Types and Deadlock Freedom
in a Calculus of Services, Sessions and Pipelirfes

Roberto Brunt and Leonardo Gaetano Mezzfna

! Computer Science Department, University of Pisa, Italy
bruni@di.unipi.it
2 IMT Lucca, Institute for Advanced Studies, Italy
leonardo.mezzina@imtlucca.it

Abstract. The notion of a session is fundamental in service-orienfgalica-
tions, as it serves to separate interactions between slant diferent instances
of the same service, and to group together logical units ekwecently, the Ser-
vice Centered Calculus (SCC) has been proposed as a prateskis designed
around the concept of a dyadic session between a serviceasitlan invoker
side, where interaction protocols and service orchestmatan be conveniently
expressed. In this paper we propose a generic type systewiléztcservices’
behaviours and then we fix a class of well-typed processéstbauaranteed to
be deadlock free, in the sense that they either diverge hyking new service
instances or reach a normal form. The type system is basetewiops research
on traditional mobile calculi, here conveniently extendettl simplified thanks
to the neat discipline imposed by the linguistic primitivg<SCC.

1 Introduction

The success of service orientation is attracting the isteriboth industry and academy.
On the one hand, important standardisation bodies and tinalusonsortia are devel-
oping the WS-* stack, targeting the engineering of web sewitechnologies from a
pragmatic perspective. The related documentation is afatred around common pro-
gramming patterns: it is more focused on technical detdg®me case-studies, than on
the overall methodology, leaving many ambiguities opentt@mther hand, several ef-
forts are posed on mathematical foundations, by develdpimgal languages and mod-
els tailored to service-oriented architectures. The mamia to provide current stan-
dards with unambiguous semantics, but hopefully, tackiiregscenarios from a more
abstract perspective, the formalisation can lay the basisdund service orchestration
methodologies. Within this research thread, many procalesilt have emerged ([6, 5,
17,4, 2,16], to cite a few), that are enhanced with servpEziic primitives.

The aim of this paper is to study a type system for one of the@pwmposals, called
Service Centered Calculus (SCC) [2]. More precisely, wdtucalculus derived from
SCC and from its refined variant CaSPiS [3] in which servie®@ation encompasses
one-wayand request-responsprotocols available in current WS-technology and al-
lows for more sophisticated message exchanges, accowmlihg protocol exposed by

* Research supported by the EU within the FET-GC Il Integr&egject IST-2005-016004&S-
soria and by the Italian FIRB ProjectoEar.r.

2 Roberto Bruni and Leonardo Gaetano Mezzina

the service. The key feature is considering the messagésieged between caller and
callee as correlated, enclosed in special units of workedakssionsand isolated from
messages belonging tofidirent invocations to the same serviceff&iently from other
session languages inspired by pi-calculus [11,12, 19, I§gab-orientation [9, 7] and
correlation sets [17], here the programmers should notdyatlith the manipulation of
sessions: they are created automatically, in a transparanher, upon service invoca-
tion. In particular, in SCC the communication media for exxaing messages is always
implicit and determined by the context surrounding activsteactions and concretions.
For this reason, we allow service name mobility, but notisessame mobility.

The automatic teller machine example in [12] can serve veelllastrate our ap-
proach to the typing of SCC. The ATMflers three options to choose from: deposit,
withdraw and balance. Once the user chooses one option thee&tablishes a new
direct connection with the bank to account for the operatifterwards, the result is
returned by the ATM to the user who can choose another opfibthe type system
level, even if the connection with the bank is reiterateche#me the user chooses an
option, it is only necessary to check a single instance toaqiae safety of the com-
munication, because each interaction belongs to a dis@esgion. For SCC we show
that, by constraining the communication activities, wgfledness not only guarantees
safety but a much stronger property such as deadlock freedom

Since sessions can be nested but cannot be addressedtigxiplicommunication
primitives, the language is endowed with children-to-pammmunications and with
in-session communications. These two communicationestteot only are expressive
enough to encode lazy-calculus [2] but also makes it possible that typing a single
instance of a session ffizes to guarantee deadlock freedom of recursive processes
such as the factorial service (see Example 2). Anotherfe@fuSCC is the presence of
a pipe construct, inspired by Orc [6], an elegant languagstfoictured orchestration.
Pipelines &fer a basic mechanism for composing processes: it is morerajesred
better suited w.r.t. concurrency than sequential comjpwosétnd it does not require the
improper use of channels for a task that pertains to orchigstr. As far as we know,
our type system is the first one to address the direct typirsgioi a pipe primitive.

The resulting language is somehow too permissive to be détltusing session
types [11,19, 12] directly, as they would require, e.g.,heeput in a session to be
matched by only an output. This condition is violated (andsemuently subject reduc-
tion does not hold) if, for example, in the presence of an inpe introduce parallel
outputs of dfferent types. Our type system extends ordinary session tgpesrk cor-
rectly with our language. Mierently from [13], this permits each variable to be stati-
cally assigned a basic type or a service type (in the casendgtesame mobility).

The type system characterises a subclass of SCC procepses tyf the service-
oriented scenarios (e.g., service declarations are ta sad replicated) for which we
show the main theorem of this paper: we prove that these pseseare deadlock free
in the sense that they either diverge by invoking servicégamses and opening new
sessions or reach a normal form in which only service detitara remain; that is,
every client terminates its computation unless someorergids, but the entire system
cannot block on pending communications. The proof techigakes an extensive use
of types to limit the number of possible cases, resulting &sor prone.

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 3

A similar type system exists for SSCC (a variant of SCC basedamed streams
instead of pipelines) [16] that guarantees session s&8#tyams introduce some sort
of global bufers for extra-session communication and permit only a sibgpe of val-
ues for each stream. Likewise, the type system describet]]irefembles ours but it
deals asymmetrically with services and clients, by guasing only client progress.
Concerning deadlock freedom we use definitions in [14, 15ha references for our
definition, which is slightly dferent because tailored to the service-oriented scenario.

Synopsis.Section 2 introduces our SCC-like calculus. Section 3 prissthe type sys-
tem and the subject reduction result. Section 4 defines #ss df initial processes and
proves the main theorem: every well-typed initial procesdéadlock free. Section 5
summarises the results and points out directions for fustfeek. Due to space limita-
tion proofs are just sketched or omitted.

2 Session Centered Calculus

2.1 SCC Overview: Room Reservation Example
Consider the following reservation servigeservefor hotel rooms:

R = reserve((double) . (x,y) .(code(x,y)) + (single).(x).(code(x,"")))

reserveoffers two kinds of roomsjouble or single, depending on the client choice.
If the client after an invocationeservesends the labalouble to the service then the
service waits for a pair of namesandy (both of typestr), and after receiving them,
generate a numeric reservation code (tyggderived fromx andy that is sent back to
the client. Herecode : str x str — int is a function only available on service side.

C = reserveif(tesd) then (single).("Bob").(x).return x
else (double).("Bob","Leo").(y).return y

The above client, after invokingserveand depending on some conditist chooses
between the two available options. The situation of thesesstablished sessiorafter
the client’s choice oflouble is the following:

(vr) (r >("Bob","Leo").(y).return y | r*»(x,y).{code(x,y)) | R)

where the client protocol is running on the left (the sessimer- with negative po-
larity) and the service protocol on the right (the sessiale st with positive polarity).
Abstractions (e.g.,X,y)) and concretions (e.g{;Bob”,”Leo”)) running on opposite
sides (* andr~) of the same session (bound namean exchange data, leading to

vr) (r >(y).return y | r*>{code("Bob","Leo™)) | R)

Saycode("Bob”, "Leo”) evaluates to 556047. Then, after another interactioa, th
client side (" >return 556047) can return the result outside ¢fo the parent session,
if any). For exampl@eserve(single).("Bob”).(X).return X > y > Q invokesreserve
and delivers the result ipto Q. As many instances dp are spawn as the number of
values that are issued. Since the execution of an invocptifix opens a nested session,
the conjunct use of return and pipe is the easiest way tormaathe computation within
the pre-existing session.

4 Roberto Bruni and Leonardo Gaetano Mezzina

PQR:=0 (nil)
| sP (service definition)
| V.P (invocation)
| ifv=v; then Pelse Q (if-then-else) e .
| (9P (wple inpuy ¥ = f)f") (f””‘z\tl'ggacbél‘g
| @.P (values output) | m (servicgsession)
|2, (i)-Ps (label-guarded sum) | b (basic data value)
| h.P (label choice)
| returnV.P (return) .qi=+ - (polarities)
| (vmP (restriction) ™7
| rP>P (session)
| P>%>Q (pipe)
| PIQ (parallel)

Fig. 1. Syntax of our service calculus

2.2 Syntax

The set of processes is defined by the grammar in Fig. 1. WB, (@R range over
processess over service names,over session hamesyover both session and service
names] over labelsx over variables (for service names and data), aoger values,
which include an elsewhere specified set of basic data ang&sipns (possibly with
names, variables and functions). Tuples are denoted®gérators are listed in Fig. 1
in decreasing order of precedence, e.gs P > X > Q|Rreads ((" » P) > X > Q)|R.

As usualQis the nil process, the trailing @is often omitted, parallel composition
is denoted byP|Q and restriction by ¥m)P. The construct? » P indicates a generic
session side with polaritp (taking values i+, —}). Sessions are mostly intended as
run-time syntax. In fact, dierently from other languages that provide primitives for
explicit session naming and creation, here all session&ldwi built automatically,
resulting in a more elegant and disciplined style of writprgcesses. A fresh session
namer and two polarised session ends> P andr* » Q are generated (on client and
service sides, respectively) upon each service invocatPof the services.Q. We say
r~»Pis the dual session side of> Q and vice versa. AP andQ share a session, their
I/O communications are directed toward the dual session ¥det p, q range over
polarities and, g are the opposite polarities pfandq, where+ = — and= = +.

Labelsl allow for expressing a choice on one side among a set of #aitptions
at the other side. The primitiveeturn is used to output values to the parent session
and the pipd® > X > Q is a construct for on-side communications, i.e., for priamgy
values in the same side of a session. Pipe is inspired by Qno [Activate a fresh
instance ofQ on any value produced .

Processes are taken upteequivalence considering).Q andP > X > Q as binders
for variables<in Q and ¢m)P as the binder fomin P. The setn(P) of free names oP
is defined as expected. It is worth noting that the standgrtlicaavoiding substitution
P["/x], which replaces a tuple of variables with a tuple of val@ssumes that variables
cannot appear in certain positions (ixer, P andx.P are forbidden by the syntax).

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 5

PO=P PQ=QP (PIQIR=PI(QR)
vm)(mP = vm)(vm)P ((vm)P)IQ = (vm)(PIQ) if m¢ fn(Q)
(vmP) > X> Q= (vm)(P> X> Q) if m¢ fn(Q) rPe(ymP=(vm)(rP>P) ifr #m
0>%>P=0 (PIQ>%X>R=(P>%X>R|Q>%X>R
(rP>0)>X>R=rP>0 I’f>(QII’g>O)E|’f>QII’g>O (vr)(rt>Qr-»0 =0

Fig. 2. Structural congruence

Each service definition is persistent (i.e., not consuméer @h invocation) and
available at top level (see Definition 4). For this reasoth@type system we shall give
in Section 3, their protocols are not supposed to return ahyevto the parent.

2.3 Operational Semantics

We describe the semantics of our language by means of an lak®xtploits the struc-
tural congruences, which is the least one defined by the equations in Fig. 2. They
include ordinary axioms about parallel and restrictiorgetier with distributivity of
parallel over pipes, and a few axioms for garbage collectimminated session ends
rP»0. We say thaf) is at thetop levelin P if P = (vM)QIR for somenandR.

Our transition system exploits the labelsn Fig. 3. We write«— to mean either
«— or —». We write (f)A to mean the label where the nhames become bound. The
notions of bound namdm (1), free name#n(1) and names(1) of a label? are defined
as expected. We remark thatconversion is not applicable to labels.

The semantics is given in the early style, which guesses ahees and labels in
the rules (k) and (Bkanch), respectively. Rule (Er) shows the replicated nature of the
service and together withNY) creates two processes which are ready to communicate
after that (SGm) creates a new shared common sessiogss(@Ourt) accounts for the
return of a value, which is converted in an output out of therent session when the
session construct is traversede{Son) marks with the name of the exchanging session
each operation in that session.of@1) permits both communication of basic values
and service names. Extrusion is handled byetQ and (Rr), but thanks to (Rurv)
restricted names can be moved to the top before communicatid a closure rule
is not necessary. On the other hand, side condition of rue) (B useful for session
floating sincer is bound in labels for the service invocation. RuleeflPcreates a new
concurrent copy of proces3 together with the residu@&’ > X > Q in the case thaP
outputs a value. Rule (R:Pass) makes a move i if the action is not an output.

We shall writeP 2, if there is aQ such thaP 2, Q.

3 Typing

The set of session typed, T,.. ., is defined by the grammar in Fig. 5. Session types
express sequences of typed tuples of input and outputniltehoices records all
the choices at a certain point of a session, requested inrémeles of a conditional
process. External choice & records the types of eiti@d options.

6 Roberto Bruni and Leonardo Gaetano Mezzina

A= s=r | ser (service invocatior definition)
| V| <V (value productiorf consumption)
| rP:> ¥V |rP:« ¥ (value production consumption withirr)
| -1 1 (choice selectiop branching)
| rPis] | rPie| (choice selectiopibranching withinr)
| T | rr (silent steps)
| TV] (ma (value returry extrusion)
Fig. 3. Labels of the transition system
(Comm) (SessioN)
I O gy Py 2 -
™ O e oo PLP dclovol
X.P—P[Y/s] WP—P - o
PIQ = (PIQ) (P> P rPe P’
(SeLEcT) (SessionPass)
(BraNCH) (Croicg) Pl P 2 ,
“l N PSP Q—>Q P—P 2Ae{rrrnr? 2}
Eilo(li)-Pi — Pi <|>P — P . 1
PIQ 5 (PIQ) rPeP—5rPs P
(DEr) (Inv) (SCom)
r ¢ f(sP) r ¢ in(SP) Pr % q
sP 25 o pisp P25 - p (PIQ) -5 (v)(P|Q)
(SessionOur) (NEestInv)
(Rer) v ()s=r’
N P— P P — P r=zr
return V.P — P _‘v pr—
rPoP—rPoP rPeP — rPs P
(Res) (Oeen) (SessRes)
PLP s¢nl) P-5P ae{=W%rP:oAsen®) PP
9P -5 (v9P’ 9P L p ()P — ()P’
(PrpE) (PipEPASS)
PSP PLP 1%57
P>%>Q 5 QUiI(P >%>Q) P>%>Q-5P >%>0Q
(IeL) (IFrR)
PP ViEV Q-5 Q
if v=vthen Pelse Q -5 P’ ifv=v; then Pelse Q -5 Q'
(Par) (Equiv)
P-5S P bn()Nnfn(Q) =0 P=Q Q-5Q Q=P
PIQ 5 PIQ pLp

Fig. 4. Operational semantics

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 7

T,U = end (no action)
| ?61,...,Sn).T (input of a tuple) o .
| YSy,...,Sn).T (output of a tuple) S HI_ g] (basic d(astzstsmgg)
| &{ly:Tq,..., In: Tn} (external choice) yp
| @®{ly:Ty,....Ih: Ty} (internal choice)

Fig. 5. Syntax of types

SortsS can be eitherT] which represents a session with session typer an
elements of a given set of basic data ty@e8y convention we denots, € 8 the type
of the basic valub. We shall assume thatt, str € 8.

Our set of typing rules is in Fig. 6. Type judgements for valteke the forni" + v :

S whereS is the sort ofv. Type judgements for processes take the férmP : U[T],
where the typ&J represents the outputs Bfto the parent session, whileis the type of
admissible interactions for the current session. We ske&dirto such types assages
Sometimes we writeT[] as a shorthand foend[T]. Thetype environment' is a finite
partial mapping from variables and services to sorts andtfan types. The empty
environment is annotatell Whenx ¢ dom(I") we write I', x : S for the environment
obtained by extending with the binding ofx to S (the same holds fan ¢ don(I)).

The first four rules for values are standard and the signatieach used external
function must be inserted in the environmentas a functitype (rule (FoncV)) because
they are not bound by processes.

The type of0 in (Tzero) is end[end] since no action is performed neither in the
current session nor towards the parent session. Ruler) Eonstrains the protocol of
the service to be the same as that of the body praéessl rule (inv) checks that the
invoked service behaves in the dual manner with respecetaltant. Here the dual of
T, written T is inductively defined as:

end=end ?28).T=UST &{1:Tn,....h:Tat=a{1:Te...,lh:To}
(8). T =28)T &fli:T0,....ln: Tl =&{l1:To,...,1n: T}

It can be readily observed that duality exchanges the rolevith ? and of & withé.
Rules (Tin), (Tour) and (Trer) insert the usage type in the correct place. The type
for the input variablex'in rule (Tiv) is not declared in the syntax, but it can be inferred
with the help of the algorithm described in [18]. Rulesgknch) allows for considering
a subset of possible branches; this subset can be choseniimimatway by letting
it include the branches used by the dual sessions in the Tui®ice). In fact, theif
construct allows to choose between many branches at thetsamand also dferent
clients can invoke the same service making their own chpaesrule (Tr) force all of
them to agree on the least common set of choices that musabelde at the other side.
The two rules for parallel composition §4rL) and (TearR) allow parallel composition
of two processes only if at least one does not have any agtidiei current session,
i.e. if it has typeU[end]. Note instead that botR andQ are allowed to produce values
upwards, in which case the operatibne U’ is defined only if all the atomic parts in
U andU’ are of the same kind, say3f, and in that cas&) o U’ = UU’ = U’ o U.

8 Roberto Bruni and Leonardo Gaetano Mezzina

(BasV) (Func)
(I?RSV:ICES)FS:S (I\{A;):S»-X:S T, € B TF'tvi:Si..TFV,:S, Tb€B

F'rb:7my, TLf:SiX...XSy—>1pkf(Ve,...,Vn):1p

(Tzer0) (ToEF) (Tivy) _
I'+0: endfend] r'+P:end[T] I'rs:[T] T'r+P:U[T] Trv:[T]
I'+ sP: end[end] '+ V.P: end[U]
(TN) . (Tour) . (TrET) .
IX:S+P:U[T] r'+P:U[T] Ir'+V:S 't P:U[T] T'+¥:S
'+ (X).P:U[28).T] T+ @.P:U[(8).T] I+ return V.P :1(8).U[T]
(TBRANCH) (TrarL)
Ic{l....,n} Viel I'rP;:U[T] F'rP:U[T] IT'+Q:U[end] U”=UoU’
rr20o(0).Ps UL& Al Tilia '+ PQ:U”[T]
(TCHoice) (TrarR)
I=li€{ly,....In} TrP:U[T] T rP:Ulend] I'+Q:U[T] U’=UolU’
F'rOY.P:U[B{I1: Te,..., 10 T}l '+ PIQ: U”[T]

(TeipE)
TrP:U[T] I%:8+Q:U[T] pipe(U[T],U[T],8) =U"[T"]
[rP>%>Q:U"T]

(Tses) (Tsesl)
' P:U[T] I'r P:U[T]
Lr:[T]+r*sP:end[U] Lr:[T]+r »P:endU]
(TneW) (TE)
I'm:S+P:U[T] exists(m, P) Crv:S i=12 r+P:U[T] I'+Q:UJ[T]
't (vmP: U[T] I'tif vy =V, then Pelse Q: U[T]

Fig. 6. Typing rules

This operation is sound because tail outputs of parallelesabf the same type are not
observable at the type system level. Ruleid) uses the function defined as

pipe(U[end], U'[T’],§) = U[end] (no pipe activation)
pipe(U[!(9)], U’[T],S) = =UoU'[T] (pipe activated once)
pipe(U[!(S)¥],U’[end],S) = U o UX[end] k>1 (multiple pipe activation)

whereU’% is a sequence df > 1 output usages of the same type. If no value is passed
to the pipe, then it is inessential. If it can be activatedeyriben its instance will act

as a continuation for the current session. If multiple attons are considered, which
will run in parallel, then each instance usage in the sessiast beend. Intuitively pipe
constraind® > X > Qin the current session to allow a single outPuwrhenever the type

of Q is different from a single input or vice ver§ato be a single input whenever the
type of P is I(S)k a sequence of k-timégS). In this case the result is visible upward,
repeatingU’ for k times. The first case gdipe is necessary to guarantee the subject
reduction. (Bes) and (Tsesl) are similar to service definition and invocation rules but

is removed from the environment to forbid the nesting of s session name.

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 9

With respect to the two type systems presented in [19] ounsdge similar to the
one with balanced typing. In case the bound nairis a service, rule (¥ew) checks
the existence of a corresponding service definition by meéesists(m, P). Function
exists ensures that the proceBsleclares the announced service (its inductive definition
is as expected). Finally, rule @ handles conditionals in the usual way.

Typing rules allow a deduction for processes liké(int) + r*»(1)r*>(2) which do
not preserve session linearity. We will exclude such prsesby inroducing the notions
of balanced and initial processes (see Definitions 1 anddiTaerorem 1).

Example 1.Let us take the reservation example. The typet)[!(str, str).?(int)] ex-
presses the following client usage: the output of two sisdollowed by the reading of
the result and an integer is returned outside the sessieffifshoutput out of the square
brackets indicates a return action, that is an output olt®turrent session). Previous
usage is compared with the session usag#,2r).!(int) to ensure that the invocation
is sound. Below we report the typing proof for the client, wheve letl” = reserve:

[& {double :?(str, str).!(int), single :?(str).!(int)}], P = ("Bob”).(X).return X, Q =
("Bob”,"Leo”).(X).return x andT = &{double :I(str, str).?(int), single :!(str).?(nt)}:

(Tour) __ - : (Tour)
I+ P:I(int)[!(str).?(nt)] I+ Q:I(int)[!(str, str).?(nt)]
(Tenorer) — = giey P 1GnD[T] T+ (double).Q -[(inH[T] (T(I:)C“OICE)

I'+ if (tesh then (single).P else (double).Q :!(int)[T]

Moreover, we could safely replace the service definitiorwit
reserve((double) .(x,y).{(code(x,y)) + (single).(x).{code(x,"")) + (suite).R)

(which extends the previous version of the service with &olaal behaviours) and still

we correctly type check the client. In fact, our type systamn statically exclude the
new branctsuite when the client is typed.

Example 2.Let us consider the factorial servidatt, defined by:

fatt. (n). if (n=0) then (1)
else fatt.(n-1).(x).return x > x > (mul(x,n))

Notice that in this case we are able to express the factdvéalks to service per-
sistence, which guarantees a separation between eachiimmcrhe entire program is
well-typed by type checking only a single session instaAsehe Theorem 2 will show,
this check sffices to ensure thdtatt is deadlock free. The typing proof is below, where
we recall thaend[!(int)] = [!(int)] and letP’ = (n—1).(X).return x, P = fatt.P’, Q' =
(mul(x,n)), Q=P >x>Q andl' = fatt: [?(int).!(int)],n: int,mul : int x int — int.

I+ P :i(int)[!(int).?2(nt)] :
: '+ P:[I(int)] ryx:int+ @Q : [I(int)]
0+ (1) : [!(int)] r'rP>x>Q :[I(int)]
I'+ if (n=0) then (1) else Q: end[!(int)]
fatt: [?(int).!(int)],mul : ...+ (n).if (n = 0) then (1) else Q: end[?(int).!(int)]
fatt: [?(int).!(int)],mul : ...+ fatt.(n).if (n = 0) then (1) else Q: end[end]

10 Roberto Bruni and Leonardo Gaetano Mezzina

Example 3.Beyond basic types, expressions may take the name of a s&via pa-
rameter. Take a load balancing service that is called toodesc at each invocation,
which service betweeaandb is more reliable for executing.

(v a b) (loadbalanceif choose(a,b) =1 then (a) else (b) | aP | b.P)
| loadbalance(x).return x > X > X.Q

Here the functiorchoose is a basic expression of typ&] x [T] — int and uses the

names of the two services as parameters. The client afteivieg the name of the

reliable service can substitute it farfor all future invocations of the service. It is a
nice exercise to verify that the ensemble of the above peasss well-typed under the
assumption tha® andQ have typesT] and [T] respectively.

The type system enjoys subject congruence and subjecttiedulmn their proofs
we need some auxiliary lemmas that are proved by straigh#fiat induction on the
derivation of typing judgements.

Lemma 1 (Weakening).If I' + P: U[T] and m¢ fn(P) thenI,m: S+ P: U[T].
Lemma 2 (Strengthening)If I,m: S+ P: U[T] and m¢ fn(P) thenl" + P : U[T].
Proposition 1 (Subject Congruence)lf '+ P: U[T] and P= Q thenl"+ Q: U[T]

The following substitution lemma is needed in the proof dbjeat reduction for
dealing with rules () and (ReE).

Lemma 3 (Substitution).Letl,x: S+ P: U[T].If '+ v:S then + P[Y/,] : U[T].

Definition 1 (Balanced Process)A process P ivalancedf I' + P : U[T] for some
I,U, T and for each session name r in P, each®ofind r~ appears exactly once in P.

Theorem 1 (Subject Reduction)Let P be a balanced process ande the smallest
relation such that: T=?(S).T, T cl(S).T, Ti c &{l; : Tiliq and T C &{l; : Ti}ic-

1. If PL>Q with A € {r,r7}, then Q is balanced (session linearity).
2. 1L [T P:U[T”] and P— Qthenl,r: [T'] F Q: U[T”] where TC T.
3. Ifr'+ P:U[T]and P> Qthenl" + Q: U[T].

The proof is by induction on the derivation of the transitibemmas 1 and 2 serve
to insert infremove fromI” assumptions about session hames. Session linearity guaran
tees that only “safe” programs are produced starting frolartieed processes, i.e., that
situation liker* » (1)|r* » (1) (wherer* appears twice) cannot arise at run-time.

4 Deadlock Freedom and Normal Form

Hereafter, we letv,y ... range over possibly empty sequences of labels andr.,
wherer: will be introduced later by the rule (S&'). We let Ly represents the reflexive

o T rr re .
and transitive closure of» U — U — (for all session names). We say that a
process is deadlock free if it cannot be blocked waiting ackyonisation unless it
reaches theormal form Normal form means that all the possible communications are
exhausted and only service definitions remain.

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 11

Definition 2 (Normal form). A process P is in normal form if there exist service names
81, ..., Sy and processes ..., Qn such that P=(vs)) ... (vsh)(s1.Q1l - - - |S1-Qn)-

Definition 3 (Deadlock free).A process P is deadlock free if for each Q SEPQ
then either Q reaches a normal form or-é—x

Since deadlock freedom is a strong property we need to foous specific set of
processes, called initial processes.

Definition 4 (Initial process). A process P is initial if it does not contain session con-
structs, all service definitions are at the top level @ndP : end[end].

Note that initial processes are also balanced. Our maind¢neshows that all initial
processes are deadlock free (see Theorem 2). Proving déatéedom involves the
possibility of exhibiting ar reduction after an arbitrary number of evaluation steps.
However, to characterise the next admissible reductiondarestructive way, we need
to argue about some specific session. To observe the name eé#ision in which a
synchronisation is taking place we need a mild modificatothe rule (SGwm) of the
transition system. The basic idea is to remove the bindersdssion names, i.e., to
considerP’ instead ofP, for P = ()P’ whereP’ has no binder on session names.
The revised rule (S@«1’) does not restrict the fresh session with a binder and uses t
already mentioned label to identify the created session.

(SCowm’)
(r)s=r (r)ser

P— P Q— Q
(PIQ) = (P'IQ)

Another subtle aspect is that now sessidas bound in the label:, because it must be
fresh w.r.t. all the other pre-existing session names: wi parentheses in favour of a
lighter syntax. On the other hand, the type environniéfar closed processes can now
contain assumptions about session names. The modificdtite oule is sound since
we are considering only processes that are reachable fitial processes. In fact, any
initial process will produce for each new session a corradp@ binder to restrict the
session. For this reason the LTS with rule (3G has essentially the same behaviour
of the previous LTS with rule (S@) (just read both labels andrr asr).

Lemma 4. If P is initial and P-5*Q, then there exists a typing environménfor
session names i such that" + Q : end[end].

To reason inductively on the way sessions are nested walinteosome convenient
notation for context€[-] and C;»[-], parenichildren sessions relatiorr and session
ancestors relatiorp. The set of contexts is defined by the grammar:

C:=[]1ICP|rPeC|(v9C|C>%>P Cw 2= P> (11P)

As usualC[P] and C;»[P] are the processes obtained by filling the holes w#th

12 Roberto Bruni and Leonardo Gaetano Mezzina

Definition 5 (Session nesting relation)Letr; <p r2 iff P = C|[Cr§|[rg > QJ] for some
contextsC, Crf, sessiong, and process Q. We lets be the transitive closure ofp.

The relation<p for initial processes is also acyclief is irreflexive), it is preserved
by r reductions and it holds that ¥ N Qthen<g=<p U{(X,r) | Ary.ry <p raX <p rq}.

The next proposition is a sort of progress property validtf@& outermost (in terms
of <-relation) active sessions. In fact, if one of such sessi@ssa pending action en-
abled then it is either guaranteed that after a finite numbsteps a suitable synchro-
nisation is accomplished or a service invocation can opeswanested session.

Proposition 2. Let P be an initial process. If B5*Q, then for any session name r in
Qif AC, Cr», v and R such that G C[C,s[return ¥ .R]] all of the following hold:

Cif Q25 then @5+ i QL X Qrandr<q, 1
10" then 5 757 v oL 5 @, and r<o, M
if Q rp:—il then QL* rﬁ' \Y Ql>* BN Qiandr<g,
_if Q23 then Q-0 sy oL andr<q, 11
. fQ=CICHIP > x> QI andr - P U[($).T] then

P

CICIPT 5 "= v CICH[PT 2 25 Qrandr<g, 11

gar W N P

Proof. Take any pair i(°, Q) satisfying the premise. The proof is by induction on the
well-founded order over pairgR, Q) defined as the least transitive relation such that
(rf*, Q1) < (rf2, Q) if one of the following holds:

= lIns(ry, Q1) < lins(r2, Q2),)
— orlins(ry, Q1) = lins(rz, Qz), Q1 = C[C[Q4[*/5]1] and Q> = C[Cro[QS]] and
Q; is a sub-term of, with fn(Q,) = X (the substitution'{/5] is possibly empty),

where we letins(r, Q) denote the length of the longest nesting sequence indyced b
and starting wittr, that is of the fornt <q r1 <g r2...r-1 <Q rn.

We sketch the proof for case (1). By Lemma 4, we know that tieeeesuitable”
such that” + Q : end[end]. Depending om, we need to prove one of cases below:

laifQ r:v andl" =TI'q,r: [!(é).T] thenQL* r:v \Y; Ql>* LN Qqandr <g, r1

1b if Q=S andr = Iy, r : [28). T thenQ5* —3 v QL+ % @, andr <q, 11

We can read the above statements as “a session side musitrediae a finite number
of stepsy, the obligation imposed by its type unless it postpones thigation with

a new service call”. The fact that the type rofeflects the enabled action is a direct
consequence of the subject reduction.

Case l.alf r : [I((8).T] it means thaQ = C[r*» Q'] with I’ + Q@ : U[!(S).T] for
suitableQ, I'” andU. The entire proof is completely type-driven, the key idethhat we
consider only instances of rules able to yi€: U[!(S).T] in the conclusion. To ease
readability, in the rules we ud4 to range over processes at@ver environments.

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 13

(Tour) . (Tivy) . .
4,9:S+W:U[T] 4,5 [T+ W:I(S).T[T’]
I+ (W.W: U[(S).T] 4,5 [T F3W: [I(S).T]
(a) Some rule instances considered in base cases: outpinvahe
(TearL) . (TripE) . . .
' W : Uw[Y(S).T] I+ R:Ugend] ' W:Uw[(S)] I, %:S +R:URI(S).T]
I F WIR : Uy o UR[!(8).T] I FW> %> R: Uy o UR[(8).T]
(b) Some rule instances considered in inductive casesligaaad pipe
(Tsesl) . (Tsesl + TiN) .
A+ W:I(S).T[T] A+ W (S).T[T"]
A,ry [T k1> W end[!(S).T] A,y [T Frp e (%)W : end[!(S).T]

(c) Some rule instances considered in inductive caseseaesssion

Fig. 7. Deduction rules

Base casesThe base cases are whiims(r, Q) has length 0, i.e., there is no nested
session ir* andr~. Sincel” + Q : UJ[Y(S).T] we consider the instances of rules
compatible with anm* output action. Some of them are in Fig. 7(a). Ib(T) is used,

then it means tha®@ = (¥).W. ThenQ "=’ and we are done by taking empty.
Similarly, if (Tivv) is used, ther®y = SW. ThenQ SEN Q1 with r <g, r1 (by invoking

s) and we are done by takingempty.

Inductive cases When (TearL) is used the thesis follows by inductive hypothesis on
C[r* » W] (see Fig. 7(b)) and similarly when ¢XrR) is used. For (ifire) we apply the

inductive hypothesis o@[r* > W]. By case (5), eithe€[r* > W] Yy Cl[r*»>W7]
and thenC[[r*»> (W > X> R)] AN C[r*» (W > %> R)IR[Y/5])], and then the
Iat

thesis follows by inductive hypothesis Giir* » R[/3]], orinsteadC[r* » W] —* —5

and therefor&[r* > (W > X > R)] RACEN Qq andr <g, ra. If (Tsesl) is used, then a
nested session is present, witlr <q r1 (see Fig. 7(c)), and we have various cases all

TV
similar. For example, i) = r;>(X).W’' thenQ R and by inductive hypothesis either

4 psvd
QL* i and then the thesis follows adding at the begin of the resulting sequence
generated by another application of the inductive hypashes C[r* > (r; > W)], or

QL* 2, Q1 with r1 <g, r2 and then the thesis follows since<g r1 andry <gq, ro.
Case 1.bis similar (we might also hav® = C[r~ » return ¥.W], but this case can be
discarded because it contradicts the assumptions). O

We are now ready to prove the main result.

Theorem 2 (Deadlock freedom)Let P an initial process. Then for each Q s.t.—wP*Q
then either Qi> or Q is in normal form.

Proof. If Q is in normal form we are done. If not, by contradiction, if Position 2
holds then it cannot be the cageblocked on a pending action in the middle of a

14 Roberto Bruni and Leonardo Gaetano Mezzina

session. In fact, it is always possible to accomplish theslsgamisation choosing the
right session that fits the proposition hypothesis siQchas typeend[end]. Such a
session cannot haver@turn enabled because it would be seen as an output of the
parent session. Since the process is closed the type systames that every service
call is successful (rule @Ew)). O

Remark 1.The result can be extended to proced®dbat can output some values. In
fact, if I' + P : end[!(S)¥] then we can take any suitab@ (designed to work on the

resulting values) such that+ P > X > Q : end[end], thus fitting the requirements of
Proposition 2. (The simplest caseQs= 0.)

Example 4.The proces® = s.(X).S(X).(y).return y | S(5).(y) is well-typed in the
environmens :?(int).!(int) and hence is deadlock free. Notice that the input néver
succeeds but the process is deadlock free since it keepsmgvoew instances of (all
nested within the first established top session).

Even if simple, our framework also correctly type-checksitail recursive pro-
cesses. For example, the initial proce&sreturn 1.(X)|S.(y) is well-formed and well-
typed inI" = s :l(int) and thus it is deadlock free (in our sense). An equivatent
calculus process iss(r).(vr")(S(r").F (1).r'(x))|(vr)s(r).r(y) and in Kobayashi's type sys-
tem [14] the actioim (1) cannot of course be ensured to succeed (check the tdlzllaiea
athttp://www.kb.ecei.tohoku.ac.jp/ koba/typical/). In fact,r andr’ have
the same type and hence the capability level efual to the obligation level of but
rule A’'[14] is not applicable sinceis created less recently thah

5 Conclusion

We have studied a service language with sessions and mpeiferently from [11,
12,19,9, 8, 7] our language build sessions automaticallyam service invocation and
disallows session name mobility (but not service name nighilTo some extent, the
simple type system we have devised is similar to that of sintygped z-calculus be-
cause it only tracks the exchanged values in each sessidactinsince sessions are
developed as low level run-time primitives, the type systémes not need to check
session linearity. Instead we track active session usagdstive current session and
the parent session. Subsequently, we restrict on the clasiial processes for which
well-typedness implies a suitable notion of deadlock foeedTogether with the type
interference algorithm, reported in [18], we have a simpl@ to check deadlock free-
dom. Among the main novelties we emphasise the typing rdepipelines and the
particular well-founded order used for the induction in greof of Proposition 2.

The full version of this work will address the enhancemenrtheftype system with
a notion of sub-typing so thatfiiérent usages of the same service can be typed consis-
tently. Moreover, recursion and regulaitypes [10] will be accounted for in the type
system, even if Proposition 2 will no longer hold in the preaderm. To see this, think
of a process making the same unbounded number of inputs andseif we type the
process ag.!(S).a[ua.?(S).a] then diferent numbers of inputs and returns are al-
lowed. As future work, we want to relax some requirements araltel usages, admit
session passing and extend the result to multiparty session

Types and Deadlock Freedom in a Calculus of Services, Sesaind Pipelines 15

AcknowledgementsiWe would like to thank Mariangiola Dezani-Ciancaglini, Njar
Kolundzija and the anonymous referees for their helpful @etgiled comments.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Acciai and M. Boreale. A type system for client progra@ss service-oriented calculus.
In Festschrift in Honour of Ugo Montanari, on the Occasion o§l8bth Birthday volume
5065 ofLNCS Springer, 2008. To appear.

. M. Boreale, R. Bruni, L. Caires, R. De Nicola, |I. Lanese Lidreti, F. Martins, U. Montanari,

A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavatta@®CSA service centered calculus.
In WS-FM’06 volume 4184 oL NCS pages 38-57. Springer, 2006.

. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessiamsl pipelines for structured

service programming. IRMOODS’08 volume 5051 of NCS pages 19-38. Springer, 2008.

. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattar8ock: a calculus for service

oriented computing. IKCSOC’06 volume 4294 o NCS pages 327-338. Springer, 2006.

. M. Carbone, K. Honda, and N. Yoshida. Structured comnatitin-centred programming

for web services. IESOP’07 volume 4421 o NCS pages 2—17. Springer, 2007.

. W. Cook, D. Kitchin, and J. Misra. A language for task osthation and its semantic prop-

erties. INCONCUR’06 volume 4137 oL NCS pages 477-491. Springer, 2006.

. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asymsious session types and

progress for object oriented languagesFMOODS’07 volume 4468 of NCS pages 1-31.
Springer, 2007.

. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. fnogress for structured commu-

nications. INTGC’07, volume 4912 oLNCS pages 257-275. Springer, 2008.

. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and So$xopoulou. Session types for

object-oriented languages. ECOOP’06 volume 4067 oL NCS pages 328-352. Springer,
2006.

V. Gapeyev, M. Levin, and B. Pierce. Recursive subtypagaled. J. Funct. Program.
12(6):511-548, 2002.

S. Gay and M. Hole. Subtyping for session types in thelputas. Acta Inform, 42(2):191—
225, 2005.

K. Honda, V. Vasconcelos, and M. Kubo. Language primsdtiand type discipline for struc-
tured communication-based programming EIBOP’98 volume 1381 of. NCS pages 122—
138. Springer, 1998.

A. lgarashi and N. Kobayashi. A generic type system ferghcalculus.ACM SIGPLAN
Notices 36(3):128-141, 2001.

N. Kobayashi. New type system for deadlock-free praesdsiCONCUR’06 volume 4137
of LNCS pages 233-247. Springer, 2006.

N. Kobayashi and D. Sangiorgi. A hybrid type system foklfreedom of mobile processes.
In CAV’08 LNCS. Springer, 2008. To appear.

I. Lanese, V. Vasconcelos, F. Martins, and A. Ravaraciplising orchestration and con-
versation in service-oriented computing.Rroceedings of SEFM'Qpages 305-314. IEEE
Computer Society Press, 2007.

A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus fahestration of web services. In
ESOP’07 volume 4421 o£ NCS pages 33-47. Springer, 2007.

L. G. Mezzina. How to infer finite session types in a calsuf services and sessions. In
COORDINATION'08volume 5052 of NCS pages 216—231. Springer, 2008.

N. Yoshida and V. Vasconcelos. Language primitives ape discipline for structured
communication-based programming revisited: Two systemnsigher-order session com-
munication.Elect. Notes in Th. Comput. Sc.71(4):73-93, 2007.

