is worth noting that the standard capture avoiding substitution
P[ ṽ/x̃], which replaces a tuple of variables with a tuple of values,assumes that variables
cannot appear in certain positions (i.e.,x ⊲ P andx.P are forbidden by the syntax).
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P|0 ≡ P P|Q ≡ Q|P (P|Q)|R≡ P|(Q|R)
(νm1)(νm)P ≡ (νm)(νm1)P ((νm)P)|Q ≡ (νm)(P|Q) if m < fn(Q)

((νm)P) > x̃ > Q ≡ (νm)(P > x̃ > Q) if m < fn(Q) r p ⊲ (νm)P ≡ (νm)(r p ⊲ P) if r , m
0 > x̃ > P ≡ 0 (P|Q) > x̃ > R≡ (P > x̃ > R)|(Q > x̃ > R)

(r p ⊲ 0) > x̃ > R≡ r p ⊲ 0 r p
1 ⊲ (Q|rq

2 ⊲ 0) ≡ r p
1 ⊲ Q|rq

2 ⊲ 0 (νr)(r+ ⊲ 0|r− ⊲ 0) ≡ 0

Fig. 2.Structural congruence

Each service definition is persistent (i.e., not consumed after an invocation) and
available at top level (see Definition 4). For this reason, inthe type system we shall give
in Section 3, their protocols are not supposed to return any value to the parent.

2.3 Operational Semantics

We describe the semantics of our language by means of an LTS that exploits the struc-
tural congruence≡, which is the least one defined by the equations in Fig. 2. They
include ordinary axioms about parallel and restriction, together with distributivity of
parallel over pipes, and a few axioms for garbage collectingterminated session ends
r p ⊲ 0. We say thatQ is at thetop levelin P if P ≡ (νm̃)Q|R for somem̃ andR.

Our transition system exploits the labelsλ in Fig. 3. We write↔ to mean either
← or→. We write (m̃)λ to mean the labelλ where the names ˜m become bound. The
notions of bound namesbn(λ), free namesfn(λ) and namesn(λ) of a labelλ are defined
as expected. We remark thatα-conversion is not applicable to labels.

The semantics is given in the early style, which guesses the values and labels in
the rules (I) and (B), respectively. Rule (D) shows the replicated nature of the
service and together with (I) creates two processes which are ready to communicate
after that (SC) creates a new shared common session. (SO) accounts for the
return of a value, which is converted in an output out of the current session when the
session construct is traversed. (S) marks with the name of the exchanging session
each operation in that session. (C) permits both communication of basic values
and service names. Extrusion is handled by (O) and (P), but thanks to (E)
restricted names can be moved to the top before communication and a closure rule
is not necessary. On the other hand, side condition of rule (P) is useful for session
floating sincer is bound in labels for the service invocation. Rule (P) creates a new
concurrent copy of processQ together with the residualP′ > x̃ > Q in the case thatP
outputs a value. Rule (PP) makes a move inP if the action is not an output.

We shall writeP
λ
−→ if there is aQ such thatP

λ
−→ Q.

3 Typing

The set of session types,U,T,. . ., is defined by the grammar in Fig. 5. Session types
express sequences of typed tuples of input and output. Internal choice⊕ records all
the choices at a certain point of a session, requested in the branches of a conditional
process. External choice & records the types of all offered options.
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λ ::= s⇒ r | s⇐ r (service invocation/ definition)
| → ṽ | ← ṽ (value production/ consumption)
| r p :→ ṽ | r p :← ṽ (value production/ consumption withinr)
| → l | ← l (choice selection/ branching)
| r p :→ l | r p :← l (choice selection/ branching withinr)
| τ | rτ (silent steps)
| ↑ ṽ | (m)λ (value return/ extrusion)

Fig. 3. Labels of the transition system

(I)

(x̃).P
←ṽ
−→ P[ ṽ/x̃]

(O)

〈ṽ〉.P
→ṽ
−→ P

(C)

P
r p:←ṽ
−→ P′ Q

r p:→ṽ
−→ Q′

P|Q
rτ
−→ (P′|Q′)

(S)

P
λ
−→ P′ λ ∈ {↔ ṽ,↔ l}

r p ⊲ P
r p:λ
−→ r p ⊲ P′

(B)

Σn
i=0(l i).Pi

←l i
−→ Pi

(C)

〈l〉.P
→l
−→ P

(S)

P
r p:→l
−→ P′ Q

r p:←l
−→ Q′

P|Q
rτ
−→ (P′|Q′)

(SP)

P
λ
−→ P′ λ ∈ {τ, r ′τ, r ′p

′

: λ′}

r p ⊲ P
λ
−→ r p ⊲ P′

(D)
r < fn(s.P)

s.P
(r)s⇐r
−→ r+ ⊲ P|s.P

(I)
r < fn(s.P)

s.P
(r)s⇒r
−→ r− ⊲ P

(SC)

P
(r)s⇒r
−→ P′ Q

(r)s⇐r
−→ Q′

(P|Q)
τ
−→ (νr)(P′|Q′)

(R)

return ṽ.P
↑ṽ
−→ P

(SO)

P
↑ṽ
−→ P′

r p ⊲ P
→ṽ
−→ r p ⊲ P′

(NI)

P
(r′)s⇒r′

−→ P′ r , r ′

r p ⊲ P
(r′)s⇒r′

−→ r p ⊲ P′

(R)

P
λ
−→ P′ s < n(λ)

(νs)P
λ
−→ (νs)P′

(O)

P
λ
−→ P′ λ ∈ {→ ṽ, r p :→ ṽ} ∧ s ∈ n(ṽ)

(νs)P
(s)λ
−→ P′

(SR)

P
rτ
−→ P′

(νr)P
τ
−→ (νr)P′

(P)

P
→ṽ
−→ P′

P > x̃ > Q
τ
−→ Q[ ṽ/x̃]|(P′ > x̃ > Q)

(PP)

P
λ
−→ P′ λ ,→ ṽ

P > x̃ > Q
λ
−→ P′ > x̃ > Q

(IL)

P
λ
−→ P′

if v = v then P else Q
λ
−→ P′

(IR)

v1 , v Q
λ
−→ Q′

if v = v1 then P else Q
λ
−→ Q′

(P)

P
λ
−→ P′ bn(λ) ∩ fn(Q) = ∅

P|Q
λ
−→ P′|Q

(E)

P ≡ Q Q
λ
−→ Q′ Q′ ≡ P′

P
λ
−→ P′

Fig. 4. Operational semantics
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T,U ::= end (no action)
| ?(S1, . . . ,Sn).T (input of a tuple)
| !(S1, . . . ,Sn).T (output of a tuple)
| & {l1 : T1, . . . , ln : Tn} (external choice)
| ⊕{l1 : T1, . . . , ln : Tn} (internal choice)

S ::= [T] (session)
| B (basic data types)

Fig. 5. Syntax of types

SortsS can be either [T] which represents a session with session typeT or an
elements of a given set of basic data typesB. By convention we denoteτb ∈ B the type
of the basic valueb. We shall assume thatint, str ∈ B.

Our set of typing rules is in Fig. 6. Type judgements for values take the formΓ ⊢ v :
S whereS is the sort ofv. Type judgements for processes take the formΓ ⊢ P : U[T],
where the typeU represents the outputs ofP to the parent session, whileT is the type of
admissible interactions for the current session. We shall refer to such types asusages.
Sometimes we write [T] as a shorthand forend[T]. The type environmentΓ is a finite
partial mapping from variables and services to sorts and function types. The empty
environment is annotated∅. Whenx < dom(Γ) we writeΓ, x : S for the environment
obtained by extendingΓ with the binding ofx to S (the same holds form < dom(Γ)).

The first four rules for values are standard and the signatureof each used external
function must be inserted in the environment as a functionaltype (rule (FV)) because
they are not bound by processes.

The type of0 in (T) is end[end] since no action is performed neither in the
current session nor towards the parent session. Rule (T) constrains the protocol of
the service to be the same as that of the body processP and rule (T) checks that the
invoked service behaves in the dual manner with respect to the client. Here the dual of
T, writtenT is inductively defined as:

end = end ?(S̃).T = !(S̃).T & {l1 : T1, . . . , ln : Tn} = ⊕{l1 : T1, . . . , ln : Tn}

!(S̃).T′ = ?(S̃).T′ ⊕{l1 : T1, . . . , ln : Tn} = & {l1 : T1, . . . , ln : Tn}

It can be readily observed that duality exchanges the role of! with ? and of & with⊕.
Rules (T), (T) and (T) insert the usage type in the correct place. The type

for the input variable ˜x in rule (T) is not declared in the syntax, but it can be inferred
with the help of the algorithm described in [18]. Rule (T) allows for considering
a subset of possible branches; this subset can be chosen in a minimal way by letting
it include the branches used by the dual sessions in the rule (T). In fact, theif
construct allows to choose between many branches at the sametime and also different
clients can invoke the same service making their own choices, and rule (T) force all of
them to agree on the least common set of choices that must be available at the other side.
The two rules for parallel composition (TL) and (TR) allow parallel composition
of two processes only if at least one does not have any action in the current session,
i.e. if it has typeU[end]. Note instead that bothP andQ are allowed to produce values
upwards, in which case the operationU ◦ U ′ is defined only if all the atomic parts in
U andU ′ are of the same kind, say !(S̃), and in that caseU ◦ U ′ = U.U′ = U′ ◦ U.
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(S)

Γ, s : S ⊢ s : S
(V)

Γ, x : S ⊢ x : S

(BV)
τb ∈ B

Γ ⊢ b : τb

(F)
Γ ⊢ v1 : S1 . . . Γ ⊢ vn : Sn τb ∈ B

Γ, f : S1 × . . . × Sn→ τb ⊢ f(v1, . . . , vn) : τb

(T)

Γ ⊢ 0 : end[end]

(T)
Γ ⊢ P : end[T] Γ ⊢ s : [T]

Γ ⊢ s.P : end[end]

(T)

Γ ⊢ P : U[T] Γ ⊢ v : [T]

Γ ⊢ v.P : end[U]

(T)

Γ, x̃ : S̃ ⊢ P : U[T]

Γ ⊢ (x̃).P : U[?(S̃).T]

(T)

Γ ⊢ P : U[T] Γ ⊢ ṽ : S̃

Γ ⊢ 〈ṽ〉.P : U[!( S̃).T]

(T)

Γ ⊢ P : U[T] Γ ⊢ ṽ : S̃

Γ ⊢ return ṽ.P :!(S̃).U[T]

(T)
I ⊆ {1, . . . ,n} ∀i ∈ I Γ ⊢ Pi : U[Ti]

Γ ⊢ Σn
i=0(l i).Pi : U[& {l i : Ti}] i∈I

(TL)
Γ ⊢ P : U[T] Γ ⊢ Q : U′[end] U′′ = U ◦U′

Γ ⊢ P|Q : U′′[T]

(TC)
l = l i ∈ {l1, . . . , ln} Γ ⊢ P : U[Ti]

Γ ⊢ 〈l〉.P : U[⊕{l1 : T1, . . . , ln : Tn}]

(TR)
Γ ⊢ P : U[end] Γ ⊢ Q : U′[T] U′′ = U ◦ U′

Γ ⊢ P|Q : U′′[T]

(T)

Γ ⊢ P : U[T] Γ, x̃ : S̃ ⊢ Q : U′[T ′] pipe(U[T],U′[T ′], S̃) = U′′[T ′′]

Γ ⊢ P > x̃ > Q : U′′[T ′′]

(T)
Γ ⊢ P : U[T]

Γ, r : [T] ⊢ r+ ⊲ P : end[U]

(TI)
Γ ⊢ P : U[T]

Γ, r : [T] ⊢ r− ⊲ P : end[U]

(T)
Γ,m : S ⊢ P : U[T] exists(m,P)

Γ ⊢ (νm)P : U[T]

(T)
Γ ⊢ vi : Si i = 1,2 Γ ⊢ P : U[T] Γ ⊢ Q : U[T]

Γ ⊢ if v1 = v2 then P else Q : U[T]

Fig. 6.Typing rules

This operation is sound because tail outputs of parallel values of the same type are not
observable at the type system level. Rule (T) uses the function defined as

pipe(U[end],U ′[T′], S̃) = U[end] (no pipe activation)
pipe(U[!( S̃)],U ′[T], S̃) = U ◦ U ′[T] (pipe activated once)
pipe(U[!( S̃)k],U ′[end], S̃) = U ◦ U ′k[end] k > 1 (multiple pipe activation)

whereU′k is a sequence ofk > 1 output usages of the same type. If no value is passed
to the pipe, then it is inessential. If it can be activated once, then its instance will act
as a continuation for the current session. If multiple activations are considered, which
will run in parallel, then each instance usage in the sessionmust beend. Intuitively pipe
constrainsP > x̃ > Q in the current session to allow a single outputP whenever the type
of Q is different from a single input or vice versaQ to be a single input whenever the
type of P is !(S̃)k a sequence of k-times!(S̃). In this case the result is visible upward,
repeatingU′ for k times. The first case ofpipe is necessary to guarantee the subject
reduction. (T) and (TI) are similar to service definition and invocation rules butr
is removed from the environment to forbid the nesting of the same session name.
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With respect to the two type systems presented in [19] ours ismore similar to the
one with balanced typing. In case the bound namem is a service, rule (T) checks
the existence of a corresponding service definition by meansof exists(m,P). Function
exists ensures that the processP declares the announced service (its inductive definition
is as expected). Finally, rule (T) handles conditionals in the usual way.

Typing rules allow a deduction for processes liker :!(int) ⊢ r+ ⊲〈1〉|r+ ⊲〈2〉which do
not preserve session linearity. We will exclude such processes by inroducing the notions
of balanced and initial processes (see Definitions 1 and 4, and Theorem 1).

Example 1.Let us take the reservation example. The type !(int)[!( str, str).?(int)] ex-
presses the following client usage: the output of two strings is followed by the reading of
the result and an integer is returned outside the session (the first output out of the square
brackets indicates a return action, that is an output out of the current session). Previous
usage is compared with the session usage ?(str, str).!(int) to ensure that the invocation
is sound. Below we report the typing proof for the client, where we letΓ = reserve:
[& {double :?(str, str).!(int), single :?(str).!(int)}], P = 〈”Bob”〉.(x).return x, Q =
〈”Bob” , ”Leo”〉.(x).return x andT = ⊕{double :!(str, str).?(int), single :!(str).?(int)}:

...(T)
Γ ⊢ P :!(int)[!( str).?(int)]

(T)
Γ ⊢ 〈single〉.P :!(int)[T]

... (T)
Γ ⊢ Q :!(int)[!( str, str).?(int)]

(T)
Γ ⊢ 〈double〉.Q :!(int)[T]

(T)
Γ ⊢ if (test) then 〈single〉.P else 〈double〉.Q :!(int)[T]

Moreover, we could safely replace the service definition with

reserve.
(

(double).(x,y).〈code(x,y)〉 + (single).(x).〈code(x,"")〉 + (suite).R
)

(which extends the previous version of the service with additional behaviours) and still
we correctly type check the client. In fact, our type system can statically exclude the
new branchsuite when the client is typed.

Example 2.Let us consider the factorial servicef att, defined by:

f att.(n). if (n=0) then 〈1〉
else f att.〈n-1〉.(x).return x > x > 〈mul(x,n)〉

Notice that in this case we are able to express the factorial thanks to service per-
sistence, which guarantees a separation between each invocation. The entire program is
well-typed by type checking only a single session instance.As the Theorem 2 will show,
this check suffices to ensure thatf att is deadlock free. The typing proof is below, where
we recall thatend[!( int)] = [!( int)] and letP′ = 〈n−1〉.(x).return x, P = f att.P′, Q′ =
〈mul(x, n)〉, Q = P > x > Q′ andΓ = f att : [?(int).!(int)], n : int, mul : int × int→ int.

...

∅ ⊢ 〈1〉 : [!( int)]

..

.

Γ ⊢ P′ :!(int)[!( int).?(int)]
Γ ⊢ P : [!( int)]

...

Γ, x : int ⊢ Q′ : [!( int)]
Γ ⊢ P > x > Q′ : [!( int)]

Γ ⊢ if (n = 0) then 〈1〉 else Q : end[!( int)]
f att : [?(int).!(int)], mul : . . . ⊢ (n).if (n = 0) then 〈1〉 else Q : end[?(int).!(int)]
f att : [?(int).!(int)], mul : . . . ⊢ f att.(n).if (n = 0) then 〈1〉 else Q : end[end]
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Example 3.Beyond basic types, expressions may take the name of a service as a pa-
rameter. Take a load balancing service that is called to discover, at each invocation,
which service betweena andb is more reliable for executingP.

(ν a b)
(

loadbalance.if choose(a, b) = 1 then 〈a〉 else 〈b〉 | a.P | b.P
)

| loadbalance.(x).return x > x > x.Q

Here the functionchoose is a basic expression of type [T] × [T] → int and uses the
names of the two services as parameters. The client after receiving the name of the
reliable service can substitute it forx for all future invocations of the service. It is a
nice exercise to verify that the ensemble of the above processes is well-typed under the
assumption thatP andQ have types [T] and [T] respectively.

The type system enjoys subject congruence and subject reduction. In their proofs
we need some auxiliary lemmas that are proved by straightforward induction on the
derivation of typing judgements.

Lemma 1 (Weakening).If Γ ⊢ P : U[T] and m< fn(P) thenΓ,m : S ⊢ P : U[T].

Lemma 2 (Strengthening).If Γ,m : S ⊢ P : U[T] and m< fn(P) thenΓ ⊢ P : U[T].

Proposition 1 (Subject Congruence).If Γ ⊢ P : U[T] and P≡ Q thenΓ ⊢ Q : U[T]

The following substitution lemma is needed in the proof of subject reduction for
dealing with rules (I) and (P).

Lemma 3 (Substitution).LetΓ, x : S ⊢ P : U[T]. If Γ ⊢ v : S thenΓ ⊢ P[v/x] : U[T].

Definition 1 (Balanced Process).A process P isbalancedif Γ ⊢ P : U[T] for some
Γ,U,T and for each session name r in P, each of r+ and r− appears exactly once in P.

Theorem 1 (Subject Reduction).Let P be a balanced process and⊏ be the smallest
relation such that: T⊏?(S̃).T, T ⊏!(S̃).T, Ti ⊏ & {l i : Ti}i∈I and Ti ⊏ ⊕{l i : Ti}i∈I .

1. If P
λ
−→Q withλ ∈ {τ, rτ}, then Q is balanced (session linearity).

2. If Γ, r : [T] ⊢ P : U[T′′] and P
rτ
−→ Q thenΓ, r : [T′] ⊢ Q : U[T′′] where T′ ⊏ T.

3. If Γ ⊢ P : U[T] and P
τ
−→ Q thenΓ ⊢ Q : U[T].

The proof is by induction on the derivation of the transition. Lemmas 1 and 2 serve
to insert in/remove fromΓ assumptions about session names. Session linearity guaran-
tees that only “safe” programs are produced starting from balanced processes, i.e., that
situation liker+ ⊲ 〈1〉|r+ ⊲ 〈1〉 (wherer+ appears twice) cannot arise at run-time.

4 Deadlock Freedom and Normal Form

Hereafter, we letω, γ . . . range over possibly empty sequences of labelsτ, rτ andrι,

whererιwill be introduced later by the rule (SC’). We let
ω
−→∗ represents the reflexive

and transitive closure of
τ
−→ ∪

rτ
−→ ∪

rι
−→ (for all session namesr). We say that a

process is deadlock free if it cannot be blocked waiting a synchronisation unless it
reaches thenormal form. Normal form means that all the possible communications are
exhausted and only service definitions remain.
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Definition 2 (Normal form). A process P is in normal form if there exist service names
s1, ..., sn and processes Q1, ...,Qn such that P≡(νs1) . . . (νsn)(s1.Q1| . . . |sn.Qn).

Definition 3 (Deadlock free).A process P is deadlock free if for each Q s.t. P
ω
−→∗Q

then either Q reaches a normal form or Q
τ
−→.

Since deadlock freedom is a strong property we need to focus on a specific set of
processes, called initial processes.

Definition 4 (Initial process). A process P is initial if it does not contain session con-
structs, all service definitions are at the top level and∅ ⊢ P : end[end].

Note that initial processes are also balanced. Our main theorem shows that all initial
processes are deadlock free (see Theorem 2). Proving deadlock freedom involves the
possibility of exhibiting aτ reduction after an arbitrary number of evaluation steps.
However, to characterise the next admissible reduction in aconstructive way, we need
to argue about some specific session. To observe the name of the session in which a
synchronisation is taking place we need a mild modification to the rule (SC) of the
transition system. The basic idea is to remove the binders for session names, i.e., to
considerP′ instead ofP, for P ≡ (νr̃)P′ whereP′ has no binder on session names.
The revised rule (SC’) does not restrict the fresh session with a binder and uses the
already mentioned labelrι to identify the created session.

(SC’)

P
(r)s⇒r
−→ P′ Q

(r)s⇐r
−→ Q′

(P|Q)
rι
−→ (P′|Q′)

Another subtle aspect is that now sessionr is bound in the labelrι, because it must be
fresh w.r.t. all the other pre-existing session names: we omit parentheses in favour of a
lighter syntax. On the other hand, the type environmentΓ for closed processes can now
contain assumptions about session names. The modification of the rule is sound since
we are considering only processes that are reachable from initial processes. In fact, any
initial process will produce for each new session a corresponding binder to restrict the
session. For this reason the LTS with rule (SC’) has essentially the same behaviour
of the previous LTS with rule (SC) (just read both labelsrι andrτ asτ).

Lemma 4. If P is initial and P
ω
−→∗Q, then there exists a typing environmentΓ for

session names inω such thatΓ ⊢ Q : end[end].

To reason inductively on the way sessions are nested we introduce some convenient
notation for contextsC[[ ·]] andCr p[[ ·]], parent/children sessions relation≺P and session
ancestors relation<P. The set of contexts is defined by the grammar:

C ::= [[ ·]] | C|P | r p ⊲ C | (νs)C | C > x̃ > P Cr p ::= r p ⊲ ([[ ·]] |P)

As usualC[[P]] andCr p[[P]] are the processes obtained by filling the holes withP.
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Definition 5 (Session nesting relation).Let r1 ≺P r2 iff P ≡ C[[Cr p
1
[[ rq

2 ⊲ Q]]]] for some
contextsC,Cr p

1
, session rq2, and process Q. We let<P be the transitive closure of≺P.

The relation<P for initial processes is also acyclic (<P is irreflexive), it is preserved

byτ reductions and it holds that ifP
rι
−→ Q then<Q=<P ∪{(x, r) | ∃r1.r1 ≺P r∧x <P r1}.

The next proposition is a sort of progress property valid forthe outermost (in terms
of ≺-relation) active sessions. In fact, if one of such sessionshas a pending action en-
abled then it is either guaranteed that after a finite number of steps a suitable synchro-
nisation is accomplished or a service invocation can open a new nested session.

Proposition 2. Let P be an initial process. If P
ω
−→∗Q, then for any session name r in

Q if ∄C,Cr p, v′ and R such that Q≡ C[[Cr p[[return ṽ′.R]]]] all of the following hold:

1. if Q
r p:←ṽ
−→ then Q

γ
−→∗

r p:→ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r<Q1 r1

2. if Q
r p:→ṽ
−→ then Q

γ
−→∗

r p:←ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r<Q1 r1

3. if Q
r p:←l
−→ then Q

γ
−→∗

r p:→l
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

4. if Q
r p:→l
−→ then Q

γ
−→∗

r p:←l
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

5. if Q ≡ C[[Cr p[[P′ > x̃ > Q′]]]] andΓ1 ⊢ P′ : U[!( S̃).T] then

C[[Cr p[[P′]]]]
γ
−→∗

r p:→ṽ
−→ ∨ C[[Cr p[[P′]]]]

γ
−→∗

r1ι
−→ Q1 and r <Q1 r1

Proof. Take any pair (r p,Q) satisfying the premise. The proof is by induction on the
well-founded order over pairs (r p,Q) defined as the least transitive relation such that
(r p1

1 ,Q1) < (r p2

2 ,Q2) if one of the following holds:

– llns(r1,Q1) < llns(r2,Q2),
– or llns(r1,Q1) = llns(r2,Q2), Q1 ≡ C[[Cr p[[Q′1[

ṽ/x̃]]]]] and Q2 ≡ C[[Cr p[[Q′2]]]] and
Q′1 is a sub-term ofQ′2 with fn(Q′2) = x̃ (the substitution [̃v/x̃] is possibly empty),

where we letllns(r,Q) denote the length of the longest nesting sequence induced by ≺Q

and starting withr, that is of the formr ≺Q r1 ≺Q r2 . . . rn−1 ≺Q rn.
We sketch the proof for case (1). By Lemma 4, we know that thereis a suitableΓ

such thatΓ ⊢ Q : end[end]. Depending onp, we need to prove one of cases below:

1.a if Q
r−:←ṽ
−→ andΓ = Γ1, r : [!( S̃).T] thenQ

γ
−→∗

r+:→ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 andr <Q1 r1

1.b if Q
r+:←ṽ
−→ andΓ = Γ1, r : [?(S̃).T] thenQ

γ
−→∗

r−:→ṽ
−→ ∨ Q

γ
−→∗

r1ι
−→ Q1 andr <Q1 r1

We can read the above statements as “a session side must respect, after a finite number
of stepsγ, the obligation imposed by its type unless it postpones the obligation with
a new service call”. The fact that the type ofr reflects the enabled action is a direct
consequence of the subject reduction.
Case 1.a: If r : [!( S̃).T] it means thatQ ≡ C[[ r+ ⊲ Q′]] with Γ′ ⊢ Q′ : U[!( S̃).T] for
suitableQ, Γ′ andU. The entire proof is completely type-driven, the key idea isthat we
consider only instances of rules able to yieldQ′ : U[!( S̃).T] in the conclusion. To ease
readability, in the rules we useW to range over processes and∆ over environments.



Types and Deadlock Freedom in a Calculus of Services, Sessions and Pipelines 13

(T)

∆, ṽ : S̃ ⊢ W : U[T]

Γ′ ⊢ 〈ṽ〉.W : U[!( S̃).T]

(T)

∆, s : [T ′] ⊢ W :!(S̃).T[T ′]

∆, s : [T ′] ⊢ s.W : [!( S̃).T]
(a) Some rule instances considered in base cases: output andinvoke

(TL)

Γ′ ⊢W : UW[!( S̃).T] Γ′ ⊢ R : UR[end]

Γ′ ⊢ W|R : UW ◦ UR[!( S̃).T]

(T)

Γ′ ⊢ W : UW[!( S̃′)] Γ′, x̃ : S̃′ ⊢ R : UR[!( S̃).T]

Γ′ ⊢ W > x̃ > R : UW ◦ UR[!( S̃).T]
(b) Some rule instances considered in inductive cases: parallel and pipe

(TI)

∆ ⊢ W :!(S̃).T[T ′]

∆, r1 : [T ′] ⊢ r−1 ⊲W : end[!( S̃).T]

(TI + T)

∆ ⊢ W :!(S̃).T[T ′′]

∆, r1 : [T ′] ⊢ r−1 ⊲ (x̃).W : end[!( S̃).T]
(c) Some rule instances considered in inductive cases: nested session

Fig. 7. Deduction rules

Base cases: The base cases are whenllns(r,Q) has length 0, i.e., there is no nested
session inr+ and r−. SinceΓ′ ⊢ Q′ : U[!( S̃).T] we consider the instances of rules
compatible with anr+ output action. Some of them are in Fig. 7(a). If (T) is used,

then it means thatQ′ ≡ 〈ṽ〉.W. Then Q
r−:→ṽ
−→ and we are done by takingγ empty.

Similarly, if (T) is used, thenQ′ ≡ s.W. ThenQ
r1ι
−→ Q1 with r ≺Q1 r1 (by invoking

s) and we are done by takingγ empty.
Inductive cases: When (TL) is used the thesis follows by inductive hypothesis on
C[[ r+ ⊲W]] (see Fig. 7(b)) and similarly when (TR) is used. For (T) we apply the

inductive hypothesis onC[[ r+ ⊲W]]. By case (5), eitherC[[ r+ ⊲W]]
γ′

−→∗
r+→ṽ
−→ C[[ r+ ⊲W′]]

and thenC[[ r+ ⊲ (W > x̃ > R)]]
γ′

−→∗
τ
−→ C[[ r+ ⊲ ((W′ > x̃ > R)|R[ ṽ/x̃])]], and then the

thesis follows by inductive hypothesis onC[[ r+ ⊲ R[ ṽ/x̃]]], or insteadC[[ r+ ⊲W]]
γ
−→∗

r2ι
−→

and thereforeC[[ r+ ⊲ (W > x̃ > R)]]
γ
−→∗

r2ι
−→ Q1 andr <Q1 r2. If (TI) is used, then a

nested sessionr1 is present, withr ≺Q r1 (see Fig. 7(c)), and we have various cases all

similar. For example, ifQ′ ≡ r−1 ⊲(x̃).W′ thenQ
r−1 :←ṽ′

−→ and by inductive hypothesis either

Q
γ′

−→∗
r+1 :→ṽ′

−→ and then the thesis follows addingr1τ at the begin of the resulting sequence
generated by another application of the inductive hypothesis onC[[ r+ ⊲ (r−1 ⊲W)]], or

Q
γ′

−→∗
r2ι
−→ Q1 with r1 <Q1 r2 and then the thesis follows sincer ≺Q r1 andr1 <Q1 r2.

Case 1.bis similar (we might also haveQ ≡ C[[ r− ⊲ return ṽ.W]], but this case can be
discarded because it contradicts the assumptions). ⊓⊔

We are now ready to prove the main result.

Theorem 2 (Deadlock freedom).Let P an initial process. Then for each Q s.t. P
ω
−→∗Q

then either Q
τ
−→ or Q is in normal form.

Proof. If Q is in normal form we are done. If not, by contradiction, if Proposition 2
holds then it cannot be the caseQ blocked on a pending action in the middle of a
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session. In fact, it is always possible to accomplish the synchronisation choosing the
right session that fits the proposition hypothesis sinceQ has typeend[end]. Such a
session cannot have areturn enabled because it would be seen as an output of the
parent session. Since the process is closed the type system ensures that every service
call is successful (rule (T)). ⊓⊔

Remark 1.The result can be extended to processesP that can output some values. In
fact, if Γ ⊢ P : end[!( S̃)k] then we can take any suitableQ (designed to work on the
resulting values) such thatΓ ⊢ P > x̃ > Q : end[end], thus fitting the requirements of
Proposition 2. (The simplest case isQ ≡ 0.)

Example 4.The processP = s.(x).s.〈x〉.(y).return y | s.〈5〉.(y) is well-typed in the
environments :?(int).!(int) and hence is deadlock free. Notice that the input ofy never
succeeds but the process is deadlock free since it keeps invoking new instances ofs (all
nested within the first established top session).

Even if simple, our framework also correctly type-checks non-tail recursive pro-
cesses. For example, the initial processs.s.return 1.(x)|s.(y) is well-formed and well-
typed inΓ = s :!(int) and thus it is deadlock free (in our sense). An equivalentπ-
calculus process is∗s(r).(νr ′)(s(r ′).r (1).r ′(x))|(νr)s(r).r(y) and in Kobayashi’s type sys-
tem [14] the actionr (1) cannot of course be ensured to succeed (check the tool available
at http://www.kb.ecei.tohoku.ac.jp/˜koba/typical/). In fact, r andr ′ have
the same type and hence the capability level ofr equal to the obligation level ofr ′ but
rule A’ [14] is not applicable sincer is created less recently thanr ′.

5 Conclusion

We have studied a service language with sessions and pipelines. Differently from [11,
12, 19, 9, 8, 7] our language build sessions automatically oneach service invocation and
disallows session name mobility (but not service name mobility). To some extent, the
simple type system we have devised is similar to that of simply typedπ-calculus be-
cause it only tracks the exchanged values in each session. Infact, since sessions are
developed as low level run-time primitives, the type systemdoes not need to check
session linearity. Instead we track active session usages w.r.t. the current session and
the parent session. Subsequently, we restrict on the class of initial processes for which
well-typedness implies a suitable notion of deadlock freedom. Together with the type
interference algorithm, reported in [18], we have a simple tool to check deadlock free-
dom. Among the main novelties we emphasise the typing rules for pipelines and the
particular well-founded order used for the induction in theproof of Proposition 2.

The full version of this work will address the enhancement ofthe type system with
a notion of sub-typing so that different usages of the same service can be typed consis-
tently. Moreover, recursion and regularµ-types [10] will be accounted for in the type
system, even if Proposition 2 will no longer hold in the present form. To see this, think
of a process making the same unbounded number of inputs and returns: if we type the
process asµα.!(S̃).α[µα.?(S̃).α] then different numbers of inputs and returns are al-
lowed. As future work, we want to relax some requirements on parallel usages, admit
session passing and extend the result to multiparty sessions.
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